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Let’s our formalism of quantum mechanics but today, let me start by comparing classical 
physics with quantum physics and write down what the differences are between the two and 
how you make a transition from one to the other. So let’s go back and look at Hamiltonian 
mechanics because the whole of quantum mechanics also presumes that you have a 
Hamiltonian for the system and quantum mechanics is really concerned with evolution in the 
presence of a Hamiltonian. 
 
(Refer Slide Time: 00:01:35 min)  
 

 
 

So classically you start by defining dynamical variables. And these dynamical variables are 
of two kinds. There are q 1 q 2 etc and then there are p 1 p 2 etc. so they go in canonically 
conjugate pairs. And then these dynamical variables satisfy Poisson bracket relations. The 
Poisson bracket relations are {qi, pj} = delta ij and {qi, qj}= {pi, pj} = 0. Now of course no 
dynamics has been put in. so far, it just says you have a set of variables and they obey these 
relationships among each other. The dynamics comes in prescribing the time evolution 
equations. So you introduce a Hamiltonian which is a function of q and p. There exists a 
Hamiltonian which is a function of the dynamical variables such that qi dot is delta H over 
delta pi and pi dot is - delta H over delta qi.  
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This is the Hamiltonian formalism in classical mechanics. the statement is that in phase 
space, in the space of the q’s and p’s, specifying initial data corresponds to specifying a 
point in this phase space after which you are supposed to solve these equations and if this is 
autonomous Hamiltonian, then the trajectory of the point that you started with in phase 
space will tell you what the future values of the dynamical variables are.  
 
And therefore use this information together with initial conditions to find out what happens 
to dynamical variables as time evolves or elapses. Now the important thing to note here is 
that there are two pieces of information. One of them is this dynamical piece of information 
which tells you what the equations of motion and how things evolve in time.  
 
The other piece of algebraic information is the input. It tells you a basic algebraic relation in 
this phase space between the q’s and the p’s. And it is not hard to see that these relations are 
valid at all times. in other words at any instant of time, qi at time t with pj at time t is delta ij 
if you start with that, it continues so. So the Poisson bracket relations themselves remain 
preserved as time goes along. The q’s and p’s adjust themselves such that they always obey 
the Poisson bracket relationship which is why you could use any of the points as the initial 
state. So this is very important to understand there are two sets of relations. One is the 
structure, the Poisson bracket, the canonical variables and the other is the evolution 
equations. 
 
(Refer Slide Time: 00:05:10 min)  
 

 
 

Now when you come to quantum mechanics, our assumption is going to be that the 
algebraic information is replaced by self-adjoint operators acting on the vectors of some 
Hilbert space. So, just as you had phase space in classical physics, in the quantum version 
it’s no longer a phase space. It’s meaningless to talk about points in phase space due to the 
uncertainty principle. So this is replaced by the Hilbert space.  So the appropriate space in 
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which things happen in quantum mechanics is the Hilbert space of states. We still got to say 
where a state fits into this. But the dynamical variables are replaced by self –adjoint 
operators. 
 
(Refer Slide Time: 00:07:00 min)  
 

  
 

There an analog of Poisson bracket relations here and that is a relationship between the 
operators and they are replaced by commutator brackets. Then a commutator of two 
operators is the difference of operating with the two operators, one on the other in different 
orders. So the commutator here would be [qi pj] which is a shorthand for (qi pj- pj qi). If 
these are matrices, then it says you have two matrices A and B and the commutator  AB - 
BA is also a matrix. So what happens in quantum mechanics is the Poisson brackets are 
simply replaced by the commutators divided by ih cross. We need that factor there for a 
reason i will come to it.  
 
And this is equal to delta ij but then these are operators. So there must be an operator on the 
right hand side and the appropriate operator here is the unit operator. It doesn’t do anything 
just acts on a state and leaves it as it is. But the i and j are the labels which specify the 
dynamical variables. They could be Cartesian components, labels of the dynamical 
variables, the phase space variables in the classical case or the canonical variables.  
 
So of course the other two commutators are 0. So [qi, qj] = zero and [pi, pj] = 0. These two 
are also part of the algebra. So algebraic relationships between the operators replace the 
algebraic relationships for a canonical variable. The Poisson brackets are replaced by 
commutators. The answer why i need that ih cross is technical. These quantities are physical 
quantities which are real variables. The corresponding thing here would be self-adjoint 
operators. But you see the commutator of two self-adjoint or Hermitian operators is not 
Hermitian itself.  
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Suppose you have a matrix A and B which are Hermitian, they both would represent some 
physical operator physical quantities. 
 
(Refer Slide Time: 00:10:06 min)  
 

 
 

Then [A, B] =C, which is some other operator. Then C is AB – BA. But C dagger = B 
dagger A dagger - A dagger B dagger. But that’s equal to BA - AB because B and A are 
themselves Hermitian. But this is equal to- C. so a commutator becomes anti-Hermitian. On 
the other hand, if it’s a physical quantity, the combination AB - BA is also an observable. 
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Then you must make it Hermitian. That’s the reason why you need this i here (refer Slide 
Time: 11:11) because the moment you put the i, that also changes sign and it makes this 
quantity a Hermitian quantity. The h cross is there for dimensional reasons. Because you can 
see that the product of any generalized coordinate and the corresponding conjugate 
momentum has always got the dimensions of energy multiplied by time. And there is a 
fundamental quantum constant called Planck's constant which has the same dimensions. So 
this makes it dimensionless here. You could ask why not minus ih cross.  + ih cross turns out 
to be the right prescription and we will see as we go along what would happen if you had a 
minus here.  
 
(Refer Slide Time: 00:12:07 min)  
 

 
 

So the algebraic structure in classical goes to the algebraic structure in quantum. The next 
question is what about these equations. You again have a Hamiltonian. The presumption is 
you again have a Hamiltonian which is a function of q’s and p’s, except these are operators 
and therefore the Hamiltonian is also an operator. And you can immediately know that if q 
and p are complicated operators like derivatives and so on and then you take functions of 
these derivative operators, you can get fairly complicated operators.  
 
Suppose q and p involves differentiation of the state vector, this H would be some function 
of this derivative operator, perhaps e to the power d over dx and so on. But they are not the 
analogs of the classical equations. There are no direct analogs of these equations. As it 
stands, the equations are going to be slightly more complicated and we will see what these 
equations become. So what‘s the time evolution of a quantum system and how is it 
described?  
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Now keeping this in mind, let’s go back and look at what we said about expectation values 
and then we are going to get a hint as to what’s going to happen.  
 
(Refer Slide Time: 00:13:47 min)  
 

 
 

I pointed out that if you took a physical observable and I asked what is the expectation value 
or average value of this observable at some instant of time in a quantum system specified by 
a certain state, then we asked the following question. The state of the system psi of t is given 
to you at some instant of time and now i ask the following question, what is A at that instant 
of time. I explained yesterday that if you make a measurement on this system to measure 
this physical quantity A, you are guaranteed to get one of the eigenvalues of the system. 
Which one it is you can’t say a priory depends on the state of the system.  
 
So now lets assume for simplicity of notation that A has eigenvalues lambda 1, lambda2, etc 
possibly an infinite number. Let’s called them lambda i. Eigenvectors phi 1 phi 2 etc form a 
bases set in this Hilbert space of the system. This is an assumption. There would be 
operators for which you may not be able to justify this but just to set the formalism, let me 
assume this for the moment. It’s a Hermitian operator or a self-adjoint operator. It has these 
eigen values and these eigen vectors. In other words A acting on phi n is lambda n times phi n 
and they form an orthonormal basis. That immediately implies that i can expand psi of t at 
any instant of time in the form summation over n, all the allowed values of n, some 
coefficient cn times phi n.  
 
Now this operator A is perhaps like position, angular momentum etc. It’s supposed to be 
made up of the dynamical variables of the q’s and p’s. To start with we assume there is no 
explicit time dependence in A. After all, if I want to measure the position of a particle, that 
position x has no explicit time dependence. It may depend on time after you solve the 
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equations of motion but there is no explicit time dependence. On the other hand, say let me 
measure x squared + y squared + t times z squared divided by some tau.  
 
So i could put in t explicitly and then this observable becomes explicitly dependent on t. But 
let’s start by saying A is a not explicitly time dependent in which case it has some eigen 
values and some eigen vectors. These eigen vectors are found once and for all form a basis 
set and i have an expansion of this kind here. If it’s an orthonormal basis, this is a unique 
expansion.  The time dependence go into the coefficients. Imagine in three dimensions, I fix 
my coordinate axis x, y, z. these are the unit vectors and I take the position of a particle 
which is moving and I expand that in this basis. Then of course the components are the ones 
that carry the time dependence.  
 
(Refer Slide Time: 00:17:55 min)  
 

 
 

So you would say immediately that r of t = x of t times ex + y of t times ey + z of t times ez.  
So it’s these components and not the unit vectors that carry the time dependence. In exactly 
the same way these components carry the time dependence here and they would change 
from instant to another. To start with, the basis is fixed.  
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(Refer Slide Time: 00:18:33 min)  
 

 
 

This implies that the probability amplitude that the state psi of t is in fact the unit vector phi 
n is given by this here (Refer Slide Time: 18:46). 
 
(Refer Slide Time: 00:18:54 min)  
 

 
 

The probability interpretation of quantum mechanic says that mod mod cn of t whole square 
is the probability that the system is in a state phi n at time t. This is a postulate. Now of 
course you may start with a state which is not normalized to unity which presumes that this 
state is normalized to unity. Because you immediately see that if i do a psi of t bra vector 
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here, then by orthonormality we know that psi of t psi of t = summation over n mod cn of t 
whole squared. This follows by orthonormality immediately. Therefore this is a probability 
provided, this is unity (Refer Slide Time: 20:16). But i give an arbitrary state; there is no 
reason why it should be normalized to unity. Just as i can expand this position vector in 
terms of some vector along the x direction, something along the y and something along the 
z, it may not be unity.  
 
Only if I make it unit magnitude, can I talk about the magnitude of this vector as exactly 
equal to x squared + y squared + z squared, squared root. i have to first normalize these unit 
vectors. I may not do it all the time. i may start with an arbitrary state and you may need to 
normalize it. You do exactly what you do in statistical physics. You divide by the 
normalization factor which in statistical mechanics was called the partition function. 
Because relative probability of a system having an energy e in contact with the heat power 
that inverse temperature beta was e to the power minus beta e. But the absolute probability 
was e to the power minus beta e divided by the sum over all these betas. So you have to keep 
track of that of the normalization all the time.  
 
(Refer Slide Time: 00:21:29 min)  
 

 
 

So if not divide by the norm and then you normalize. This is how you normalize any vector. 
You take the vector, divide by its magnitude and you get a unit vector always. So we will 
assume that we have normalized this state. We will see what happens if you don’t normalize 
it. If that is the case we can write a formulary down for the average. This immediately 
implies that A average is equal to the weighted average summed over n of all the Eigen 
values of A together with the corresponding probability. 
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(Refer Slide Time: 00:22:12 min)  
 

 
 
When it is in the state phi n, the value of A is lambda n. you are guaranteed this is the value 
you will produce and now you know the probability with which it’s in the state phi n.  Its 
mod cn squared. So it’s immediately clear that this quantity is mod cn of t whole squared 
times lambda n. that’s the meaning of the average. Once you give me a probability 
distribution, the average is just the value at each point in this the probability distribution 
times the probability.  
 
(Refer Slide Time: 00:23:35 min)  
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Incidentally if this were not true and it were not normalized, you simply divide by n mod cn 
of t whole square in general. To normalize it later, you just divide by the total probability. 
So we have here a formula which says A, which is the average as a function of t and does 
not explicitly depend on time. So this is summation lambda n mod cn of t the whole squared 
divided by summation n mod cn of t the whole squared. I would like to go back and write it 
in terms of psi to get a compact formula  
 
(Refer Slide Time: 00:24:33 min)  
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cn of t is this ( Refer Slide Time: 24:44). So I take its complex conjugate and that gives you 
cn * = psi of t phi n because the complex conjugate of this is the reverse. So let’s put that in. 
Now the average A of t is psi of t psi n phi n psi of t divided by summation over n psi of t 
phi n psi of t.  The summation can be moved in and we write this as psi of t because that has 
nothing to do with the summation. A summation over n lambda n phi n phi n psi of t ket 
vector. 
 
Now this is psi of t summation over n phi n phi n psi t. now you see the power of this 
notation. This thing here (Refer Slide Time: 26:34) is a number and must have two angular 
brackets. So what I have done is to move this out of the summation because we know that 
the sum over n of these scalar products we will take sum inside and sum one by one because 
it’s a linear vector space. 
 
(Refer Slide Time: 00:27:12 min)  
 

 
 

But this (Refer Slide Time: 27:48) quantity is the unit operator. So the denominator becomes 
psi of t psi of t, which is a normalization factor as we expected. But in the numerator, I can’t 
take phi n phi n out and call it the unit operator because of the presence of the lambda ones.  
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(Refer Slide Time: 00:28:17 min)  
 

 
 

But we also know that A acting on phi n = lambda n on phi. So we use this relation in 
reverse. So the lambda n phi n can be written as A acting on phi n. But A is a linear operator 
and when it acts on a sum of states, it is as if you can sum those states first and act with A. 
So you can move the A out of the bracket and use the fact that this is a complete set of 
states. So you get a psi of t A psi of t and at the bottom, we get psi of t with psi of t. this is a 
fundamental formula. You have this A sandwiched between two states. This looks like a 
diagonal matrix element in a basis psi.   
 
This is the reason why in quantum mechanics we say matrix elements are expectation 
values. It’s by this little piece of rigmarole that you know that once you put in the 
probability interpretation, it follows that the expectation value of A apart from that 
normalization constant below is in fact the matrix element of A. Take the state vector psi 
operate with A. you get a new state vector. Take the inner product with the original state and 
that gives you the expectation value.  
 
It is very important to notice that a sandwiched between the states is a very complicated 
object here and cannot be taken as something that can be normalized to one.  So the whole 
purpose of everything is to find these quantities. And now this gives us a hint as to what 
these equations of motion would look like. Whatever they are, they should be such that 
when I take average values, I recover the formula here. So we will keep that in mind. Now 
you could ask how does the average A of t change as a function of time, i.e., dA over dt. 
Since every element here is a function of t, we need a rule now for how psi of t changes. So I 
will start with that because there are two ways of doing quantum mechanics at this stage. 
There is an active way of doing it which follows directly from this and its call the 
Heisenberg picture.  
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And there is another way of doing it which is called the Schrodinger picture which specifies 
what the state vector does as a function of time and these two are completely equivalent to 
each other because they will lead to exactly the same answer for these physical quantities. 
That is the consistency check. So without further ado, let me write the Schrodinger equation 
down here to show you how the state vector changes as a function of time. So we replaced 
dynamical variables by operators. We replaced Poisson brackets by commutators.  
 
Next thing we do is we replace the phase space by the Hilbert space of the system. We 
replace knowledge of the phase space variables by knowledge of the state vector of the 
system. The phase space variables change with time classically according to Hamilton’s 
equations of motion. The state vector changes as a function of time according to 
Schrodinger’s equation and that is the input here in the Schrodinger equation. 
 
(Refer Slide Time: 00:33:22 min) 
 

 
 

Schrödinger equation says ih cross d over dt on psi = H psi of t and it’s a postulate. This is 
not an eigen value equation because this tells you we have to define what this (Refer Slide 
Time: 34:34) quantity is but intuitively we know what it is.  It’s the state vector at time t + 
delta t subtract the state vector at time t divide it by delta t and you get some other vector. 
This is given by the action of the Hamiltonian on this state so it takes you to some other state 
vector. After all this is an operator the whole point is this is an operator and it takes you to 
some other state all together. When we discuss eigen states of this operator, then we will see 
that this equation reduces to an eigen value equation but only for those eigen states. In 
general, it’s a first order differential equation but an operator equation for vectors in a 
Hilbert space. Our task would be to see how to represent this Hamiltonian and solve 
physical problems here. 
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It’s a first order in time. In principle if you treat this like an ordinary differential equation 
this together with initial an initial condition is needed to solve this equation. The unknown 
here is the state vector psi of t. so you have to specify state at some initial instant of time. 
It’s an initial value problem. So we will assume that we know the state at some instant of 
time. We will see later how we have to specify the states along with initial condition psi of 
zero. If this H does not have explicit time dependence, this is an autonomous system. 
 
Similarly if this H (Refer Slide Time: 36:49) is a function of just q’s and p’s, then it is very 
much an autonomous system. There is no explicit time dependence here in this H (Refer 
Slide Time: 37:02) and if I change t to (t + delta), d over dt doesn’t change. So it’s clear that 
this whole thing is time translation invariant. You could choose any instant as the initial 
instant of time, just as you could for an autonomous system. Now let’s find the solution of 
Schrödinger equation. Then comes a question of whether it exists and it can be written in 
this form. So for the moment it helps to think of psi as a column vector in some vector.  
  
(Refer Slide Time: 00:37:57 min) 
 

 
 

So the solution is psi of t equal to e to power Ht over ih cross. So let’s put the i up and these 
results in e to the power - i Ht over h cross psi of 0. Please notice that you need to have a 
state vector at time t and therefore that initial vector is put on the right hand side and this 
operator e to the power minus i Ht over h cross acts on it from the left. So order starts 
mattering here in quantum mechanics. Suppose I choose some arbitrary number t 0. The 
solution becomes t - t 0 acting on psi of t 0. This is a formal solution. Now we know that 
Hamiltonian evolution preserves the volume in phase space. That was Liouville’s theorem 
and that was one of the crucial inputs. So phase space flow in classical dynamics is like the 
flow of an incompressible fluid in real space. 
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The analog would have to again do with the probabilistic evolution. So this is just like 
saying here that points don’t disappear from phase space. The fluid moves around and this 
volume element doesn’t change. In exactly the same way, here too there is a conservation 
which operates. The norm will be preserved. So you can see that psi of t = psi of t0 e to the + 
i H (t - t 0) over h cross. The i becomes - i but the matrix H must become H dagger and it 
acts from the right. H is Hermitian. It’s the Hamiltonian of a system. So all the systems we 
are going to look at is assumed to be described by Hermitian Hamiltonians. When you 
include dissipation in quantum mechanics, then you may need Hamiltonians which are not 
Hermitian. The reason is dissipation would mean the energy is not conserved. Things would 
die down as a function of time, etc. But as long as the eigen values of the Hamiltonian are 
real, this can never happen. Damping would involve imaginary components and for the 
movement we look at systems with Hermitian Hamiltonians. 
 
(Refer Slide Time: 00:42:28 min) 
 

 
 

Therefore to write the norm,  one can close one’s eyes and put this(Refer Slide Time: 42:37)  
on the left and this on the right and you have psi of t 0 e to i H (t - t 0) over h cross e to the 
power - i H (t - t 0) over h cross psi of t 0. 
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(Refer Slide Time: 42:37)   
 

 
 

I have e to the A e to the B = e to the (A+B). This will be true if A and B commute with 
each other. This is a complicated formula and we are going to use this over and over again.  
But e to the A e to power - A = e to the (A –A) = e to the power 0= 1. This is certainly true 
because A and - A commute with each other. And of course if A commutes with any scalar 
multiple of itself and therefore e to the A e to power minus A is indeed one. And this (Refer 
Slide Time: 44:33) becomes a unit operator and therefore this gives us a preservation of 
norm. That’s the analog of the Liouville theorem which says the volume element in phase 
space is preserved. Here the quantum evolution says the state vector preserves its norm as 
time goes along. That’s a consequence of the fact that the Hermitian conjugate of this 
operator (Refer Slide Time: 45:06) is its inverse. It came out from that fact that the 
Hermitian conjugate of that operator was just the inverse of that operator. 
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(Refer Slide Time: 00:45:27 min) 
 

 
 

Let us consider the operator e to the power - i H (t - t 0) over h cross. Let’s call it something 
lets call it an operator U of t, t 0. It depends on t and t 0 and happens to depend on difference 
in (t - t 0) in the simple case. And this operator takes the state of a system from what it was at 
time t 0 to what it was at time t. This operator is called the evolution operator or the time 
development operator. When I take its matrix elements, I will call it the propagator because 
that’s what propagates you from one time to another. 
 
The time development operator has some interesting properties as its stands. To get U 
dagger, I have to take Hermitian conjugate everywhere. So this (Refer Slide Time: 46:52) 
becomes + i and this becomes H dagger and of course these are real numbers and nothing 
happens to them. But H dagger is the same as H and therefore U dagger (t, t 0) = U inverse 
(t, t0) or U U dagger is 1, which is the identity operator. I have just left out the time 
arguments for convenience. You call a matrix which has these properties as unitary. So the 
time development operator is unitary. It satisfies some important properties among which 
unitarity is first and foremost. The fact that it’s unitary leads to the conservation of this 
quantity (Refer Slide Time: 48:06). If you identify this with the probability total probability 
then it says the conservation of probability follows from the unitarity of the time 
development operator. 
 
So you find a time development operator which is not unitary. You know it’s wrong so 
immediately you know that probability is not going to be conserved. So unlike classical 
physics where Liouville’s theorem doesn’t seem to play much of a role it just happened 
there that it was volume preserving evolution. At least in the elementary treatments it didn’t 
seem to play a very fundamental role. 
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In quantum mechanics, on the other hand the unitarity of the evolution is very important and 
you have to keep track of that at all times. I will mention here that even if H is time 
dependent explicitly and the Hamiltonian changes from instant to instant while remaining 
Hermitian, the time development operator is not given by this (Refer Slide Time: 49:04) 
formula as you can see even in elementary differential equations, if this coefficient becomes 
a function of time then this is not exponential is not the solution you need some e to the 
power some integral and so on. The time development operator in those cases would 
continue to be unitary. We are going to look at some problems where it becomes explicitly 
time dependent. 
 
For instance I take an atom and I switch an electric field on and off. Then of course it’s a 
time dependent Hamiltonian and I need to know what the time development is. This operator 
has the following property. 
 
(Refer Slide Time: 00:49:42 min) 
 

 
 

In time, suppose this (Refer Slide Time: 49:55) is an instant t 0, this is the instant t 1 and this 
is the instant t 2, as time  elapses this direction, then you could ask what is U of t 2 , t 0 equal 
to. And its immediately clear from this exponential structure that it is equal to U of t 2 , t 1 
and  U of t 1, t 0 in that order. The order is important. Of course here (Refer Slide Time: 
50:23)  there is the Hamiltonian which is time independent so it doesn’t really matter but in 
general, once again you have to keep track of this. 
 
U (t 2, t 0) says that the system propagates from time t 0 to time t 2. The state evolves from 
time t 0 to time t 2. If there is an intermediate time t 1, then this evolution operator which 
describes the evolution from t 0 to t 2. So it goes from t 0 to t 1 first and then it starts at t 1 and 
goes to t 2 in this order. You can’t interchange these orders except in the simplest of cases 
and this is called a semi-group property. It’s called a semi-group because you know when 
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you have a set of elements and you multiply them together over a time, you get more 
elements and that forms a group. But here the order of multiplication is important. It’s a 
semi-group it doesn’t happen the other way. I emphasize this because even when the 
Hamiltonian is time dependent, this would still happen. Let me point out what would happen 
if the Hamiltonian is time dependent. Well it’s a much harder problem. 
 
(Refer Slide Time: 00:51:49 min) 
 

 
 

If the Schrödinger equation were given as equal to H of t, psi of t, then the solution is highly 
nontrivial. 
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(Refer Slide Time: 00:52:00 min) 
 

 
 

Let’s look at it classically. You have d over dt, some f of t = H of t, f of t. Suppose f of t is 
just an ordinary function, you have an equation of this kind. If H were a constant, then you 
write e to the power Ht and that’s the end of the story. But what’s the solution now given 
initial condition f of zero. f of t = e to the power integral 0 to t, dt prime, H of t prime, f of 0. 
That’s the solution. Of course if H is time independent, this integral just becomes t. but 
otherwise this is the solution to this differential equation. 
 
To verify this solution, you differentiate and then you have to find the derivate of this (Refer 
Slide Time: 53:33) quantity as a function of t. you then use this famous formula for 
differentiation under the integral sign. It is not a solution for this problem here and the 
reason is this is a summation. So it’s like writing e to power H at one instant and the 
following instants and adding them all up. There is no guarantee because of this property e 
to the A, e to the B is not e to the (A + B).  
 
Because H, at one instant of time may not commute with itself at another instant of time. 
Then you immediately run into problems. So this is not the formal solution. When we look 
at time dependent Hamiltonians, I will point that out. But the evolution still is unitary. Its 
still is true that you can write psi of t as U of t, t 0, psi of t 0 with this (Refer Slide Time: 
54:58) being a unitary operator with the semi-group property. It is a much more complicated 
formula it’s called a time ordered exponential and we will look at that a little later. So the 
formal solution to the Schrodinger equation looks fairly simply but it’s not all that simple 
because it involves exponentiation of the Hamiltonian and this is always a nontrivial task. 
You have to take a matrix and exponentiate it which is simple. But if you take a differential 
operator and exponentiate it, it becomes much more complicated. So that’s the basic 
problem in quantum physics that you need to find the exponential of the Hamiltonian. But 
that is nothing new because even in classical statistical physics or in any statically physics, 
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you have to find e to the power - beta H. So exponentiation of the Hamiltonian is in fact the 
fundamental problem both in equilibrium statistical physics as well as in quantum 
mechanics and it continues to be case in quantum physics theory. This is the reason for the 
mathematical commonality that you need to exponentiate the Hamiltonian theory.  What I 
will do next time is to start with this equation here and show you why the Hamiltonian plays 
such a fundamental role it’s called the time infinitesimal generator of time translations and 
we will see why it is so fundamental. 
 
It’s analogous to what it does in classical physics but in quantum physics, there is an even 
more fundamental role because it really controls the entire state of the system as you can see 
and we will see why. We still have to make contact with the classical Hamilton equations 
and see what are they are going to be replaced by. We replaced it by the Schrodinger 
equation but I would like to show that for physical observables there exist differential 
equations called the Heisenberg equations of motion. They are true analogs of the Hamilton 
equations of motion. 
Thank you! 


