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The space of square-summable sequences is denoted as l2. 
 
(Refer Slide Time: 00:01:09 min) 
 

 
 
All functions f(x) is square integrable rather than square summable and they are square 
integrable in the sense that mod f(x) whole squared dx is finite and this space is called L2. 
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(Refer Slide Time: 00:02:47 min) 
 

 
 
It’s called L2 (a, b) because the range is a to b but very often I am going to write L2 of minus 
infinity, infinity as just equal to L2 itself. So if I don’t say what L2 is, I don’t tell you and its 
understood that it runs from minus infinity to infinity. So the space of square integrable functions 
is going to be of very great importance to us in quantum mechanics. Of course one can 
immediately generalize it to higher dimensions. So you talk about three independent variables, 
functions of x y z and then I would write d 3r here and mod f of r whole square less than infinity. 
That would be L2 with three independent variables x y z.  
 
So this space is going to be of crucial importance to us and its linear vector space. It has very 
interesting properties which we will examine but you have to understand that the only 
requirement we put on the function which belongs to L2 is that it be square summable. It’s 
obvious that if you have minus infinity to infinity that a necessary condition for a function f of x 
to belong to L2 is that f of x should go to 0 as x tends to + or – infinity. 
 
That’s not sufficient but it’s definitely necessary. So immediately it implies that this function 
would die down at infinity sufficiently rapidly. How fast should it go to 0 as mod x goes to 
infinity for this (Refer Time Slide: 03:16) to converge? f (x) should tend to zero as mod x tends 
to infinity faster than 1 over x only then will this converge. 1 over square root of x is enough 
because you are going to square it. So it should go faster than 1 over x to the half. 
 
Of course in between it could have singularities but they should be integrable singularities. For 
instance, if f(x) at x=1 behaves like 1 over x – 1, this integral will not exist but if it behaves like 
1over mod x - 1 to the power of quarter or something like that, that’s an integrable singularity 
and things would be all right. So there is no requirement that it should be bounded. On the other 
hand, in physical applications when we apply to quantum mechanics, we will apply this to 
something called the wave function. We would require the wave function to be bounded. We are 
going to put an extra conditions on it based on physical requirements. 
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(Refer Slide Time: 00:04:49 min) 
 

 
 
Let’s look at L2. I look at this space of square integrable functions -1 to 1. Actually it doesn’t 
even have to be L2.It could be L1. It could be integrable and that’s sufficient. But the reason I use 
L2 is because it’s important in quantum mechanics and it enjoys a property which is enjoyed 
already by function in l2. This space is self dual. Its dual is also l2. In exactly the same way the 
dual to L2 is also L2. So the dual vector space would be essentially the same space once again 
which is similar to the property enjoyed by Euclidian space itself. L2 is a space of functions of a 
real variables x such that this condition is satisfied (Refer Slide Time: 05:56). What’s the dual to 
this space? It’s also a space of some functions. What are those functions? It’s a also self dual and 
therefore those functions must also satisfy exactly the same condition. How do you get those 
functions? It will turn out its fourier transforms. As you know Parseval's theorem actually in 
Fourier transforms tells you that this quantity is equal to integral dk - infinity to infinity mod f 
tilde of k whole squared where f tilde of k is a Fourier transformer of this function here. 
 
So this Parseval's theorem tells that the norm of a function of an element of this vector space is 
independent of the representation. It’s exactly the same no matter how you write it. so we will 
get back to this and see how Fourier transforms emerge in a natural way. Let’s look at L2 of -1 to 
1. So we will look at those functions of some real variable x defined between – 1 to 1 which are 
square integrables. Now as soon as we say – 1 to 1, it suggests that you are looking at functions 
of the cosine of an angle because cos theta runs from – 1 to 1. That’s the range of cos theta. and 
therefore we are looking at those functions which are functions of the cosine of some angle theta 
but let’s write it as L2 of – 1 to 1 of x and we look at all those functions which satisfy – 1 to 1 dx 
mod f of x whole squared less than infinity. 
 
Let’s restrict ourselves to polynomials and let’s try to find out what these functions are. Now the 
simplest polynomial I can write down is of course just the constant x to the power 0 and then I 
would like to use monomials to build up all possible polynomials. So I would like to use as my 
initial set of vectors. So I would like to represent psi1, psi2, etc by x to the 0, x to the 1, x squared 
and so on. Let’s start with x 0 and impose this condition. in fact the condition that is imposed is 
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slightly different for convenience. For instance let’s impose this condition and ask what’s – 1 to 
1 dx c0 and let me call it f 0 of x equal to some constant because x to the power 0 is 1 essentially. 
So what multiplied ah so some constant let’s call it c0 squared and let’s choose the mod to be real 
and this is =1. Let me initially choose normalization 1. This would imply that c0 = 1over root 2. I 
use Gram Schmidt orthonormalization to find c1. 
 
 (Refer Slide Time: 00:09:53 min)  
 

 
 
Then f1 of x can be of the form some ax+b in general. It’s going to be of this form it’s a linear 
function we have choose ax + b.  How do I find about a and b and the conditions I should 
impose? Since I am doing Gram Schmidt orthonormalization, I would like to have phi 0 phi 0 = 1, 
phi 1 phi 1 = 1and I would like to have phi 1 phi 0 to be 0. I would like to be orthonormal. 
 
And I know so my initial vector in the function space is x to the power 0 the other next vector in 
the function space is x to the power 1 but the most general possibility I can have is a combination 
of x to the 0 and x to the 1. So I must project out the portion of x to the one along x to the zero 
and that means I must try to find a and b such that this condition is satisfied (Refer Slide Time: 
11:16). So let’s put that in and see what happens. I need to have – 1 to 1 dx a x + b the whole 
squared to be equal to 1. That’s the condition here. 
 
And I would do also like to have the inner product of this function with the original function f 0 
of x to be 0. What’s this translated to function space what does this look like? This will be 
integral – 1 to 1 dx f1(x) f2(x) = 0. Phi 1 is represented by f 1 of x and phi o of x is f0 of x. i have 
restricted myself to real functions. Have I not done so, f1 of x would have become f 1 star of x 
because I do complex conjugate transpose.  This is the condition here but f 0 of x is just a 
constant its 1 over square root of 2. So we will remove that.  
 
 
 
 



 5 

(Refer Slide Time: 00:12:32 min)  
 

 
 
It’s got to be an odd function. so its clear that f 1 of x cannot have this portion the x portion 
would be integrated and give you a non-zero number.   
 
(Refer Slide Time: 00:13:09 min)  
 

 
 
And therefore f 1 of x is strictly proportional to x and then this goes away immediately. Therefore 
you get a squared x squared = 1 and thus we get f1 of x = square root of 3 over 2 x. 
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(Refer Slide Time: 00:13:32 min)  
 

 
 

Now we look for f 2 of x and f 2 of x is going to be some constant plus something times x plus 
something times x squared and you need conditions to determine these three constants. You need 
three conditions.  
 
(Refer Slide Time: 00:14:01 min)  
 

 
 
So they are integral – 1 to 1 dx f 2of  x f 0 of x to be 0, you want – 1 to 1 dx f 2 of x f 1 of x to be 0 
because I want phi 2 with phi 0 to be 0 and phi 2 with phi 1 to be 0 and in addition you want 
integral dx f 2 of x the whole squared = 1. And general form of f 2 of x is ax squared + bx + c and 
you have to determine a, b & c and these three conditions are sufficient to determine a, b & c. 
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It’s obvious from here that f 2 of x is an even function of x it’s immediately clear that f 2 of x 
therefore will have only the constant term and the x square term. Finally it is going to be 
something times x square and some constant here. You let me change the normalization. 
 
(Refer Slide Time: 00:15:19 min)  
 

 
 
Let’s call these functions P n of x. They are the Legendre polynomials and let’s write these 
functions such that the normalization is – 1 to 1 dx P n of x P m of x, where n and m multiple 
integers should be zero when n and m are different and when n and m are equal, it is 1 and you 
get a normalization constant. The standard normalization for historical reasons is 2 over 2n + 1 
delta nm. This is the normalization factor for the Legendre polynomials and if you recall P 0 of x 
= 1, then P 1 of x = x itself and P 2 of x = 3 x squared - 1 over 2 and so on.  
 
So these objects act as unit vectors in the space of functions which are square integrable between 
– 1 to 1 and therefore any respectable function which satisfies these conditions can be expanded 
in a Legendre function series of Legendre functions. So this in orthogonal polynomials is just a 
special case of the expansion of this arbitrary function in a linear vector space in terms of a basis 
set. And we ensured the basis set is actually orthonormal. The normalization is arbitrary and you 
could choose other things and so on. There are several things that have to be specified. The first 
is the range whether is it a to b, - 1 to 1, 0 to infinity, - infinity to infinity and so on. The second 
is the normalization factor. This factor here (Refer Slide Time: 18:03) that is chosen for 
convenience in specific manner. 
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 (Refer Slide Time: 00:18:26 min)  
 

 
 
It is symmetric. i write it like that right (Refer Slide Time: 18:50). It’s symmetric in n and m. 
[Conversation Between Students and Professor (00:19:05)] I i start by saying I am going to 
choose a basis out of polynomials so I am deliberately choosing the polynomial basis 
[Conversation Between Students and Professor (00:19:18)] any function which is not a 
polynomial it if it shouldn’t have singularities if its unbounded and so on this won’t work right if 
it’s a nice function a complicated function it doesn’t have to be a polynomial itself like e to the 
power x in idea one plus x plus x square and so on and so forth so it doesn’t have to be a 
polynomial itself but the interesting thing is we we will come across more examples of this 
 
So the factors that you have to look at in this range are the weight factor here and finally you 
might want to have functions we find in - infinity to infinity. Then of course the question of 
writing polynomials in there doesn’t arise because integrals will block. 
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(Refer Slide Time: 00:20:17 min)  
 

 
 
So you put a weight factor so its possible that you have a set of functions. it looks like - infinity 
to infinity d mu of x phi m of x phi n of x star = some An delta nm. So there should be some 
weight factor here and in then some normalization factor here and there is a measure here which 
ensures that the integrals are finite(Refer Slide Time: 21:43). A popular measure is a Gaussian 
measure. So you could put integral - infinity to infinity dx e to the - x squared that ensures that 
this thing goes to 0 multiplied by these polynomials here. You again start with x to the 0, x to the 
1, etc and impose these conditions and you get a unique set of polynomials called Hermite 
polynomials.  
 
(Refer Slide Time: 00:21:50 min)  
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There might be instances where you would like to work from 0 to infinity. For example, it could 
be a radial coordinate or something from 0 to infinity. So you could have 0 to infinity n e to the –
x. There is no need for - x squared now because it’s only going from zero to + infinity. Whereas 
in the other case you need a - infinity so you could have x squared and these polynomials are 
called as Laguerre polynomials.   
 
I start by saying I am going to form this basis set out of polynomials.  So the way to construct 
polynomials is to use the monomials x to the 0, x to the 1, x to the and so on and I will form 
linear combinations of these to give me my orthogonal vectors. The statement is that once you 
are given a function, a linear vector space and a basis in that space, then the statement is a 
function can be uniquely expanded in a unique manner. 
 
Every element of this vector space can be expanded in a unique manner in this basis set. That’s 
the theorem in the vector space. Let’s now look at general expansions. i just want to give you 
instances of these basis sets. By the way even the Fourier transform of a function is really writing 
a function in a basis set.  
 
(Refer Slide Time: 00:23:56 min)  
 

 
 
If you have a periodic function of a real variable such that f of x + period lambda equal to f of x. 
the lambda is generally taking to be 2 pi or something like that. Then you write this (Refer Slide 
Time: 24:26) whole thing in a Fourier series. You can always expand it in the form f (x) = 
summation n = 0 to infinity (an cos nx + bn sin nx). So let’s take two pi to be the period. now 
what you are doing here is to say that a function which is periodic can be expanded in a Fourier 
series such that the basis set consists of the functions cos nx and sin nx, where n runs over 
0,1,2,3,etc ,the coefficients are the components of the vector which is represented by the function 
here. So that’s the way to understand it.  
 
This is the vector in a certain function space which is a linear vector space. these are the unit 
vectors in that space they are the basis set and this and that are the components of this vector( 
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Refer Slide Time: 25:12). Now just as the components uniquely determine the function, in 
exactly the same way, if the idea here, subject to certain conditions, once you can make this 
expansion instead of specifying the function f (x) I could specify the coefficients an and bn and 
that specifies the function. Why do I choose n = 0 to infinity and not - infinity to infinity? It’s the 
same this because sin and cosine are definite parity properties and therefore it’s exactly the same 
thing. I could have written this also as summation n = - infinity to infinity, some coefficient cn 
and e to the power n i x. Then I combine cn and c - n in an even and odd combination and I call 
them an and bn.  
 
So this is so for periodic functions. If the function is not periodic, if f of x is defined from - 
infinity to infinity and is not periodic then I cannot expand it in a Fourier series but I can still 
expand it in the Fourier integral. So you could still write even without this condition. 
 
(Refer Slide Time: 00:26:36 min)  
 

 
 
This can be written as f (x) =integral – infinity to infinity dk e to the ikx f tilde (k). Now what’s 
the basis set of vectors? It’s a continuous basis labeled by k. it’s labeled by n here (Refer Slide 
Time: 27:08) but it’s a continuous variable so you need an integration over k and these (Refer 
Slide Time: 27:19) are like the unit vectors. Those are like the unit vectors and then f tilde of k 
are like the components which itself is a function and turns out that the components of f (x) is in 
L2 .then f tilde of k is also an L2 but for writing a Fourier transform you don’t need the function 
to be in L2. The condition for a function to have a Fourier transform of this kind is f of x should 
be integrable. It should be in L1. But then there is no guarantee that f tilde of k is also in L1 
because it’s not self dual in general. 
 
In fact we know from the theory of Fourier transforms that if f of x is very compact in a finite 
range then f tilde of k will have all possible k’s. It will be a function which is not compact. And 
the tighter f of x is, the broader f tilde of k is. The ultimate of course is reached then f of x has a 
support only at one point, a delta function. What happens to f tilde of k? From - minus infinity to 
infinity it’s just constant.  
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So Fourier transforms enable you to actually expand functions which are more than even 
generalized functions like distributions like theta functions, delta functions and so on. But if this 
is in L2 then so is that also in L2. What’s the orthogonality relation in the space of functions 
which are integrable? Let me give some examples. 
 
Suppose I have a set of functions fn of x where n =0,1,2,3, etc which forms a basis in some 
function space say L2 is 0 to – 1,-1 to 1,etc or whatever. Let us suppose this is an orthogonal 
basis orthonormal basis what’s the orthonormality relation? Let me write down the general cases 
here phi n phi m = delta nm and summation of n phi n phi n =1. 
 
(Refer Slide Time: 00:30:03 min)  
 

 
 
The former is orthonormality and the latter is completeness. I need to impose those conditions in 
the function space and the function space has a basis f n(x) and say some range a to b. what’s the 
orthonormality relation clearly it will be an integral dx fn *(x) fm (x) from a to b = kronecker 
delta. 
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(Refer Slide Time: 00:30:26 min)  
 

 
 
This is orthonormality. What’s completeness? Well remember in completeness you have to now 
not integrate it I mean this quantity here (Refer Slide Time: 31:10) was defined in this fashion 
here as an integral. I need to have the unit operator appearing but the unit operator in function 
space is such that when it acts on any function it reproduces the same function at every point. So 
what should be the analog of this (Refer Slide Time: 31:34) relation here? It will be summation 
over n fn*(x) fn(x prime) = delta (x-xprime). If I take the right hand side and integrate over an 
arbitrary function psi of prime, I am going to produce psi of x. so it is the analog of the unit 
operator isn’t these two  
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(Refer Slide Time: 00:32:53 min)   
 

 
 
If I take an arbitrary function do dx prime delta x - x prime, this is meant by saying a unit 
operator acting on the function space produces the same function once again. So this quantity 
here plays the role of the unit operator and function space. This is completeness. The summation 
is over the argument here (Refer Slide Time: 33:34) and the summation is over the index here 
(Refer Slide Time: 33:36). 
 
The arguments are different and they produce the analog of the unit operator in function space. 
So you have to check both these relations when you have an orthonormal basis, then I mention 
that these two are different properties but when translated to function space this is what they look 
like. You might have noticed that when you look at the orthogonal polynomials not only do you 
have this condition but you also have something where you have sum over n for example so 
summation Pn (x) Pn Pm of x prime gives you something times the delta function on the right 
hand side. From the theory of differential equations of second order, that itself is part of a more 
general relation and this is absolutely beautiful. If you look at the Legendre differential equation 
for example, you know it has two independent solutions. One of them is a Legendre polynomial 
and the other one is not a polynomial at all. The other one is got a singularity -1 and 1 and has 
got logarithmic singularities.  
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(Refer Slide Time: 00:34:57 min)  
 

 
 
So this Pl of x and the second solution of the Legendre function are called Ql of x. It’s a 
polynomial plus a portion which looks like log 1-x over 1+x.  So it has logarithmic singularities 
either two end points.  
 
(Refer Slide Time: 00:35:28 min)  
 

 
  
Then it turns out that if you do a summation over l Pl of z and Ql of zeta where l and zeta are 
complex variables, this quantity here (Refer Slide Time: 36:30) is 1 over z -zeta which is called 
the Cauchy- Kernel. Now if you take this function, it has got branch points between -1 and 1 and 
you take the discontinuity across the branch point, then it becomes the Pl. the discontinuity of a 
Ql is a Pl and so on.  I write zeta = (x + i epsilon) (x – i epsilon).  
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(Refer Slide Time: 00:36:33 min)  
 

 
 
We can always write 1 over x-x0 = the principle value 1 over x- x0 - i pi delta (x-x0). A function 
which of a complex variable f of z where z = x + iy and I write f of z as u + iv and u and v must 
satisfy certain conditions for it to be an analytic function. then those conditions are called  
 
All these functions you studied must all be regarded as functions of complex variables. That’s 
the right way to look at it. Then things become easy for example I start with the exponential 
function, I take its symmetric and antisymmetric parts. Those are cos hyperbolic and sin 
hyperbolic. Its analytic continuation to pure imaginary values gives me cosine and sin. So the 
trigonometric and hyperbolic functions are just analytic continuation of each other. Tan inverse 
in the log functions are all related to each other etc.  
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(Refer Slide Time: 00:39:36 min)  
 

 
 
This stands for principle value (Refer Slide Time: 39:34). So you have integration over some 
function and that happens to be a singularity at x0 you could come along here and if you go either 
this way and avoid it or you could go this way and avoid it and they would correspond to these 
two points here. (Refer Slide Time: 39:49) 
 
So the imaginary part is in fact this because you see if I do this or this, I either get +i pi or – i pi 
by Cauchy’s rule. So the difference between the two is like going around fully and that’s equal to 
2 pi i times delta. So it’s a trivial way of understanding why you get a minus i pi there but if I did 
that and took the imaginary part here, the discontinuity I get a delta function which gives me that 
completeness relation between Pl. so this gets replaced by a Pl and this is called the Miller 
formula. This is called the Cauchy- kernel (Refer Slide Time: 40:26). This kind of mathematics 
is classical mathematics but it is a very interesting and very important in various applications.  
 
so these are all there is a very unified theory of these things now and so well established over a 
hundred and fifty years ago more than that but they help you a lot this so all these electrostatic 
problems you solve fluid mechanics and so on and so elasticity and so on there all very easily 
very comfortably understood if you have someone ah analysis complex analysis. Now let me 
come to expansions. We will come back to the general case and state a few results. 
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(Refer Slide Time: 00:41:40 min)  
 

 
 
If phi n is an orthonormal basis in the linear vector space given a basis every vector psi which is 
an element of V can be uniquely expanded as in the following form. Psi = summation over n cn 
phi n. so that’s the statement and this could be an infinite dimensional space so in general in 
linear combinations. The inversion formula would be to find the coefficient cn in terms of this 
psi.  
 
His question is is it guaranteed that each of these for arbitrary cn’s is inside. So we will look at 
an infinite dimensional space and then put a condition on this. So all I have to do to find cn is to 
put a scalar product on this side with some phi m and when n=m, it will result in cn. So this will 
immediately imply that phi m psi = cm. Please notice we are going to look at complex vector 
spaces therefore the vector you expand is the ket vector. So the coefficients will have this as the 
ket and this as the bra here (Refer Slide Time: 44:00). It’s a complex conjugate if you write it the 
other way around. So specifying these coefficients is equivalent to specifying this psi. But of 
course there is nothing that tells you that you must have the unique basis. There are many basis. 
So let us suppose that there exist another basis on the same space which are chi i is also a basis in 
this space. Then the same vector psi could be written as summation over I, a different coefficient 
di chi i. All you must make sure of is that the dimensionality of the space is fixed. so if its finite 
dimensional say 24, then this will run to 24 values this will also will run to 24values (Refer Slide 
Time: 44:55). This will imply immediately that that chi j with psi equal to dj. 
 
You may very frequently want to change from one basis to another. What’s the relation between 
the cm’s and the dj’s? Well what I would do is to take this basis and say each of these (Refer 
Slide Time: 45:40) fellows can be expanded in that basis obviously. So let’s do that. 
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(Refer Slide Time: 00:45:43 min)  
 

 
 
Let’s write chi i  itself to be =  summation over m ket phi m  and a coefficient h for which should 
depend on i and m. then it’s clear that h mi is nothing but the overlap by phim with chi i.  
 
(Refer Slide Time: 00:47:09 min)  
 

 
 
Now if I plug it into this place here, chi i will be summation over i summation over m hmi di phi 
m. all I did was to substitute for chi i from that thing. Well I would like to compare that with this 
here Refer Slide Time: 47:45) and they are just the sums with respect to phi m’s and therefore I 
can equate coefficients by coefficient. 
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(Refer Slide Time: 00:47:53 min)  
 

 
 
I have phi n here. So let me change this dummy index to n and I could write this a summation 
over n summation over i h ni di .this whole thing is sum function of phi n. So I take an arbitrary 
vector in this space, expand it in the phi basis and the chi basis but each of the chi basis vectors 
can be expanded in the phi basis. 
 
I put that expansion in and now since this (Refer Slide Time: 48:43) is an orthonormal basis set, 
this is equal to that implies that coefficient by coefficient they are equal. So it immediately says 
that cn = summation over i h ni di. So it relates one set of coefficients to another set of coefficients 
but that relation could have been written down by inspection. It says that cn is phi n with psi and 
that’s = summation over i h ni but h ni is phi n chi i with di but di is chi i.  But there is no i here 
there is no I, there this i here. Therefore I can take this summation inside. 
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(Refer Slide Time: 50:16 min)   
 

 
 
This chi is the unit operator by completeness which therefore this is equal to phi n and psi. It’s an 
identity. So if we want to go from one basis to another, all you have to do is to insert the identity 
in between. We work this backwards and then you arrive at this relation. So it tells you how 
powerful this insertion of the identity is any time I want to change a basis or insert the identity in 
that basis.  
 
I do it repeatedly in a long calculation in 8 different places I inserted different basis and so on but 
I can’t go wrong because everything is in terms of the unit operator and this is completely a self-
correcting kind of notation. You can’t make a mistake in doing this but only thing you have to 
remember is that when you expand a vector, please remember that the coefficients have the 
vector as a ket and not as a bra is otherwise it complex conjugates and that’s the only crucial step 
you have to remember. Now suppose this is in L 2 space and it’s clear that these things here must 
have finite norm. 
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(Refer Slide Time: 53:13) 
 

 
 
Once I make this expansion, this implies that psi with psi = norm of psi whole square = 
summation over n cn squared.  Bra psi implies immediately that this is = summation over m cm * 
phi m. now I want to find what is psi with psi so I take this and I apply to the left of ket psi and I 
get a phi n phi m which is a Kronecker delta. So only n = m is going to be picked out and this is 
equal to summation over n cn whole squared. 
 
So this is equivalent to saying that if I have a linear vector space in which I look at all vectors 
with finite norm, that’s the same as saying that is I expand it in a discrete basis of this kind then 
the coefficients in discrete basis belong to l 2. They must be in square summable. Now this tells 
you the importance of the space l2 because every time I have an arbitrary linear vector space and 
I say I am going to look at all vectors with finite norm, then it automatically implies that when I 
expand these things in an orthonormal basis the coefficients would belong to l2. 
 
They have to be finite and it has to be square summable. That’s the condition you need and this 
statement is independent of basis because this (Refer Slide Time: 54:04)will also be = 
summations over i mod di whole squared.  
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(Refer Slide Time: 54:01) 
 

 
 
In fact this is Parseval's theorem which says if you expand a function or you expand it in terms of 
Fourier coefficients, both of them would have exactly the same norm or the function would have 
to same norm.  
 
(Refer Slide Time: 55:41 min)  
 

 
 
If you have a function space which is l 2 of -1,1and I write some function of theta = summation 
over l=0 to infinity, some cl Pl cos theta where theta is running from 0 to pi and then I expand it 
in terms of the Legendre polynomials, then this is the expansion and the inversion formula here 
which gives you the coefficient cl = one half integral -1 to 1 d (cos theta) f of (theta) Pl cos theta. 
I should really write Pl star of cos theta because its bra vector but this is a real function and 
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therefore we write this as Pl cos theta. That’s the inversion formula. The Fourier inversion 
formula is also trivial. Here is the function expanded. I would like to invert it. On the other side 
this is an integral - infinity to infinity dx e to the power – ikx. And you put a 1 over 2 pi. The 1 
over 2 pi comes from the orthogonality relation. 
  
(Refer Slide Time: 00:57:04 min)  
 

 
 

Different books follow different conventions. You would sometimes have a minus here (Refer 
Slide Time: 57:47) and plus there but it doesn’t matter. You sometimes have a 1 over 2 pi here 
and nothing there and sometimes have a 1over square root of 2 pi here and one over square root 
of 2pi there to make it look symmetrical and so on but it doesn’t matter. You have stick to one 
convention to do this. 
 
The next thing to do is to look at operators but that’s really where the real stuff is. So we will 
define tomorrow what’s meant by linear operators in a linear vector space and then we have to 
talk about the size of an operator, norms of an operator, the domain, and the range and so on. 
Thank you! 


