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Let’s go on to the problem of particle in a 1 D box. 
 
(Refer Slide Time: 00:01:09 min) 
 

 
 

This is a free particle which is moving back and forth in a one dimensional box. And if 
you recall classically, we plot x versus p the phase trajectories are just little sizes of 
rectangles. This is – root 2mE (Refer Slide time: 01:46). This is root 2mE. The regions on 
either sides of the box are forbidden. Let L be the length of the box along the x axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2 

 (Refer Slide Time: 00:02:03 min) 
 

 
 

The original Bohr quantization gave us a set of discrete energy levels and these energy 
levels were given by En = n squared h square over 8 m L squared which I prefer to right 
as n squared pi squared h cross squared over 2mL squared where h cross is h over two pi.  
So this gave us a set of quantized energy levels. Now let us solve the Schrodinger 
equation and find out what the actual energy levels are. I would expect the result that we 
get to merge with result for sufficiently large n when n becomes much greater than 1. But 
it will turn out that it is actually true for all n (1, 2, 3, etc). 
 
(Refer Slide Time: 00:02:48 min)  
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The time independent Schrodinger equation is  - h cross squared over 2 m, since we 
talking about one dimension, it is just d 2 over dx 2 + V of x the whole thing acting on 
phi n of x = En phi n of x. t V of x is 0 inside the box its infinite outside the box. So let’s 
look at what happens inside the box; 0 > x > l. we have d 2 over dx 2 + kn squared phi n 
of x = 0 where kn squared is 2 m En over h cross squared. The solutions to this are trivial. 
This is just the simple harmonic equation and therefore phi n of x is of the form Acos knx 
+ B sin knx. Notice that we should write down the general solution. So it’s a 
superposition of all possible linearly independent solutions.  
 
Now we have to impose boundary conditions at 0 and l. It should be continuous but that’s 
not sufficient. It should be 0 at the boundaries because it’s an infinite barrier. The 
probability of finding the particle outside the box is 0. So at the boundaries, the condition 
we will impose are phi n of 0 = 0 = phi n of L. this is going to determine the spectrum. 
Had we changed some of the boundary conditions, you get another spectrum. And of 
course you put at x = 0, we get A=0 and we are left with B sin knx.  
 
(Refer Slide Time: 00:06:17 min) 
 

 
 

Imposing the other boundary condition says that sin kn L = 0, unless B is also identically 
0. But if B is 0, then you can’t normalize the solution. Because we would also like to 
have the normalization condition 0 to L dx B squared sin square kn x to be equal to 1 
since you want the total probability of finding the particle inside the box to be equal to 
unity at all times. 
  
So that says that sin kn L = 0 which implies that kn equal to n pi over L. therefore if you 
put this in, you immediately get the En = h cross squared times n squared pi squared over 
2 m L squared. So these are the exact energy levels which were also got by the Bohr 
quantization rule. Now in this particular problem, the problem is so simple that the Bohr 
rule actually gives the exact answers because there is no potential inside and it’s infinite 
outside. So it’s not quite an accident. There are reasons why this should be so. But we 
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will see this later on why in this particular instance, the Bohr quantization rule actually 
gave the exact Eigen values. Corresponding to this, you have phi n of x = B times sin n 
phi x over L. but this B should be normalized by the rule. Please notice that this wave 
function is arbitrary up to a phase factor because the normalization only fixes modulus 
phi n squared of x up to a constant. 
 
So its mod B squared and B could be a complex number with a phase factor and that’s 
not showing up in this wave function at all. It’s actually irrelevant because as we will see 
for all physical quantities, the phase factor multiplying the normalization is irrelevant. 
Choosing that to be real, this phi n of x turns out to be 2 over L sin (n pi x over L). The 
allowed values of l is 1, 2, 3 etc. why i chose only the positive integers is because it 
doesn’t matter. Since sin n phi x over L is - sin - n pi x over L. so if n were negative, you 
would get the same way function over again with just a multiplicative factor 
 
So it’s not linearly independent. Notice the energies are actually proportional to n 
squared. So it really doesn’t matter whether n is positive or negative which is the 
reflection of the fact that sin pi and - sin pi are linearly dependent on each other, just 
multiplying by a constant. We don’t include 0 because then, the wave function would 
vanish everywhere and if it vanishes everywhere, it can’t be normalized to unity. 
Therefore the allowed values are just n = 1, 2, 3 etc till infinity. Now what is the time 
dependent state, phi n of (x, t)?  It’s just e power - iEn t over h cross phi n x. it just has this 
phase factor multiplying it. So this specifies completely the state of an energy eigenstate 
or the Hamiltonian eigenstate for this particle in a box problem. Now I have several 
questions to ask. 
 
Are the energy levels degenerate or non-degenerate? Is there a unique state associated 
with each energy level or is there more than one state associated with it? It’s unique and 
there is no degeneracy in this problem. This is a typical of one dimensional problem and 
there is no degeneracy in. the reason is rather deep. Degeneracy is a reflection of 
symmetry in the problem in general continuous symmetry. There is no continuous 
symmetry in this problem at all. 
 
Later when we look at three dimensional problems, then you would have rotational 
symmetry. It’s a continuous symmetry and associated with it, you would have degeneracy 
because system would be invariant under rotations of the coordinates axes. In one 
dimension, there is no question of any rotation at all. The second question is why doesn’t 
Planck’s constant appear anywhere in this (Refer Time Slide: 12:04) wave function. After 
all it’s a quantum problem. 
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(Refer Slide Time: 00:12:06 min) 
 

 
 
It’s purely for dimensional reasons. What are the physical parameters and constants in 
this problem?  The energy is not a constant since it changes. L and m are parameters. 
Since there is no relativity, c is absent. There is no gravity so G is absent and since you 
are working at T = 0, the Boltzmann constant k is absent. The only constant that can 
appear here is the Planck’s constant. The wave function outside the box is 0. 
 
(Refer Slide Time: 00:14:48 min) 
 

 
 

Phi n = root 2 over L sin (n pi x over L); 0 less than equal to x less than equal to L. It is 0 
in the region x less than 0 and x greater than L. that’s the exact solution  
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(Refer Slide Time: 00:15:20 min) 
 

 
 

Now the normalization constant of course says - infinity to infinity, dx phi n of x the 
whole squared = 1. And of course the integral is only from 0 to L because phi n of x is 
identically 0 outside the box. So what does this imply for the physical dimensions of phi 
n of x? 
 
(Refer Slide Time: 00:15:47 min) 
 

 
 

So this must be one over square root of length because when you square it this must be 
equal to probability which is one. Why doesn’t Planck's constant appear anywhere inside 
here (Refer Slide Time: 16:12)? The argument of the time cannot have dimensions 
because the sin is a power series that goes all the way to infinity. Therefore sine of 



 7 

anything cannot be dimensional. So you have an x and that must be compensated for by 
an L. If you have any Planck's constant appearing, there is a time that appears in the 
problem and there is no other parameter of time or with dimensions of time involved in it 
to cancel that.  
 
This is the reason why Planck's constant doesn’t appear in the wave function. If you look 
at the hydrogen atom problem, then Planck's constant would appear even in the wave 
function. Now what does the ground state of the hydrogen atom look like? The wave 
function is spherically symmetrical. So it goes like e to the - r but it can’t go precisely 
like e to the – r. there must be something else which compensates it or divided by some 
length. It’s a 0 and it’s the Bohr radius. So a quantity of dimension length is formed 
automatically but the hydrogen atom is not inside the box. It’s the average distance and 
so a 0 must come from some fundamental constants. It can’t come from r. so it must come 
from the parameters in the problem. What are the analogs of L m and h? The charge of 
the electron, e, the mass and Planck’s constant would play a role. 
 
The speed of light in vacuum is the fundamental thing. Even though it’s non-relativistic, 
as soon as the electricity and magnetism comes in, the speed of light is going to play a 
role. So the time in the Planck’s constant can be cancelled by the time in the speed of 
light, c. in fact it appears always as a c h cross because the t inverse in c is cancelled by 
the t sitting in the Planck’s constant always. We don’t have Boltzmann constant because 
we work at t = 0. The gravitational constant also doesn’t appear. So, from these quantities 
you can form a quantity of dimensions length and that will play a role. That’s not a 0. 
 
Therefore Planck's constant does appear in the wave function. It generally does but in this 
particular problem, the particle in a one dimensional box, there isn’t another dimension 
parameter with time involved in it and that’s the reason why it can’t appear in the wave 
function. Now that we have the wave function in place, we can write down what a 
general solution is going to be. It will be a super position of all these quantities. So that’s 
become a trivial matter first of all, is this a momentum eigenstate? If it were a momentum 
eigenstate then it must obey the following rule. Momentum operator acting on the wave 
function must give you number times wave function. 
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(Refer Slide Time: 00:20:50 min) 
 

 
 

It means the momentum operator p acting on phi n of x must give you the eigen value 
corresponding to the momentum. Now what’s momentum operator represented by? It is 
represented by - i h cross d over dx phi n of x and the question is, is this equal to number 
times phi n of x is? The phi n of x sitting there is a sine function. It’s definitely not an 
eigenstate.  
 
(Refer Slide Time: 00:21:50 min) 
 

 
 

This is a free particle and there is no potential. So the Hamiltonian is just p squared over 
2 m which would imply that the Hamiltonian commutes with p. but we just found out that 
the energy eigen states are not momentum eigen states. What’s the resolution to the 
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paradox? p commutes with p squared. So this this is this is one definitely 0 the h is equal 
to this is definitely true but we just discovered that those states are not momentum eigen 
states. 
 
So the paradox is the following. It appears as if the Hamiltonian in this problem is just 
kinetic energy so it’s a free particle. It commutes with the momentum operator because p 
commutes with p squared and yet the energy eigenstates of the Hamiltonian are not 
momentum eigenstates. So it’s not completely free. It’s not true because this has a V of x 
sitting here (Refer Slide Time: 23:24). 
 
 It’s so happens that V of x is 0 inside and infinite outside. It’s not free. It’s sitting inside 
the box. And then of course this is not true because this does not commute with that. So 
energy eigenstates are not momentum eigenstates unless the Hamiltonian is truly a 
function only of the momentum. It says V of x is definitely 0 for x between 0 and L and 
infinite for all other values of x. so it is not a constant. On the other hand on the other 
hand what would momentum eigen states actually look like. so let’s say p on some state 
chi of x = eigen function times chi of x, so number p times chi of x. this would imply - ih 
cross d chi over dx = p chi. So chi of x is proportional to e to the ipx over h cross. sin 
theta can be written as e to the i theta + e to the - i theta.  
 
(Refer Slide Time: 00:26:05 min) 
 

 
 

So I can certainly write the phi n of x as root 2 over L, 1 over 2 i times e to the power knx 
- e to the - i knx where kn = n pi over L. so h cross kn gives you the momentum eigen 
values. One of goes forward and the other goes backwards. Remember the particle is 
bouncing back and forth. So classically its momentum would have two values every 
times its moving forward, it has a value square root of 2 mE and when it’s moving 
backwards, it has a value - square root of 2 mE. Quantum mechanically, the eigen 
functions of the Hamiltonian are indeed a super position of two apparently momentum 
eigenstates, one corresponding to the forward motion and the other corresponding to the 
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backward motion. So what does the momentum space wave function look like? What 
would phi n tilde of p look like? It would be a super position of two momentum eigen 
states, one of which has a momentum h cross kn and the other - h cross kn. so the 
distribution will look like two sharp values.  
 
So here is - h cross kn and here’s + h cross kn (Refer Slide Time: 28:43) and it’s not a 
momentum eigenstate. If it were an eigenstate, it would just be a delta function at that 
point but it’s a super position of two eigenstates. So the delta function would be at the – h 
cross kn and the +h cross k n. so the important lesson is because the momentum does not 
commute with the Hamiltonian, a Hamiltonina eigen state is not an eigen state of the 
momentum in general but each eigen state can be written as a superposition of two plane 
waves. Looks like super position of two momentum eigenstates which is perfectly 
consistent with the classical picture but you see quantum mechanics is a very tricky 
subject. So what we should do is to check this if it’s really true or not. i have already 
proved the wave function is square integrable. It’s in L 2 and phi n of x is a member of L 
2 but we just proved the theorem that if phi n of x is in L 2, phi n tilde of p should be also 
be L 2. 
 
What would you do with something which is a delta function? They are not square 
integrable. The only way to settle this problem is actually to find the Fourier transform of 
this quantity and see what it does. 
 
(Refer Slide Time: 00:31:04 min) 
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phi n tilde of p is integral minus infinity to infinity dx phi n of x multiplied by a phase 
factor which was the overlap function between x and p. so its e to i px over h cross. 
 
(Refer Slide Time: 00:32:04 min) 
 

 
 

I should substitute for phi n of x and when I do that, the integral becomes 0 to L. had it 
been minus infinity to infinity, then each of the quantities gives you a delta function at p 
= plus or minus h cross kn. but unfortunately or fortunately for us, it is 0 to L and so are 
not delta functions. e to the i kx integrated over x from - infinity to infinity is delta of k 
but you going to integrate over a finite range, so it’s not true. That’s why you must be 
careful to write the wave function as a sine function inside and zero outside. 
 
 (Refer Slide Time: 00:33:32 min) 
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For instance, in the n =1 case, the wave function would look like this (Refer Slide Time: 
33:43). The function is continuous at these points but the slope is discontinuous. So the 
second derivative of the wave function would have an infinite discontinuity at these two 
end points. The curvature is very different and the slopes are not continuous. 
 
The wave function must satisfy phi n double prime + kn squared phi n + V of x phi n = 0. 
it satisfies that but V of x has an infinite discontinuity at 0 and l. that’s has to be 
compensated for by an infinite discontinuity in phi double prime. Otherwise the equation 
is not satisfied at the boundaries. After all, what’s the meaning of a boundary condition 
anywhere in the in the natural science? You have an equation and you have some 
situation obtaining at the boundary, you want the equation to be valid at the boundary. So 
the difference between the two, you call it 0. That’s what you mean by applying the 
boundary condition and that’s exactly what’s going on here. V of x has to compensate for 
phi n double prime of x. so the consequence of this is that the Fourier transform is not 
equal to a sum of two delta functions. It’s some exponentials. That function will extend 
from p = - infinity to = + infinity.  After all, you are familiar with the fact that if you take 
a very sharp pulse in time and you do Fourier analysis, it has a very broad frequency 
spectrum. 
 
In fact, the pulse is infinitely spread out in frequency. And conversely if it’s a 
monochromatic wave, then it goes like this from - infinity to infinity. So it’s infinitely 
spread out. The more you try to press in one curvature, the more the other one spreads out 
and that’s a basic fact of life, which in quantum mechanics is called the uncertainty 
principle. This means even in wave motion, except that in quantum mechanics, you get a 
dimensional constant playing a role which is the Planck’s constant. 
 
(Refer Slide Time: 00:36:50 min) 
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So it’s equal to some function, which is a smooth function of p. its an element of L 2 from 
minus infinity infinity. And the upshot of it is that you don’t have two delta function 
peaks when you compute that momentum space wave function. 
 
(Refer Slide Time: 00:37:21 min) 
 

 
 

When you calculate mod phi n of p squared, the probability that the momentum is 
something or the other from minus infinity to infinity, the wave function looks like 
this(Refer Slide Time: 37:36). It has peaks about these points and that’s in a nod to the 
classical case. When they have just two sharp values of momentum but the momentum of 
the particle inside the box, it could actually have any value. The average value is the 
probability density which is zero since the particle is inside the box. But the mean square 
is not zero. So our next task now is to calculate mean square.  
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(Refer Slide Time: 00:38:34 min) 
 

 
 

So what is x average in the n’th eigenstate? The general formula for the expectation value 
for an operator A in any state is psi A psi divided by psi psi. We have to apply that to the 
present situation. The denominator is always normalized to unity. So we have set it equal 
to one. All the eigen states are normalized to unity. We are going to compute the 
numerator now. It’s time independent because you are in a stationary state. The average 
value of any physical quantity which is not explicitly time dependent is constant. That’s 
the reason for calling it a stationary state. So I insert a complete set of states in the 
numerator. 
 
(Refer Slide Time: 00:40:12 min) 
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So let’s write this as psi x x and integrate over dx. Then you have psi x, x A x prime, x 
prime psi. You have an integral dx prime as well. That’s what psi A psi was equal to. The 
last quantity is just the wave function but I want it in the state phi n, the energy 
eigenstate. So I can replace this by phi n of x prime. 
 
(Refer Slide Time: 00:41:05 min) 
 

 
 

The first term is phi n star of x.  But i still have two integrals to do and I want to look at 
the position eigen states. So I want to look at x in the n’th eigenstate which we have 
computed. And the operator A is x. So it is x operator acting on x which gives you just 
the number x.  Then I have an x with x prime but it’s a delta function because it’s an 
orthonormal basis. So it becomes a delta of (x - x prime). Now I can do the x prime 
integral. So i get rid of the x prime integral and I’m left with phi n x phi n star of x. 
 
So the expectation value of x becomes equal to 0 to L, because phi vanishes outside the 
box. Otherwise it’s minus infinity to infinity. This wave function vanishes outside so its 
dx 2 over L sin squared (n pi x over L), multiplied by x. And that’s a trivial integral to do.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 16 

(Refer Slide Time: 00:43:25 min) 
 

 
 

X squared average is equal to the entire expression except for the x replaced by x 
squared. We integrate by parts to arrive at this expression. 
 
(Refer Slide Time: 00:43:51 min) 
 

 
 

Now let’s compute delta x which is the uncertainty. It is the standard deviation in the 
position. It is given by square root of x squared average - x average the whole squared. 
We follow the same argument to compute the standard deviation in the momentum 
except that you would have the momentum operator acting on this wave function here 
(Refer Time Slide: 44:35). The momentum operator acting on the wave function is - i h 
cross d over dx phi n of x. 
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(Refer Slide Time: 00:44:41 min) 
 

 
 

So this is some root over L sin n pi x over L. you would then get a cosine and the product 
integrates to. Then delta p n equal to square root of p squared n – p n average squared and 
we just discovered that p n average squared is 0 in this problem. Now what is p squared 
average equal to? It’s just the energy because energy is just kinetic. So we can write it as 
the expectation value of the energy.  
 
(Refer Slide Time: 00:47:05 min) 
 

 
 

 En is equal to n squared pi squared h cross squared over 2 m. but that’s also equal to p 
squared. There is no potential energy in this problem. So we wouldn’t have to compute 
the integral. But we have to be very careful when you say the energy is just kinetic 
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energy. That is not certainly true. Since there is a potential outside which is infinite and 
zero inside, it so happens that this integral is contributed to only by what’s inside.  
 
(Refer Slide Time: 00:48:12 min) 
 

 
 
Hence compute del x del p and this should be greater than h cross over 2. In fact, you 
should work this out and becomes larger and larger as n increases. You will discover that 
it is dependent on n. the smallest value is for n =1 which is the ground state and even in 
that case, it’s bigger than h cross over two. 
 
So the ground state of this problem is not a minimum uncertainty state. Whenever this 
uncertainty bound is saturated, delta p delta x is exactly equal to h cross over 2. I would 
call that the minimum uncertainty state. This problem doesn’t have a minimum 
uncertainty state at all. So this is the way you compute the uncertainties in the problem. 
And that more or less tells us everything we need to know about the particle in a one 
dimensional box. 
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(Refer Slide Time: 00:49:23 min) 
 

 
 

There are certain other aspects which we should ask which we will talk about a little later 
but I want to ask again if the energy levels are degenerate or not. In this problem they are 
not. Now as an exercise, I would like you to do the following one dimensional problem. 
Imagine this particle is not inside a one dimensional box but is living on a one 
dimensional on a ring. 
 
(Refer Slide Time: 00:50:00 min) 
 

 
 

So let’s suppose its living on a ring of circumference L. so this is the point 0 and L (Refer 
Slide Time: 50:10). So it’s a circle of circumference capital L just to be able to compare 
with what happens in the box of length L. It’s exactly the same problem as before no 
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potential energy no question of any potential at all in this cases just kinetic energy h is p 
squared over 2 m. therefore would you or would you not expect the Hamilton eigenstates 
to be the same as the eigenstates of the momentum? In this problem you would expect 
that every energy eigenstate is also the momentum eigen state. What boundary condition 
would you put here? After all, the equation is exactly the same as before? You would 
solve exactly the same equation as before but what boundary condition would you put? 
So I would say here phi n of 0 = phi n of L. This is actually more than a boundary 
condition because this is towards every x. In fact what you are saying is that the wave 
function here is the same as a function wave function. And therefore it’s equal to phi n of 
x= phi n of (x + L) and so on. These are called periodic conditions. It’s not a boundary 
condition. And the effect of this is that when I say the function here is equal to function at 
x + L, it means every derivative of the function here is every derivative of the function 
there. 
 
So it’s an infinite set of conditions. The functions must match the slopes, the curvature, 
all derivatives etc. so imposing a thing like this is like putting an infinite number of 
conditions. So this is very strong and this condition is sufficient to the find the unique 
solution here. What do you think the wave function is going to look like in this case? It is 
just going to be a sin n pi x over L. will it just be an exponential? It will be a super 
position but will it be a finite superposition? Remember you need to satisfy the boundary 
condition. So it will end up with a fairly complicated superposition and it’s not trivial. 
  
Would they be degenerate? They are doubly degenerate in this problem because one of 
them would correspond to momentum in the clockwise direction and the other would 
correspond to momentum in the anticlockwise direction. Now very often in text books 
you will see the statement that in one dimensional problems, you don’t have degeneracy. 
This is true provided the underlying space is simply connected. A circle is not simply 
connected. So topology plays a role here and in this problem definitely there is double 
degeneracy even in one dimension. We will try to come back and give this is an exercise 
to work out fully. We will see what the wave function looks like for a particle moving in 
a circle. This is crucial because these are the kinds of problems one would encounter in 
applications. We will take up two dimensions and I will do the rest of it tomorrow. 
 
If you recall in the classical physics course, all closed loops cannot be shrunk to a point 
without leaving the space. So it’s actually infinitely connected. It is like taking the 
problem of putting a rubber band on a cycle wheel rim. You can encircle completely once 
or twice or thrice or -1, -2, -3 times in infinite number of distinct ways of mapping. So in 
the technical sense, it’s not a simply connected space but physically the circles boundary 
conditions as periodicity are such that there is truly no potential. Hamilton does commute 
with the momentum in this problem. The consequence of it is that you don’t have to solve 
Schrodinger equation. You can solve the one dimensional momentum eigen function 
equation. You could solve the equation p on wave function equal to number times wave 
function. That’s the first derivative equation and you superpose all possible solutions. 
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They are guaranteed then to be simultaneous eigenstates of momentum as well as the 
total energy. So we will return to that now, you can do what we did for one dimension in 
a two dimensional box. 
 
(Refer Slide Time: 00:56:13 min) 
 

 
 

So now I have a wave function inside a square box in the x direction and in the y 
direction, 0 to L. as usual, I say the wave function is identically 0 outside and non-zero 
inside. And I can now separate the Schrodinger equation in Cartesian coordinates and 
what would the solutions look like in this case. Let us suppose that you have two 
quantum numbers now, n1 and n2 because you get two degrees of freedom. So phi would 
be labeled by two quantum numbers, n 1 n 2 and it will be a function of x, y. this is square 
root of 2over L in each of the directions. So it is sin n 1 pi x over L and sin n 2 pi over L. 
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(Refer Slide Time: 00:57:24 min) 
 

 
 

E is now a function of n 1 n 2 = h cross squared pi squared over 2 m L squared times (n 1 
square + n 2 squared). Those would be the wave functions. The ground state is not 
degenerate. It’s unique. You can’t put either n 1 or n 2 zero because then there’s no wave 
function at all. So this definitely is the ground state, the lowest energy state. The first 
excited state is degenerate. It could be either n 1 as 1 and n 2 is 2 or vice versa. So it’s 
doubly degenerate. Of course you can do this numerology in the beginning but the 
interesting thing to ask is how does the degeneracy increase as n increases. What about 
three dimensions? Suppose the boxes were a rectangular box having L1 and L2 as sides, 
what would happen?  
 
(Refer Slide Time: 01:00:00 min) 
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Well, it would be the same except that this (Refer Time Scale: 01:00:08) expression 
would have an L1 and an L2. The degeneracy depends on L1 and L2. So we are back to 
this thing about frequencies of two harmonic oscillators at right angles. So it depends on 
the geometry of the box. You can do a tetrahedral box, a spherical box, etc. They are of 
academic interest except that with the advent of nanotechnology and nanoparticles , it’s 
become crucial now because you can actually produce metallic particles which are 
confined to boxes of particular geometrical shapes. 
 
So it now becomes actually relevant to ask what do the energy levels look like in 
different shapes of boxes and how do they get quantize. That’s an interesting problem 
look at. What I am going to do next is to take off from this problem and introduce a 
potential and show you how, if you relax this condition of an infinitely rigid value, then 
you start getting a spillover of the wave function outside. So we will talk about that 
tomorrow. Thank you! 
 


