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Introduction

I am M K Srivastav, the Department of Physics, IIT Roorkee. This is the first lecture for the four

lecture series on Acoustics. 

(Refer Slide Time: 00:39)

In these lectures on Acoustics, We shall begin with sound generation and propagation, take up

caustic equations, consider types of wave motion and shall concentrate on harmonic waves. 
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We shall then consider principle of superposition, formation of beats and stationary waves. Shall

describe,  Kundt’s tube experiment  as an experimental  manifestation of the stationary waves;

Then, we shall consider the phenomena of reflection, refraction and diffraction of sound waves.

(Refer Slide Time: 01:25)

Towards the end of the series, we shall take up two more important topics which have wide

applications.  These  are:  Ultrasonics,  their  methods  of  production  which  are  based  on

magnetostriction and piezoelectric effects and then the applications of ultrasonics. Number 2: the

Acoustics of Buildings  which involves  reverberation control,  sound quality  management  and

auditorium design. Let us begin. The Acoustics is a disciplined, extremely broad in scope. 
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Literally covering waves and vibrations in all media at all frequencies, but a wide range and at all

intensities; primarily, it is a matter of communication.

(Refer Slide Time: 02:23)

Whether it be speech or music signaling and sonar or ultrasonography, we seek to maximize our

ability to convey permission and at the same time to minimize the effects of noise external or

internal. 
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Modern acoustics now encompasses the realm of ultrasonics and infrasonics, in addition to the

audio  range  as  a  result  of  applications  in  material  science,  medicine,  dentistry, oceanology,

marine navigation,  oceanology, okay communications, petroleum and mineral prospecting and

music and voice synthesis. 

(Refer Slide Time: 03:20)

Let  us  consider  the  sound  generation  and  propagation.  You  see,  sound  is  a  mechanical

disturbance. Sound waves are mechanical waves. They travel through an elastic medium at a

speed which is a characteristic of that medium. It is essentially a wave phenomena, as in the case

of a light beam.
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But  Acoustics  phenomena  are  mechanical  in  nature.  The  wide,  the  particles  of  the  medium

vibrate,  while  light  x-rays,  gamma rays,  etcetera,  they  occur  as  electromagnetic  phenomena.

Acoustics  signals  require  a  mechanically  elastic  medium.  See,  this  is  a  very  important  the

medium has to be elastic. Elasticity controls the propagation so a mechanically last medium is

required for propagation.

And therefore sound cannot travel through a vacuum. On the other hand, the propagation of an

electromagnetic wave as we know can occur even in empty space. 
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Consider sound as generated by the vibration of molecules in a plane surface. Saying at x = 0, it

could be a stretched membrane; just a plain sheet placed at x = 0. 

 (Refer Slide Time: 05:03)

The displacement of the surface to the right as a result of vibrations in the positive direction

causes the compression of a layer of air immediately adjacent to the surface, thereby, resulting in

an increase in the density of the air, in that layer which is touching the surface. 
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As the pressure of that layer is now greater than the pressure of the undisturbed atmosphere, the

air molecules in the layer tend to move in the positive x direction and compress the second layer

which in time transmits the pressure impulse to the third layer and so on. 

(Refer Slide Time: 05:54)

But at the plane surface at x = 0, reverses its direction of vibration, after half a cycle of vibration

and opposite effect occurs. A reflection of the first layer now occurs and this reflection decreases

the pressures to a value below that of the undisturbed atmosphere, the molecules from the second

layer now tend to move left wards and in the negative x direction. And a rarefaction impulse now

follows the previously generated compression impulse.
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Now this succession of outwardly moving rarefractions and compressions constitutes a wave at a

given  point  in  the  space.  And  alternating  increase  in  decreasing  pressure  leading  to  the

corresponding increase and decrease in density occurs. 

(Refer Slide Time: 07:06)

The spatial distance between and one point on the cycle to the corresponding point on the next

cycle is the wave length of this wave motion. This is really the distance which the wave travels

during  the  time  the  particle  includes  one  complete  vibration.  The  vibrating  molecules  that

transmits the waves do not on the average, change their positions but are merely moved back and

 forth under the influence of the transmitted waves.
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The  distances  these  particles  move  about  the  equilibrium  positions  are  called  displacement

amplitudes. Amplitude with the maximum displacement which a molecule of atmosphere suffers,

when a wave is passing through, the velocity at which the molecules move back and forth about

their mean position is termed particle velocity. If it is velocity, this is different from the speed of

sound which is the rate at which the acoustic waves travel through the medium.

That is the characteristic of the medium. The properties of the medium determine the rate at

which the sound travels in the medium. 

(Refer Slide Time: 08:46)

Consider this picture. It has three parts: the central portion dealing with the compression and

rarefactions and then, there is a variation, density, pressure, amplitudes, the distance and in the

bottom where the variation of the particle velocity is given. 
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So as I said, this figure depicts refraction and condensation of air molecules subjected to the

vibrational impact of a plane wall located at x=0. This plane wall could be ascetic sheet it any

vibrating sheet, the degree of darkness in the figure is proportional to the density of molecules is

a measure of the density of molecules. Light areas in the figure are those of rarefactions.

(Refer Slide Time: 09:54)

In the figure as I said the shown mini plots at the top and the bottom are given as functions of x.

Remember, the propagation is along the x axis. So, as a function of x at a given instant of sound

propagation at a given instant of time t. 
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These  are  of  the  local  variations  of  molecular  displacements  Phi,  changes  and  pressure  P

condensation s given by fractional change in density, Rho - Rho 0 upon Rho 0. These three are at

the top the bottom one corresponds to the variation of the particle displacement speed, just note

the  phase  difference  between the  variations  shown on the  top  the  variations  of  the  particle

displacement the variation of pressure. 

(Refer Slide Time: 10:54)

And  the  variation  of  condensation  on  one  side,  compared  to  the  variation  of  the  particle

displacement speed u shown at the bottom. There is a phase difference of a quarter vibrations, PI

by 2. You see when the molecular displacement is at maximum, the pressure change is maximum



correspondingly the density changes maximum at that instant the particle displacement speed is

0. 
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The wavelength lambda represents the distance between corresponding points of adjacent cycles;

the variation repeats after every lambda. The lambda barely represents the space periodicity.

(Refer Slide Time: 11:53)

The speed of sound in any medium is characteristic of that medium as I said earlier. Sound

travels far more rapidly in solids than it does in gases, a temperature of 20 degrees centigrade

sound moves at the rate of 344 meters per second through air at a normal atmospheric pressure of

760 millimeters of mercury.



(Refer Slide Time: 12:22)

Sound velocities are also greater in liquids than in gases, but remain less in order of magnitude

than those for solids. 

(Refer Slide Time: 12:38)

For an ideal gas the velocity v of a sound wave may be obtained from the relation v = the square

root of gamma times pressure upon the density which is = the square root of gamma times R into

capital T where gamma is the gas constant defined as the thermodynamic ratio specific heat cp

upon cv, p is the gas pressure Rho is the density of the gas R is the thermodynamic constant

characteristic of the gas. 



And capital T is the absolute temperature of the gas. One thing should be noted: at a constant

temperature, the velocity is not affected by changes in pressure. The reason is pressure and the

density; they change in the same way. Actually, but pressure and density, they are proportional to

each other at a constant temperature. This is the well-known Boyle's law.

(Refer Slide Time: 13:43)

A simple relation such as the above somehow does not exist for acoustic velocity in liquids. But

we know that the propagation velocity does not depend on the temperature of the liquid and to a

lesser degree on the pressure. Some velocity is approximately 1461 meters per second in water.
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For a solid the propagation speed can be found from the relation v is = square root of E upon Rho

where E represents Young’s modulus or the modulus of elasticity of the material and Rho is the

material density. So, this relation explains why the speed of sound in solids is much higher than

what it is in gases or even liquids. This is modulus of elasticity for solids is very large compared

to what it is for a gas.

(Refer Slide Time: 14:48)

Let  us  now obtain Acoustic  equations.  Consider  an  undisturbed fluid  at  rest  having definite

values of pressure, density and temperature which are uniform and time independent. Uniform

means these things do not vary from point to point. Time independent means they are steady and

are not changing with time. 
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The passage of acoustical signals through the field results in small perturbations small changes in

the value of the pressure, in the density and in particle velocity, over the undisturbed values. 

(Refer Slide Time: 15:38)

The transmission of sound through the fluid is sufficiently transient so that there is virtually no

time for heat transfer to occur.  I mean at the point is that these changes are taking place so fast

frequencies are pretty high, so there is no time for the heat transfer to occur. And the result is that

the  ongoing  thermodynamic  actions  during  the  sound  propagation  may  be  taken  to  be  an

adiabatic process.
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It can be shown that for propagation along the x axis, these perturbations, the perturbations in

pressure, perturbations in density, perturbations in particle speed, satisfy an equation of the form

del square Psi by del X square is = 1 upon v Square times del 2 Psi by del t square. As I said Psi

could be either pressure or density or particle speed. The constant v is same in all these cases it

has the dimensions of L by T distance upon time and is the velocity of sound propagation in the

fluid.

We shall not derive this equation but I look like to point out the salient features of how it is

obtained. Let us consider the continuity equation which is an expression of the conservation of

matter for the fellow of a compressible fluid. Similarly consider energy conservation equation in

a fluid.  This involves the macroscopic kinetic energy and the internal energy of the fluid. These

two conservation equations along with the equation of state for the solute they form the basis.

These equations are then solved for small perturbations. First order terms are retained. We can

ignore the second order terms and consider the process as adiabatic as pointed out earlier. And

that leads to an equation which is given here. 
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You see, this equation is the second order equation, in time and the variable x. And we know, a

partial acoustic original equation like this shall need two initial conditions and two boundary

conditions  for  a  well  defined solution.  But  these conditions  are  really  not  needed if  we are

interested in ascertaining the general form of the solution of this equation.

This general solution can be written as Psi of xt. Remember, we are considering propagation

along the x axis; so Psi of xt Psi could be as I said earlier it could be particle displacement it

could be pressure, it could be density. So = a function F of x - vt and some function G of x + vt.

These functions F in G are arbitrary. Arbitrary means that they can be of any form.

But  they  have  to  be  functions  of  this  combination  x  -  vt  or  x  +  vt.  And they should have

continuous derivatives of the first and second order. 
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These functions F of x - vt represents waves moving in the positive x direction and similarly the

function  G  of  x  +  vt  represents  waves  moving  in  the  opposite  direction.  These  functions

represents  wave can  be  understood like  this.  Suppose  F  represents  pressure  or  density  as  a

function of x and t then x and t must increase simultaneously at the rate given by dx by dt = v

which is the speed at which the wave is established. 

The simultaneous variation  of x and t  means that  as t  advances,  as t  increases,  x must  also

increase.  That  is  the  wave  is  traveling,  waves  disturbances  is  moving  towards  the  positive

direction  of  x  axis.  Similarly  for  the  function  G  of  x  +  vt  as  t  increases  s  must  decrease

simultaneously. Again as I said, simultaneous change means as time advances x must change in

the opposite direction.

And the rate determined by, dx by dt = - v. The change in x in the negative direction means the

wave disturbance is moving towards the negative direction of x axis. All solutions of the above

differential wave equation must be of this form: Function of x - vt or function of x + vt. If there

is any other form, that will not satisfy the basic equation.
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Let us now consider, Types of wave motion. Several different types of waves may be generated,

depending  upon  the  motion  of  a  particle  in  the  medium,  with  respect  to  the  direction  of

propagation, transverse waves. 

(Refer Slide Time: 22:26)

We can define a transverse waves as a wave motion in which the particles of the medium vibrate

about  their  mean  position  at  right  angles  to  the  direction  of  propagation  of  the  wave.  The

propagation is along the x axis, this means the vibrations are in the transverse plane, in the yz

plane.  Within  the  yz  plane,  these vibrations  can have any direction  they can also randomly

change or change in any fashion. 



The wave is polarized the direction can be fixed but always be remaining in the transverse plane.

A very common example of transverse waves is the vibrations of a plug district. Sitar spring for

example. Or the vibrations of a rod which is clamped at one end; or the vibrations of a tuning

fork. All these are very common examples of transverse waves.

(Refer Slide Time: 23:37)

Longitudinal  waves:  you  can  define  a  longitudinal  wave  as  the  wave  motion  in  which  the

particles of the medium vibrate about the mean position again but along the same line as that of

the direction of propagation of the waves. The sound waves are principally longitudinal with the

results  that  the particle  motion creates  alternate  compression and rarefaction  in  the medium.

Alternate density increase and density decrease or a pressure increase or a pressure decrease, the

sound passes a given point.
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The reason why the sound waves are principally longitudinal is the most of the time we deal with

sound waves in air. Or sometimes in water, what are the proportions? You see, these substances

do not have a fixed shape. They are not rigid coefficient of rigidity is 0 or the shear coefficient is

0. They cannot support a transverse wave. The only possibility is the longitudinal waves. And

that is why most of the time, when we deal with sound waves, we find that they are longitudinal

and that thing to be noted.

(Refer Slide Time: 25:02)

 When a sound wave is passing, the net fluid displacement over a vibration cycle is zero, azimuth

movement on one side as on the other side, during a vibration. It is the disturbance other than the



solute that is moving at the speed of sound. The fluid molecules do not move far from their

original positions. Those displacements are very small.

(Refer Slide Time: 25:32)

Additionally, waves may also fall into the category of being rotational or torsional waves. The

particles of the rotational wave rotate about a common center as the wave advances. The curl of

the ocean wave roaring on a beach and to a beach is a very common example.
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The particles of torsional waves move in a helical fashion which could be considered a vector

combination of longitudinal and transverse motions. Such waves will occur in solid substances.

Naturally, they cannot  occur  in gases  or in  water. These are  sometimes  referred to  as shear



waves. The solids have the shear coefficient which is non 0. So, the shear waves with all solids

support.
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Now, the most simple form of waves is a harmonic wave of a single frequency. You can call it

even a monochromatic harmonic wave. Let us consider a plane progressive simple harmonic

wave originating at the origin O and traveling in the positive direction of the x axis with the

velocity v as shown in the figure.
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This figure shows the variation of Psi as a function of x at an instant of time t. The amplitude of

the vibration is a of the way proceeds, these successive particles of medium is set in two simple

harmonic vibration.
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That the time be measured from the instant when the particle had the origin O is passing through

its equilibrium position. This will set the initial phase of the vibration. The displacement Psi the

particle at O from its mean position at any time t is therefore given by Psi = a sine Omega t

which is equal can be written as a sine 2 pi by capital T times t. The angular frequency Omega is

= 2 pi Mu which is = 2 pi by capital T, v is the frequency and capital T is the time period of a

vibration.

You see, this result for Psi is = a sine Omega t is very standard result for a particle executing

simple harmonic motion.  Simple harmonic vibratory motion results whenever the situation is

such  that  the  restoring  force  due  to  the  elasticity  of  the  medium  is  proportional  to  the

displacement.

In a medium and the density changes or when the pressure changes, the force on the particle is

again proportional to the change in the density or change in the pressure. The result is we get a

simple  harmonically  varying particle  displacement  or  particle  velocity  or density  changes  or

pressure changes. 
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If now, we consider particle of the medium at a point a distant x from the origin O, the wave is

starting from O, would reach this point a little later in upon x by v seconds. That is the time taken

by the wave.

(Refer Slide Time: 29:32)

It means that this particle, the particle at a, really start vibrating x by v seconds later than the

particle at O. Therefore there is a phase lag of x by v seconds between this particle and the

particle at the origin particle at O. 
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Consequently, the displacement of the particle at a at times t will be the same as that of the

particle at O, at a time x by v seconds earlier. That is at time t - x by v. Does the displacement of

a particle at a after a time t can be obtained by substituting t - x by v in place of t in the earlier

equation. And so we get for the vibrations of this particle whose distance is x from the origin at

time t given by Psi is = a times sine of 2 pi by capital T times t - x upon v. 

This is the equation of a progressive simple harmonic wave, progressing along the x direction.

Let us look at its basic properties, inherent characteristics. As the wave advances, every particle

along the path  of the wave executes  identical,  simple harmonic  motion.  There  is  a  constant

lagging of phase for a particle at a distance of x. This phase lag is 2 pi by capital T times x upon

v. 

If we write Mu for 1 upon T then this phase lag is 2 pi Mu times x upon v or Omega times x

upon v. Another thing is, this equation does not contain any y or z. This is the equation of a plane

wave. The wave front or the phase fronts or parallel to yz plane. In the yz plane everything is

constant.  The changes  are  only  along the  x axis.  So,  this  is  the  equation  of  a  plane  simple

harmonic wave; then, Psi. 

If it is a particle displacement, this particle displacement could be along the x axis itself along the

direction of propagation. If the wave is longitudinal, has happened for the sound wave within



here, this will lead to alternate compressions and rarefactions in the medium. This Psi could also

be along the transverse plane, if the wave is a transverse plane as I said, in that case, I mean in

the case of a transverse wave, Psi can have any direction in the first plane.

If it is so this Psi can also represent the vibration of a plug of the spring or the vibrations of a

tuning fork. And the thing is that the intensity of the wave is proportional to the square of the

amplitude a. There are some other factors. But let us not bother about them at this stage. Intensity

is proportional to the square of the amplitude a. 
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This equation can also be written in the following form Psi = a sine 2 pi by lambda times vt - x;

just a question of changing the variables. Or Psi = a sine Omega t - kx here T is = lambda by v

and k is 2 pi by lambda, it is the propagation constant. The second form Psi = a sine Omega t is

commonly used. So, this is all about simple harmonic plane waves. And with this we come to the

end of this lecture. Thank you.


