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Interference of Light - Part 02

In the previous lecture I described the basic theory of interference, what is difference between

constructive and destructive interference, superposition principle, methods to find the resultant of

two or more than two sinusoidal waves of same frequency and acting in the same direction at a

point in a space, what is condition for constructive and interval destructive interference, in terms

of path difference and phase difference;

How the intensity of result and wave vary with the phase difference of the interfering waves

what are the conditions to observe a Stationary interference pattern and how to get two coherent

sources for interference, by using division of wave front and division of amplitude. And I also

discuss some famous experimental setup, which are used in laboratory to observe interference

pattern  based  on division  of  wave front  such as  Young's  Double  Slits,  Fresnel  Biprism and

Fresnel Double Mirror Experiment.

Mostly in all undergraduate optics labs, Fresnel Biprism experiment is performed with the help

of this experiment.  Wavelength of monochromatic  light can be determined by measuring the

fringe width with the help of a travelling microscope. I have given the expression of fringe width

in the previous lecture, by measuring the required parameters experimentally, with the help of

this equation wavelength can be determined.

With the help of this experiment, it is also possible to determine thickness of a transparent plate.

For this, the plate is introduced in the path of one of the interfering beams and resulting shift in

the position of Central bright fringe is measured with the help of a travelling microscope. The

required expression I have already obtained in the previous lecture. Here, it should be noted that

with monochromatic light it is not possible to recognise the central bright fringe.

But if we use white light, then, central bright fringe will be wide and few fringes adjacent to this

will be coloured. So, shift in central bright fringe on introducing the plate can be measured easily



by using white light source. Now I am going to describe the formation of interference pattern by

division of amplitude. 
(Refer Slide Time: 03:01)

In this case, the Internet beam is divided into two persons by division of its amplitude by partial

reflection and refraction by some optical devices. The two portions afterwards recombined to

produce interference effect. For example, if a plane wave falls on a thin film, then, the wave

reflected from the upper surface interferes with the wave reflected from the lower surface. The

colours when thrown by thin films of oil on water by soap Bubbles or bike racks in a piece of

glass can be explained by the phenomenon of interference of light by division of amplitude. 
(Refer Slide Time: 03:48)

Let us first consider the interference by a plane parallel film of refractive index Mu and thickness

t illuminated by a plane monochromatic light of wavelength Lambda as shown in this figure.



Suppose, the light wave travelling along AB is incident on the upper surface GH of the film, part

of this wave will be reflected from the upper surface of fill in the direction BR and remaining

will be reflected in the direction BC.

Upon arrival at C, part of this reflected wave will be reflected from surface IH, in the direction

CB1 and part refracted in direction CT.
(Refer Slide Time: 04:36)

At B1 the ray CB1 will  be again divided.  A continuation of this  process yields  two sets  of

parallel rays one on each side of the film. In each of these sets, the intensity decrease rapidly

from one ray to next. If the set of parallel reflected rays: BR, B1 R1, B2 R2 etcetera is collected

by lens and focus at some point constructive and destructive interference will be formed at this

point, depending on the phase difference between the consecutive waves. It is such interference

that produces the colours of the thin films. 
(Refer Slide Time: 05:31)



In order to find the phase difference between these rays, we must first evaluate the difference in

the optical path traversed by a pair of successive rays, such BR and B1R1. Suppose B1D is

perpendicular drawn from B1 on BR. Therefore, optical path difference between the waves BR

and B1R1 is given by BC + CB1in film - BD in air. With the help of geometry, we can show that

this path difference will be = 2 Mu t cos theta. Therefore, phase difference Delta will be given

will be = 2 PI by lambda into path difference that is 2 PI by lambda into 2 Mu t cos theta.
(Refer Slide Time: 06:14)

If  the film is  optically  denser than the surrounding media,  then,  the wave BR originated by

reflection  from B,  a  point  on the  surface backed by a  denser  medium,  that  is,  film will  be

different phase by pi from the incident wave. But the wave B1 R1 which originates by reflection

at C, a point on the surface backed by a rare medium, will experience no sudden phase change.



Thus the total phase difference between waves B R and B1 R1 becomes 2 PI by lambda into 2

Mu cos theta + Pi. 
(Refer Slide Time: 07:02)

Therefore if 2 Mu t cos theta = n + half lambda where n is integer, the wave BR and B1R1

interfere constructively and they will interfere destructively if 2 Mu t, 2 Mu t cos theta is = n

lambda where n is again integer. Like reflected waves, the transmitted waves CT, C1T1, C2T2

etcetera also satisfy the conditions for interference because they originate from the same incident

wave. Here CT and C1 T1 are obtained without any sudden phase change due to reflection. 

The phase difference between CT and C1T1 is therefore only due to optical path difference.

Similar to reflected waves, here also we can determine the path difference between CT and C1

T1 using basic geometry. 
(Refer Slide Time: 08:11)



And here also it comes out to be 2 Mu t cos theta. So the transmitted waves CT and C1T1 will

interfere constructively went 2 Mu t cos theta is = n lambda and destructively when 2 Mu t cos

theta is = n + half Lambda. Thus, the condition for constructive and destructive interference for

transmitted waves CT and C1T1 are just reverse of that of the reflected waves BR and B1R1. 
(Refer Slide Time: 08:58)

Since the geometry is same, the path difference between waves B1R1 and B2 R2 will be same as

between waves BR and B 1R1 since B1R1 and B2R2 originate only from the internal reflection

so there would not be phase difference of Pi due to reflection. Now if 2 Mu t cos theta is = n

lambda  waves  B1R1  and  B2R2 will  be  in  phase  and  same  holds  for  all  succeeding  pairs.

Therefore, under this condition, waves BR and B1R1 will be out of phase.



But waves B1R1 and B2R2, B3R3 and so on, will be in phase with each other. On the other

hand, if 2 Mu t cos theta is = n + half of Lambda 
(Refer Slide Time: 09:57)

, waves B1R1 will be in phase with BR, but we B2R2, B4R4, B6R6 and so on, will be out of

phase with B1R1, B3R3, B5R5 and so on since B1R1 is more intense than B2R2 and B3R3 is

more intense than B4R4 and so on. These pairs cannot cancel each other and hence there will be

maximum intensity. For the minima of intensity wave, B1R1 is out of phase with wave BR, but

BR has considerably greater amplitude than B1R1, so that these two will not completely annul

each other.

But  if  we add the  amplitude  of  the  Waves  B1R2,  B2R2, B3R3.,  we find  that  the  resultant

amplitude  is  =  the  amplitude  of  the  wave  BR.  Therefore,  in  case  of  minima  there  will  be

complete darkness. 
(Refer Slide Time: 11:19)



Thus,  if  the film is  of such a thickness  that  the condition  path difference is  = n Lambda is

satisfied, the film appears perfectly dark when seen by reflected light. On the other hand, if the

thickness of the film is such that path difference is = n + half Lambda then the intensity of the

film  will  be  maximum,  when  seen  by  reflected  light.  For  the  transmitted  light,  when  film

thickness is such that the condition delta of path difference is = n + half Lambda is satisfied.

The pair of transmitted wave CT, C1T1, C2T2, C3T3 etcetera are in opposite phase and therefore

interfere destructively in pair. So, the resultant intensity will be minimum if the thickness of the

film is such that path difference
(Refer Slide Time: 12:15)

is n lambda is satisfied, the transmitted waves CT, C1T1,C2T2 etcetera are in phase with each

other and therefore they interfere constructively leading to maximum intensity in the transmitted



light.  So,  when there  is  maximum intensity  in  the  reflected  light,  there  would be minimum

intensity  in  the transmitted  light  and vice versa.  Thus based on the  above discussions,  it  is

concluded that when a plane parallel film is illuminated with parallel monochromatic light, 
(Refer Slide Time: 12:54)

that is theta is constant over the film, the film will have maxima or minima of brightness all over

according as the optical path difference between the directly and the internally reflected waves is

odd or even multiple of Lambda by 2. Now, suppose the plane parallel thin film is illuminated

with a parallel beam of white light, if we neglect the small variation in the angle of refraction

with wavelength then light waves of different colours follow approximately the same path within

the film.
(Refer Slide Time: 13:40)



Therefore the optical path difference 2 Mu t cos theta will be approximately same for all the

colours.  Hence,  the colours whose wavelength satisfy the condition 2 Mu t  cos theta  is = n

Lambda will be absent in the reflected beam. But they will be present in the transmitted beam.

On the other hand, colours whose wavelength satisfies the condition 2 Mu t cos theta is = n +

half  Lambda will  be present in the reflected beam. But practically, absent in the transmitted

beam. 

Consequently, the film will have a uniform coloration all over. But the resultant colour of the

film by reflected light will be exactly complementary to the resultant colour by transmitted light. 
(Refer Slide Time: 14:36)

Furthermore,  when film thickness  t  is  much smaller  than  lambda  then,  2  Mu t  cos  theta  is

negligible, in comparison to Lambda; in this case, phase difference Delta which is = 2 Pi by

lambda into  2 Mu t  cos  theta  will  be 0 for  all  wavelength.  Therefore,  the  film will  appear

perfectly dark by reflected light even when it is illuminated with white light. On the other hand,

it will appear white when seen by transmitted light. Now, let us consider a film in the shape of a

thin wedge whose side form a small angle alpha as shown in this figure. 
(Refer Slide Time: 15:15)



Now, suppose this  film is  illuminated with plain monochromatic  light  waves.  Here also,  the

directly reflected wave BR and internally reflected wave B1R1 originate from the same incident

wave propagating along AB. And hence, they are capable of producing observable interference

effects. Here, the two interfering waves do not reach there, along parallel path but they appear to

diverse from a point Q in the rear of the film. So, destructive and constructive interference occurs

at the point Q which is however virtual.

If the two interfering waves BR and B1R1 fall on lens, they will cross each other at a real point

Q prime,  the  focus  conjugate  of  Q.  As  a  consequence,  really  reinforcement  are  destructive

interference would occur at 2 prime. Thus Q will be the position where the interference fringe

appears to be formed. From geometry, we can find the optical path difference Delta between the

waves B R and B1 R1 and this comes out to be:
(Refer Slide Time: 16:39)



2 Mu t cos theta + alpha, where t is the thickness of film at the point B1; The path difference thus

varies both on account of changing thickness as well as changing angle of incidence theta. Now,

taking into account  the  abrupt  phase change of Pi,  due to  reflection  at  B, the condition  for

constructive and destructive interference between waves BR and B1R1 becomes 2 Mu t cos theta

+ Alpha is = n + half Lambda for maxima and 2 Mu t cos theta + Alpha is = n lambda or minima.

 (Refer Slide Time: 17:33)

If the wedge shaped film is illuminated by a parallel beam of monochromatic light of wavelength

lambda, the angle of incidence theta will be same at every point of the film and show also angle

of refraction. So, in this case, variation in the optical path difference will take place only due to

variation in the thickness of the film t from point to point of the film. At the edge of the waves,



film wedge films since t is = zero, the film appears perfectly dark because the two interfering

waves are Pi out of phase.

At a distance from the edge such that the path difference is = lambda by 2, 3 lambda by 2, 5

lambda by 2 and so on. The film will be bright while at a distance so that path difference is =

lambda, 2 Lambda, 3 lambda, 4 lambda and so on. The film will appear dark. 
(Refer Slide Time: 18:36)

Thus  as  we  proceed  along  the  film,  in  the  direction  of  increasing  film  thickness,  we  shall

encounter alternatively dark and bright bands parallel to the edge of the film. Deviation from

perfect  plainness  of  the  surface  will  be immediately  obvious  through the curvature  of  these

bands. Because anyone band is the locus of constant thickness of the film. That is why such

fringes are called fringes of constant thickness.

It can be shown that for a small angle of incidence that is cos theta nearly = 1 the fringe width

beta that is the separation between the two consecutive dark or bright fringes is given by Lambda

upon 2 alpha Mu where alpha is the wedge angle and Mu is the refractive index of the film. Now,

let us consider that the wedge shaped thin film is illuminated with parallel beam of white light. 
(Refer Slide Time: 19:45)



If the thickness at the thin edge is very small in comparison of the wavelength of violet light then

at the edge a truly acromatic black fringe parallel to the edge will be seen when it is viewed by

reflected light. Now, if we move along the film in the direction of increasing thickness, we will

first  reach a point where the thickness of the film is  such that the condition of constructive

interference is satisfied for violet colour because wavelength of this colour is released in the

visible spectrum.

Therefore, a violet fringe is seen at this point. Proceeding still further successively blue, green,

yellow and red fringes will be observed. 
(Refer Slide Time: 20:41)

These fringes are called fringes of equal chromatic order. Beyond certain point, thickness of the

film become so large that the condition of constructive interference is satisfied for two or more



colours simultaneously and therefore a coloured banned due to overlapping of bright fringes of

more than one colours will be seen. If we still move in the same direction, we shall arrive at a

point, where such overlapping of different colours produces uniform illumination.

Now let us consider that a thin parallel film is illuminated by using extended white source as

shown in this figure. 
(Refer Slide Time: 21:28)

In  this  case,  light  from each  point  of  the  source  gives  rise  to  a  pair  of  coherent  waves  on

reflection from the film and cos theta is not same for all of them. Each point of the film is also

seen by light from different points of the extended source safe. If at points A, B, C, the condition

2 Mu t cos theta 1 is = n one + half Lambda 1, 2 Mu t cos theta 2 is = n 2 + half Lambda 2 and 2

Mu t cos theta 3 is = n3 + half lambda 3 are satisfied respectively.

We shall observe a bright band of Lambda one at A, bright band of Lambda 2 at B, the bright

band of lambda 3 at C and so on. Thus we shall observe a set of equal inclination colour bands, if

the film is of variable thickness, we shall again observe a set of colour band each being a locus of

equal thickness of the film. The colour of any particular region of the film changes, if the I is

shifted to a new position.

Now, light from other points of extended source is reflected from that particular region of the

film, at different angles to I. In effect, 2 Mu t cos theta alters throughout the film leading to

change in colours exhibited by thin film. This clearly explains the origin of colour exhibited by a



thin film of vial; while on the surface of water or colour of soap bubbles by light reflected from

the sky. It should be noted that bright colours will be seen only when film is extremely thin.

That is up to few wavelengths thick. The colours become fit for thicker films and for such cases

the direction of incidence should be kept nearly normal. Otherwise at other angles, the directly

and indirectly reflected coherent waves may get separated to such an extent that their wave front

may not interfere each other and they may get so far apart that only one wave enters the I at a

time. And so, all colours effectively may vanish when viewed by naked eye. Now, let us discuss

the classification of fringes.

(Refer Slide Time: 24:33)

As we have  discussed,  when a  thin  film is  illuminated  by  light  the  resultant  transmitted  or

reflected in densities,  will depends upon the phase difference Delta between two consecutive

transmitted are reflected waves. And phase difference is given by 2 Pi by lambda into 2 Mu t cos

theta.  Since the value of the phase difference Delta may be varied by varying theta,  or t, or

lambda, accordingly, we can divide the interference fringes of thin films into three classes.

If phase difference varies mainly due to variation of theta, while t remains constant then, fringes

are termed as fringes of equal inclination or Haidinger fringes.

(Refer Slide Time: 25:32)



If phase difference varies with variation in thickness t of the film then, fringes are called fringes

of  equal  thickness  or  Fizeau  fringes.  Now, if  the  phase  difference  varies  with  variation  in

Lambda then, the fringes are known as fringes of equal chromatic order or FECO fringes. The

term FECO was used by Professor S Tolansky. Now, in this lecture, I will describe some of the

experimental setup used in laboratory to observe the fringes of equal thickness and fringes of

equal inclinations one. 

One of the most important experiments which is based on the division of amplitude is Newton

ring experiment.

(Refer Slide Time: 26:26)



In this experiment a thin air film are progressively increasing thickness in all direction from one

point can be formed by placing a plane convex lens of large radius of curvature on a plane glass

plate  such that  its  convex surface faces the plate.  The air  film does form possesses a radial

symmetry about the point of contact and when it is illuminated normally with monochromatic

light, the observed interference fringes are circular ring concentrate with the point of contact.

These rings are known as Newton's ring. The experimental arrangement to observe the Newton

rings in laboratory is shown in the figure. Here, A is a Plano convex lens placed on the glass

plate B. The glass plate G reflect the light down so that it is incident normally on the plates, after

reflection, it is transmitted through G and observed in the travelling microscope. If the film in

close between the lens and the plane glass plate is extremely thin, then, wave single alpha can be

neglected as compared to angle of incidence theta.

So, for normal incidence the optical path difference between the two consecutive reflected waves

become  2  Mu  times  t.  Thus,  for  this  case,  the  condition  for  constructive  and  destructive

interference for two consecutive reflected waves are given by 

(Refer Slide Time: 28:15)

2 Mu t is = n lambda for minimum and 2 Mu t is = n + half lambda for maximum where Mu is 

the refractive index of the film and t the thickness of the film. For air film, Mu will be = one. As 

we know an interference fringe of a given order n is the locus of the points of constant optical 

path difference. 
(Refer Slide Time: 28:43)



A dark fringe of the order n is the locus of those points where the film thickness t is n Lambda

upon 2 Mu. Since the film enclosed between the convex surface and the plane surface possesses

radial symmetry about the point of contact, the dark fringe will be circular in shape. So, here we

will observe concentric bright and dark circular colour fringes as shown in this figure. It can be

shown that the square of radius of dark ring of nth order is = n Lambda

(Refer Slide Time: 29:25)

R divided by Mu and square of radius of bright ring of nth order is = n + half Lambda R upon

Mu, where R is the radius of curvature of the convex surface. 

(Refer Slide Time: 29:49)



Thus, when Newton rings are observed by reflected light, the diameter of the Bright rings are

proportional  to  the  square  root  of  the  odd natural  numbers  like  1,3,5,7,  so on.  whereas  the

diameters of dark rings are proportional to the square root of natural number 1, 2, 3, 4 and so on.

It can be shown that the rings gradually become closer as their radii increase as shown in this

figure. Since t is = 0 at the point of contact of the length and the glass plate at this point phase

difference between the waves reflected from the upper and lower surfaces will be Pi.

Therefore, for the reflected light in the interference pattern, the central spot appears dark. But if

it  is  seen in  the  transmitted  light,  the central  spot  will  be bright.  Now, I  will  discuss  some

important  application  of  Newton's  ring  experiment.  One  of  the,  one  example  of,  is  the

determination of the wavelength of the monochromatic light used. 

(Refer Slide Time: 31:07)



So, for this purpose we have to measure the diameter of the Newton rings with the help of the

travelling microscope and by using the relations Lambda is = Dn + p square - Dn square upon 4

p R where Dn + p square - Dn square is the difference of the squares of the diameter of the n +

pth and nth dark rings and R is the radius of curvature of the lens. With the help of Newton's ring

experiment it is also possible to determine the refractive index of a given liquid.

For this purpose also we have to measure the diameter of the Newton rings with air film as well

as that as well as by introducing the liquid in the glass plate and convex lens. 
(Refer Slide Time: 32:13)

And by using the expression Dn + p square - Dn square of air divided by Dn + p square - Dn

square for film, we can determine the refractive index of the liquid. We can show with the help of

Newton's ring experiment, we can determine the wavelength of the monochromatic light used.



And we can also measure the refractive index of a given liquid. Only thing is that we have to

determine the diameter of the Newton rings precisely by using the travelling microscope.

Now, I  will  discuss  and  other  important  experimental  setup  which  is  based  on  division  of

amplitude is known as the Michelson interferometer.
(Refer Slide Time: 33:04)

The main optical part of this interferometer consists of two highly polished plane mirrors, M1

and M2. Two plane parallel glass plates G1 and G2 of equal thickness as shown here in the

figure. The mirror M2 is fixed while M1 can be moved such that during the motion it remains

exactly parallel to its proceeding position. Normally the rear side of the plate, G1 is lightly silver,

so that the light coming from source S is divided into reflected beam one and transmitted beam 2

of equal intensity.

The beams one and two are reflected back from mirror M1 and M2 as shown in this figure

respectively. The reflected beam 1 is transmitted through G1 along A and reflected beam 2 is

reflected from G1 along AE. These two waves travelling along AE are derived from the same

source by division of amplitude. So, they will satisfy the condition of interference and hence

interference fringes can be observed by looking into mirror M1 through G1 from position E

provided, proper adjustments are made.

Here the glass plate G2 is called compensating plate. Its purpose is to equalise the total optical

path of the being reflected from M1 and the total cost of the corresponding beam reflect it from

M2. This is essential when white light is used, but not for monochromatic light. In the Michelson



interferometer, fringes of various forms such as straight line, circle, parabola, ellipse, hyperbola,

can be observed depending upon the angle between the Mirrors M1 and M2.

But in the laboratory, the interferometer is adjusted for circular fringes for various applications.

Therefore, here I will discuss the formation of circular fringes in the Michelson interferometer. 

(Refer Slide Time: 35:46)

To obtain the circular fringes, the Mirrors M1 and M2 are made exactly perpendicular to each

other with the help of screws attached with the mirror and to see good quality fringes, extended

live shows is used. An extended source may be obtained by placing a ground glass screen in front

of the source of monochromatic light. The origin of circular fringes can be understood with the

help of this diagram.

Here M2 prime at the virtual image of M2 formed by reflection in G1. We can also think the

extended source as being held behind the observer and forming to virtual images L1 and L2 in

M1 and M2 Prime respectively. These virtual sources are coherent, if t is the separation between

M1 and M2 prime. The virtual sources will be separated by 2t when t is exactly and integral

number  of  half  wavelength  that  is  the  path  difference  2t  is  =  an  integral  number  of  whole

wavelength, all the range of light reflected normal to the Mirrors will be in rage.

Rays of  light  reflected  at  an angle  power bill  in  general  not  be in  rage the path difference

between the two rays coming to the I from corresponding points P prime and P double prime is 2t

cos theta as shown here in the figure. The angle theta is necessary the same for the two rays

when M1 is parallel to M2 prime so that the rage are parallel. Hence when the I, is focused to



receive parallel rays the rage will reinforce each other to produce maximum for those angle theta

satisfying the condition 2t cos theta is = n Lambda.

Since for a given n Lambda and t, the angle theta is constant. The maximum will lie in the form

of circle about the foot of the perpendicular from the I to the mirrors. Fringes of this kind when

parallel  beam  are  brought  to  interfere  with  the  phase  difference  determined  by  angle  of

inclination theta are called fringes of equal inclination. 

(Refer Slide Time: 38:40)

In this figure, effect of changing t on the fringe pattern is shown. When M1 is moved slowly

toward M2 Prime so that t is decreased; then, the radius of a given rings given ring characterized

by a given value of order n must decrease, because the product 2t cos theta must remain constant.

The Rings therefore, shrink and vanish at the centre. The ring disappearing each time t decreases

by lambda by 2. 

This follows from the fact that at the centre cos theta is = 1 then 2t is = in Lambda so the change

n by unity must change by lambda by 2. Now, as M1 approaches M2 prime, the ring, rings

become more widely spaced until finally we reach a critical position where the central fringe has

spread out to cover the whole field of view. This happens when M1 and M2 Prime are exactly

coincidence that is = 0.

Because under this condition, in the path difference is 0 for all angles of incidence if the mirror

M1 is moved still farther, it effectively passes through M2 prime and new widely spaced fringes

appear, growing out from the centre. These will gradually become more closely spaced as the



path  difference  increases.  Now,  I  will  describe  some  of  the  applications  of  Michelson

interferometer. 

One  important  up  location  of  this  interferometer  is  the  measurement  of  wavelength  of

monochromatic  light.  For  the  measurement  of  wavelength,  concentric  circular  fringes  are

invariably used. 

(Refer Slide Time: 40:54)

So, first M2 is adjusted perpendicular to M1 to get concentric circular fringes. Now, suppose the

separation between M2 prime and M1 is such that a bright fringe of the order M is formed in the

centre of the field of view. We, therefore have for the central bride fringe, 2t is = n lambda since

cos theta is = one. Now, we moved M1 such that it increases by lambda by 2. In this case, the

path difference between the normally reflected waves from the centre of field becomes to 2t +

lambda by 2. 

(Refer Slide Time: 41:43)



And therefore, now we have 2t + lambda by 2 is = m + 1 Lambda. That is the condition of

constructive interference is again satisfied at the centre of field. But the new bright fringes now

are of the order one + one instead of M. We therefore, conclude that each time t is increased by

Lambda  by 2  in  the  field  of  view, where  a  particular  bright  fringe  originally  appears.  The

neighbouring bright fringe of next higher order shall be visible. 

That  is,  there  will  be  a  lateral  shift  of  one  fringe  in  the  field  of  view.  Therefore  for  the

displacement of n bright fringes, in the centre of M1 must be moved through N lambda by 2. 

(Refer Slide Time: 42:47)

Thus  to  determine  Lambda  the  mirror  M1  is  moved  from  one  position  corresponding  to

micrometre reading x1 to another position corresponding to micrometre reading x2. And the



number of the bright monochromatic changes which cross the centre of the field is counted. So,

on the basis of every argument we can write the relation and Lambda by 2 = x2 - x one. From

this relation, we can compute the value of Lambda by measuring x2 - x1. 
(Refer Slide Time: 43:20)

Another important  application of Michelson interferometer  is  the determination of difference

between the wavelengths of sodium D-lines. Sodium light contains two very close wavelengths

which are known D1 of wavelength 5896 angstrom and D2 lines of wavelength 5890 angstrom.

That  difference  in  lambda  1  and  lambda  2  can  be  precisely  determined  with  the  help  of

Michelson interferometer.

So, now I will discuss how this is done in this interferometer. Suppose, for a particular position

of M1 at the centre field of view the condition 2t is = M1 Lambda 1 and 2 t is = M2 Lambda 2

are satisfied simultaneously, where lambda 1 and lambda 2 are the wavelengths of D1 and D2

line of sodium respectively.

In this case, bright ring of order n1 of wavelength Lambda 1 practically coincides with the bright

ring of order n2 of wavelength Lambda 2 leading to maximum visibility at the centre.
(Refer Slide Time: 44:32)



Due to  difference  in  lambda 1 and lambda  2 at  the  separation  between M1 and M2 prime,

gradually increases the maxima at first fall further and further from coinciding and definitely at a

particular separation the maxima of 1 practically coincides with the minima of other wavelength

and vice versa thereby reducing minimum visibility. This happens when the extra path difference

introduced  at  the  centre  due  to  motion  of  M1contains  1  half  wavelength  more  of  radiation

Lambda 2 
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than that  of the others.  Continuing the motion of M1 in the same direction again,  gradually

brings the maxima of two patterns close together. Ultimately, they again coincides at the centre

when the extra optical  path difference 2t naught introduced at  the centre,  contains one more



wavelength of one radiation than of the other. The visibility of the fringes is again maximum and

the conditions 2t + t naught is = n1 + capital N into lambda 1 and 2t + t naught is = n1+ capital N

+ 1 into lambda 2 will be satisfied.

Here,  it  has  been  assumed  that  lambda  1  is  greater  than  lambda  2  and  t  naught  if  the

displacement of M1 between successive visibility of maxima and capital N represent the number

of bright fringes of wavelength lambda 1 emerging at the centre due to displacement t naught of

mirror M1. Therefore, we can also write 2t naught is = capital N lambda 1 and 2t naught is =

Capital N + one 1 into lambda2. 
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From these two equations, we can write lambda 1 by lambda 2 is = N + 1 divided by N. Here, it

is very difficult to count N, but N can be determined from the relation capital N is equal to2t

naught divided by lambda 1. Using this, we can write lambda 1 - lambda 2 divided by lambda 2

= 1 over capital and which is = lambda 1 divided by 2t naught. Finally from this, we can write

lambda 1 - lambda 2 is = lambda 1 into lambda 2 divided by 2t naught which will be nearly =

lambda average square divided by 2t naught;

Where lambda average is the average of lambda 1 and lambda 2, thus by measuring the positions

of M1 for two successive visibility Maxima in the central field of view, lambda 1 - lambda 2 can

be determined. Since visibility minima can be distinguished more accurately than the Maxima,

the value of t naught is therefore determined by the position of M1 for two successive minimum

visibility positions.



 Further, in order to minimize the mirrors, normally the position of mirror M1 is noted for 10

successive  visibility  minima  and  from  this  the  separation  between  value  t  naught  can  be

determined  more  accurately.  Now, I  will  discuss  another  important  interferometer  which  is

known as the Fabry Perot interferometer. 
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In this interferometer, the interference fringes are produced in the transmitted light after multiple

reflections in the air film between two plane glass plates thinly silvered on the inner surfaces as

shown in the figure.  To observe the fringes a broad source of monochromatic  light  is  used.

Suppose a ray from the point P1 on the extended source is incident at the angle theta, this will

produce a series of parallel transmitter rays at the same angle which may be brought together at

the point P2 on the screen if with the help of a lens. 

The condition for reinforcement of the transmitter is is 2t cos theta is = m lambda where m is

integer for air film of thickness t. This condition will be fulfilled by all points on a circle through

P2 with their centre at O, the intersection of the axis of the lens with the screen EF. When the

angle theta is decreased, the cosine will increase until another maxima is reached for which M is

greater by 1, 2, 3, and so on so that we have for the Maxima a series of concentric rings on the

screen with O, their Centre. 



These  rings  are  known as  fringes  of  equal  inclination.  In  this  case,  effect  of  changing t  on

circular fringes is same as for as we have discussed for Michelson interferometer. In this inter, in

the interferometer used in the laboratory, one plate is fixed. 
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While the other night more in both direction keeping parallel to its preceding position to change

the  value  of  t.  This  interferometer  is  also  used  for  the  measurement  of  wavelength  of

monochromatic light and difference in wavelength of sodium D1 and D2 lines. The methods are

same as described above for the Michelson interferometer. So, let me summarize what I have

discussed in this lecture.

So, in this lecture I have discussed how to get interference pattern by division of amplitude by

taking example of thin parallel films of constant thickness as well as taking the film of variable

thickness.  And I also discussed how this colour effect is observed through thin films.  And I

discuss three important experiments which are usually performed in the laboratory.

Like a Newton ring experiment, Michelson interferometer and Fabry Perot interferometer and

how to determine the wavelength of monochromatic light, by using these experimental setups.

Thank you


