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Coherence and Application of Interference

Coherence and applications of interference by M K Srivastav, Department of Physics, Indian

Institute of Technology, Roorkee, Uttarkhand. In this lecture, the last of the present series, we

shall first discuss concepts like Temporal coherence, coherence time, coherence length, spatial

coherence etcetera and then consider some applications.

(Refer Slide Time: 01:02)

Let  us  go  back  to  the  beginning  of  the  series.  You  see  we  have  seen  that  for  a  stationary

interference pattern,  the two interfering coherent  sources have to be obtained from the same

original source. Now, the wavelengths emitted by the usual monochromatic sources are of about

10 to the power -10, second duration. In terms of the length, they are a few centimeters. Now this

time and length they are called the coherence time Tau c and coherence length Lc respectively.
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You see, let us consider Young's two hole experiment. Just to see what these things really mean

as in the basic source S1 and S2 are the two holes forming a pair of coherent sources. Then the

light is reaching the screen, where the point P is there. R1 and R2 are the distances S1 P and S2

P.

(Refer Slide Time: 02:28)

Now, if the path difference R1 - R2 this difference between these sources and the point P on the

screen is of order Lc, the coherence length or more. The disturbances reaching the screen from

the two sources will then correspond to, different wave trends. We do not have any definite phase

relationship we know that. And the result will be the fringe pattern will vanish.



(Refer Slide Time: 03:02)

Now, we have seen that the contrast of the fringes decreases if the sources is not emitting at a

single frequency. I mean, we are trying to look at this problem from a different point of view.

Remember, just  now we have seen that even the path difference is more than the coherence

length. The phase relationship gets disturbed and the pattern vanishes. Now, here we are talking

about the fact that if this source is not emitting at a single frequency then, again the contrast of

the fringes decreases.

And we again let us repeat this. This is an important point. When the path difference between the

two interfering beams is  0 or it  is very small,  the different wavelength components produce

fringes, superimposed on one another and the contrast is good. So, there are two approaches to

look at this problem, under what situation the fringe pattern gets, I mean, its clarity decreases and

it vanishes.
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You see, on the other hand, when the path difference sizing is increased, the different wavelength

components produce fringe patterns, which are slightly displaced with respect to one another. We

have seen that earlier. And the fringe contrast becomes poorer. One can say that the two are

invisibility for large optical path difference is due to non monochromaticity of the light source. 

(Refer Slide Time: 05:03)

The purpose of this analysis is to point out the equivalence of the above two approaches: The

vanishing of the pattern due to the non monochromaticity of the sources or the path difference of

the order of or exceeding the coherence length. We want to study the equivalence of these two

approaches. If we assume that the beam consists of all wavelengths lying between lambda and

lambda + Delta Lambda.



Delta  Lambda  is  the  range  of  wavelengths  then  the  interference  pattern  produced  by  the

wavelength lambda and the middle one of the range that is lambda + Delta Lambda by 2 will

disappear, if this Delta Lambda by 2 is = lambda square by 4d as shown earlier. We talked about

that in the last lecture.

(Refer Slide Time: 06:13)

Now, for each wavelength lying between the first interval, lambda + lambda Delta Lambda by 2,

there will be a corresponding wavelength, lying between the second interval, lambda + Delta

Lambda by 2 and lambda + Delta Lambda such that the minimum of one falls over the Maxima

of the other and making the fringes disappear. 
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Thus for the path difference 2d = a greater than lambda squared divided by Delta. The contrast of

the fringes will become extremely poor. So, this is one way of looking at the problem. Now, we

have seen that lemma if the path difference exceeds the coherence length Lc r2 - r1 in that figure

the fringes are not observed.

So, it is as follows: that the spectral width delta lambda of the source will be given by Delta

Lambda is of the order of lambda square divided by Lc which is = lambda square divided by c

into Tau c. Tau c is naturally = Lc. 
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Thus, the temporal coherence Tau c of the beam is directly related to the spectral width delta

lambda of the light source. This is very interesting and important result.
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Now, you see, we have considered coherence of two fields arriving at a particular point in space

from a point source, through two different optical paths. That is why we were talking about the

path difference.  We were talking  about  the,  the coherence  length light  coming from a point

source but traveling to different optical paths.

(Refer Slide Time: 08:33)

Now, let us consider coherence properties of the field associated with any finite dimensions of

the source. So, the source is no longer a, a point source. Again consider Young's double-hole

experiment, you see, this is a very interesting experiment. You see in this figure.
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SS prime is an extended incoherence source of linear dimensions l, extended incoherent source

means  the  various  points  of  the  extended  sources;  they  have  no  phase  relationship  among

themselves means they are independent point source. Now, this extended source SS prime it

illuminates the holes S1 and S2 these will form a pair of coherent sources. Let us consider this

path difference S prime, S2 and S prime, S1. 

This is the point s is situated symmetrically. S prime is not symmetrically situated with respect to

S1 and S2. So, the path difference S prime, S2 - S prime S1 is = ld by a, d is the distance

between the two holes S1 and S2, a the distance between the source and the holes and we have

assumed that a is naturally much larger than d or l. And we have a screen P, P Prime. O is the

central point on the screen.
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Now, if the path difference this ld by a of the light reaching S1 and S2 from the point S prime of

the extended source is = lambda. Then, for every point on the source there is a point at a distance

of a lambda upon 2d which produces fringes which are shifted by half a frame width which

means  maximum  falling  over  a  minimum.  The  interference  pattern  will  therefore  not  be

observed.

(Refer Slide Time: 11:04)

Thus for an extended incoherent source, interference changes a good contrast will be observed

only if l  which is the dimensions of the extended source is very, very small,  compared to a

lambda by d in terms of the angle.
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If theta is the angle, subtended by the source extended source of dimension l, at the slits theta is

= l by a.

(Refer Slide Time: 11:41)

So, the above condition now becomes the d should be very, very small compared to lambda by

theta. If on the other hand, d use of this d of the same order the fringes will be a very poor

contrast d is of the order of lambda by theta. The above condition thus sets an upper limit on the

separation of the two holes. 
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This  distance  lambda by d gives  the  distance  over  which  the  beam may be  assumed to  be

especially coherent. So, for a given small d or a given lambda over the lw gives the maximum

extent  of  the  source  this  is  called  the  lateral  coherence  width.  Let  us  now  come  to  the

applications.

(Refer Slide Time: 12:37)

The interference with thin films has very interesting and important application in reducing the

reflectivity of lens surfaces. This is a very interesting application and very important because all

these optical instrument consists of is several lens components, several surfaces and naturally the

reflectivity at each of these surfaces must be reduced to the minimum possible to a wide day



overall loss of light. So, consider normal incidence from a refractive index n of a is = 1, on a

medium of refractive index ng. 

(Refer Slide Time: 13:31)

Now, if ai, ar and at are the amplitudes of the incident reflected and transmitted beams then they

are related as follows: ar is = na - ng upon na + ng times ai. And a t is = twice of na upon na + ng

times ai. 

(Refer Slide Time: 13:59)

So,  in  good  quality  optical  instruments,  as  I  said  earlier,  there  are  in  general,  many  glass

interfaces, as the lenses used their consists of several individual lenses and the loss of intensity

loss of overall loss of intensity due to these reflections can be quite severe. It must be avoided,



minimized. For example, the reflectivity of crown glasses using the above expression na - ng

upon na + ng squared, 1 - 1.5 upon 1 + 1.5 is squared 0.304 that is 4 % of the incident light;

(Refer Slide Time: 14:44)

 is reflected per reflection or Flint glass where the refractive index is 1.67 about 6.7 % of the

light is reflected at each surface. If we have a large number of surfaces the loss at interfaces can

be quite considerable.

(Refer Slide Time: 15:08)

Now, in order to reduce these losses, thin film interferometry is used. We know that, if a film of

refractive index n f which is intermediate between na and ng, na the refractive index of air and

ng with that of the glass. Such a film of a material of refractory index nf is coated on the glass



surface on the lens surface and its thickness t is given by 2 nf times t is = lambda by 2 that is t is

= lambda by 4 times n f.

(Refer Slide Time: 15:56)

Then for light  of free wavelength lambda,  free wavelength means lambda wavelength in air

condition of destructive interference is satisfied. And reflectivity thereby gets reduced. Say for a

film of magnesium chloride which is the transparent material of refractive index 1.38 and for the

wavelength of 5000 angstrom which roughly corresponds to the center of the visible spectrum.

The thickness t is given by 0.9 into 10 raise to power - 5 centimeters.
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So, if the lens surface is coated by a film of the thickness it will reduce that reflectivity. But now,

the important question is, how to optimally choose the transparent material.   I  mean how to

choose its refractive index n f for the film to be just to be, just to be coated. What is the best

value  for  and how to choose the material  and see? That  is,  in this  figure,  which shows the

reflected and the refracted beams from various surfaces? 

(Refer Slide Time: 17:13)

Bottom is the glass, it is coated by a non reflecting film of reflective index nf which is less than

ng and the top is naturally air, refractive index is 1, nf is intermediate between na and ng. The

thickness of the non reflecting film is d is = lambda upon 4 and it is called lambda by 4n for film

and thickness of this film is d which is = lambda by 4 and m.

Now, consider the wave 1, it is incident on the reflecting surface, partly it is reflected which is

the ray 2, partly goes through the reflect the coated film ray 3, reflected at the glass surface

which is the reflected ray 4 and then ultimately comes out in air, to ray 5. So, this is a situation

ray 1, top reflected ray 2, bottom reflected and comes out as ray 5. Now, what we would like

here basically is that the density of this reflected rays; this should be the minimum possible first.

(Refer Slide Time: 18:42)



That is the interest. If ai now is the amplitude of the incident wave then the amplitudes of the

reflected and refracted waves corresponding to the rays 2 and 3 in the figure earlier, do you join

with a transmitter theory, it is the one which is reflected. So, na - nf upon na + nf that is the

reflected one and 2 n a divided by na + nf times a i is the transmitted, I mean, the refracted goes

in the coated material.  We have assumed normal incidence because these relations  are really

valid for normal incidence.

(Refer Slide Time: 19:28)

Now, the amplitude of the waves corresponding to the rays 4 and 5, they are 2 n a upon na + nf

times nf - ng upon nf + ng times ai. And further ray 5, 2 na upon na + nf times and the factor nf -

ng upon nf + ng times 2n f upon nf + na times ai. 
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Now, for a complete destructive interference, that in the ideal situation, the waves corresponding

to raise 2 and 5 should have the same amplitude. You see, the ray two here which is reflected first

time from the top surface and reflected in the Ray 5 have come after reflection from the bottom.

So, these 2 are in opposite phase. We would like their amplitude should really be equal that is the

ideal situation. 

That is na - nf upon n a + n f times a i. That is amplitude of the Ray 2 and 2 na upon na + nf and

the factor nf - n g upon n f + n g multiplied behind the factor 2 nf upon nf + na times ai. Now, in

this expression the product first and the third factors, 4 times na nf upon na + nf is squared is

very nearly = unity. For example, for na is = 1 and nf = 1.4, it is factor is =
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, 0.97 almost = 1, so let us take it = 1. So, if we use this, then the above condition simplifies to na

- n f divided by na + nf is = nf - ng divided by nf + ng. And this some simplification leads to a

very simple condition:

(Refer Slide Time: 22:06)

That nf should be the geometric mean between na and ng. This is the optimal condition to choose

the material for the coating. If the first medium is air than na is = 1 and with ng = 1.66 which this

is for the dense filling glass then nf should be 1.299 and with ng = 1.5 which is for the crown

glass, nf should be 1.22. 
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Now, they refractive index of magnesium fluoride is 1.38 not very different from these optimal

values. But anyway for a lambda by 4 and a film of magnesium fluoride the reflectivity will be

about this factor: na -  f upon na + n. This is subtract from this nf - ng upon nf + ng whole

squared. 
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For na = 1 and nf = 1.38 which is for the  ng nation fellow right. And ng is = 1.5 which is for the

crown glass, the reflectivity will be about 1.3 %. In the absence of the film, remember, we have

seen that, the reflectivity was about 4 % for the dense flint glass whose refractive index is 1.66,

the reflectivity which was about 6.7 %, now gets reduced to 0.46 %. 
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Now, one thing should be noted the film is non reflecting only for the particular wavelength

where  we  have  carried  out  the  calculations  this  wavelength  is  usually  taken  to  be  =  5000

angstroms about the middle of the visible spectrum. For a polychromatic light, the film's non

reflecting property will be falling off, when lambda is greater or less than the above value where

the calculations have been done.

However, the effect is not serious for crown velocity reflectivity rises by about 0.5 % as one goes

either to the red or the violet end of the spectrum. 
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Another observation is that we should use a lambda by 4 thick film and not 3 lambda by 4, or 5

lambda by 4, although these films also give destructive interference for the chosen wavelength.

This is because for the lambda by 4 and thick film, the reduction in the non reflecting property is

minimal. Therefore that is the best choice to be used ok. So, with this we have come to the end of

this series of lectures. Hope you enjoyed them, thank you.


