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We now continue with our preliminaries regarding linear vector space. I would like to 
introduce the idea today of basis set in a linear vector space. For that, you need two 
concepts. One is that of linear independence.  
 
(Refer Slide Time: 00:01:24 min) 
  

 
 

I say a vector is linearly independent of another set of vectors if the former cannot be 
written as a linear combination of the later. so phi1, phi r are linearly independent if the 
equation a1 phi1+ etc… + ar phi r =0.  This equation implies that a1= 0= a2 = ar. The only 
way we can satisfy this linear equation is we 0 the coefficients. Then you say that this set 
of vectors is linearly independent. This is a crucial concept in linear vector spaces that a 
linear independence. If such an equation has a solution with non-zero coefficients, then 
you say there are linear relations between these vectors and some of them are linearly 
dependent on the others.  
 
In particular, if you have just two vectors, a1 phi1 + a2  phi2 = 0, it implies that phi1 is –a2 
over a1 times phi2. In another words, in geometrical language you would say the two 
vectors are along the same direction. So that’s the first concept. The second thing you 
need in order to define concepts such as dimensionality and so on is that of the span of a 
set of vectors. A set of vectors in a linear vector space is said to span the space if every 
vector can be written as a linear combination of these vectors. 
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So again let me say phi 1 ….. phi n span the linear vector space V if and only if any vector 
in V can be written as a linear combination of these vectors. So this is the idea behind a 
set of vectors spanning this space. Any vector in that space should be writeable as a linear 
combination of these given vectors. The set of vectors spans this space. These are 
independent concepts. One should confuse one for the other. For example, in ordinary 
three dimensional Euclidian space, ex, ey are unit vectors in the x and y directions. 
 
(Refer Slide Time: 00:04:44 min) 
 

 
 

They are linearly independent of each other because ex is certainly not a multiple of ey but 
they do not span R3. ex, ey and ez span the space and are also linearly independent. None 
of them can be written as a linear combination of the other two. Here is a set ex, ey, ez, ex+ 
ey which spans the space R3 but are not linearly independent. How about this set ex, ey + 
ex, ez + ey + ex? Do they span the space? Yes they do and are they linearly independent? 
Yes they are linearly independent. What’s the difference between this set and this set 
here? (Refer Slide Time: 07:18).they both span R3 and they are both linearly 
independent.  
 
One set is orthogonal and the other set is not orthogonal. It’s like choosing oblique 
coordinates in three dimensions. This is like saying I choose the x axis, this vector ey+ex 
here which is a 45degree line in the xy plane and ex+ey+ez is at an angle to the xyz axis. I 
choose this sort of a set of axes. So it’s possible to have the set of vectors which span the 
vector space and are linearly independent but are not orthogonal. There is another 
difference between these 2 sets of vectors. They are not normalized. The magnitude of 
ey+ex is not 1 or this vector ez+ey+ex is not 1. You can normalize these vectors trivially. 
Vector ey+ez over root 2 and vector ez+ey+ex normalizes them. They are normalized to 
unity but they are not orthogonal. Now if there were both normal normalized to unity 
each of them and orthogonal then that would be like a Cartesian basis.  
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(Refer Slide Time: 00:09:04 min) 
 

 
 

So a set of vectors that are linearly independent and span the LVS forms basis of the 
basis set. So whenever I say here the set of vectors form a basis in this a vector space, I 
mean a set of vectors that both spans the space and are also linearly independent each of 
other. So both are needed and I just showed you that these are not the same property. 
They could be mutually exclusive in some sets. They could be an example where one 
excludes the other. 
 
So linear independence does not imply span and vice versa. You need both of them in 
order to form a basis. If in addition, the basis consists of mutually orthogonal vectors 
whose scalar products of different vectors is 0 and each of them has  magnitude 1, then 
we call it an orthonormal basis. Orthonormal basis is where each vector has magnitude 
unity and different vectors from the basis set have zero scalar products. So I would write 
this as phii phij = deltaij. 

 
Now I go to abstract notation. These are the inner products. The inner products are zero if 
i is not equal j and equal to 1 if i is equal to j. So if the magnitude of the vector is unity 
then I say it’s an orthonormal basis. I will very frequently use orthonormal basis sets but 
have other kinds of basis sets. We need to ask how many such vectors are needed. The 
number of vectors in the basis set in the linear vector space is called the dimensionality of 
this base and that’s unique. For example, in three dimension Euclidean space you need 
three mutually linearly independent vectors which span the space in order to form a basis. 
That basis is not unique. This one is not an orthogonal basis. This one is but the number 
is three each case. So that gives you the concept of dimensionality of the linear vector 
space. 
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Given a non-orthogonal basis, we can always make it an orthogonal basis in construction 
which I will show. But the number is fixed for every linear vector space. If it turns out 
that you don’t you have a finite basis, for any n there are vectors which are not in the 
span of the vectors which are already written down. Then you say this space has infinite 
dimensional. So an infinite dimensional space is one which doesn’t have a finite basis set. 
Is R2 an infinite dimensional vector space? No when there is infinite number of vectors 
in R2 but every one of them can be written in terms of a linear combination of two non-
collinear vectors. Rn is n dimensional and if you cannot find a finite basis set no matter 
how large n is, then you say this basis is infinite dimensional. It’s like having a space 
with an infinite number of independent directions. If you look at R1ex forms a basis 
because any vector in R1 can be written as a number times of ex, positive or negative. 
 
That’s a linear space but it has only one independent direction, the x axis. But we are not 
talking about an infinite dimensional space. Then you got to be a little careful. It’s not 
obvious that all the things that you do for ordinary linear vector spaces would work in an 
infinite dimensional space. Here is what can go wrong. So let’s look at Rn and try to 
make it R infinity by increasing the number of entries.  
 
 
 
 
 
 
 
 



 5 

(Refer Slide Time: 00:16:05 min) 
 

 
 

So any element of Rn you could write in the form x1, x2… xn. This is equal to say phi. 
Then phi with phi is equal to norm of the vector squared by definition and that is equal to 
a summation from i= 1 to n xi mod squared. If the x’s are in real vector space, then this is 
just xi squared. This is sum of the square of the length of the vector in n dimensional 
Euclidean space. Now of course I would like to make this infinite but then there is not 
guarantee this converges. I would like have vectors of finite length. 
 
So this is not at all clear that this will converge when n goes to infinity. If it doesn’t 
converge this doesn’t make sense. When you add to infinities you get another infinity and 
so on. So I have to put in the condition that the vectors have finite length. To do that we 
would have to say that in R infinity, namely the space of sequences; x1, x2, x3, up to xn 
where n tends to infinity should be such that this quantity converges when n tends to 
infinity. 
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 (Refer Slide Time: 00:17:40 min) 
 

 
 

Then you require that you have a space in which i=1 to infinity xi mod squared is less 
than infinity is finite. Then we can speak of respectable vector space of infinite 
dimensions with denumerable components x1, x2, x3, x4 all way to infinity but you require 
this to be finite. So it’s a simple matter to prove that this is needed for the triangle 
inequality, the Cauchy-Schwarz condition to be true and so on. This space has a special 
name. This is the linear vector space of square-summable sequences and it’s denoted by 
l2. Then the triangle inequality is valid. Consider (x1, x2, etc) = say (1, 1/ root 2, 1/root 3, 
1/root 4, etc). Is this an l2? If I sum this, I square it first and sum it. 1+ 1/2+ 1/3+1/4 and 
so on is a harmonic series and this diverges. So it’s infinite. So this is not an element of 
l2.  
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Now consider xr= 1 over r power. This will be in l2 only when epsilon is greater than half 
uh because when you square it you get 1 over 2 epsilon and that number 2 epsilon must 
be greater than 1 for it to converge. What happens if you have xn = log n over n to the 
power 0.6? Is this going to be in l2? 
 
(Refer Slide Time: 00:20:52 min) 
 

 
 

Remember in the denominator when square you get n to the power 1.2 which is greater 
than 1. So if you didn’t have a numerator it would of course converge but you have log 
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on top and log infinity of course is infinity. So is this convergent? Yeah it is. All of 
calculus can be summarized in one line. The log is weaker than a power and the power is 
weaker than an exponential. Certainly this converges and is very much in l2. How about 
xn = (log n) power 100 over n power 0.6? This will converge no matter what you raise it 
to. All you have to do is test this convergence of these quantities and then once it is valid, 
this is true. 
 
(Refer Slide Time: 00:21:54 min) 
 

 
 

Now we are going to use square summable sequences. One of the reasons for doing so is 
that you can actually generalize this. You could ask why I have to do this. I could define 
norm in a slightly different way. I could for example, instead of writing the norm of a 
vector as equal to this (Refer Slide Time: 22:27) to the power half which is what the 
norm would be because a square of it is this. I could put a p here and put 1 over p where p 
is some positive number. I can define the norm of this kind. This would be l p. I should 
probably write subscript 1 over p or something like that depending on the notation. The 
advantage of l two is that itself dual. The dual space is also the space of square summable 
sequences but the space lp is not self dual.  
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(Refer Slide Time: 23:42 min) 
 

 
 
The dual to lp is lq where 1 over p + 1over q = 1. So if you improve in p, you go down in 
q and so on. So the only one which is self dual is when p=q=2. So we will restrict our 
attention to l2, square-summable sequences. There is another physical reason for it 
because in quantum mechanics you are going to give a probability interpretation to the 
various inner products and so on and they naturally involve l2 in the natural way. Hence 
we will not talk about p summable sequences.  So we can define an infinite dimensional 
space in this form. Now let’s ask what the advantage of writing a base is. First let me 
show you that if you start with an arbitrary basis which is not orthonormal you can make 
it orthonormal always. That’s like starting with oblique coordinates in two dimensions, 
three dimensions, etc and then saying I am going to make it an orthogonal set. 
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Now what you do in a plane for example, we are stuck with the oblique coordinates? the 
way you would make it orthogonal is to choose the first vector and call that unit vector in 
one direction and then take the second vector, project it down to this direction (Refer 
Slide Time: 25:22). And then I get rid of this part of it which is already included in the 
first direction and use this direction as the orthogonal vector and normalize it suitably. So 
this procedure done systematically starting with the 1st vector, 2nd, vector, etc is called 
Gram-Schmidt orthonormalization. 
 
(Refer Slide Time: 00:25:40 min) 
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And it says suppose you are given with psi1 to start with the first vector and then choose a 
phi1 = psi1 divided by the norm of psi one. Then remember that this is equal to psi1 
divided by psi1 with psi1to the power half. So you first you normalize it. This guarantees 
that the inner product of phi1 with itself is unity.  
 
 (Refer Slide Time: 00:26:39 min) 
 

 
 
When you take the second vector psi2 and you subtract from this psi2 the portion of psi2 
that’s along phi1. This would be phi1 with psi2 which is a component and the vector phi2. 
Phi one with psi two the side you subtract this portion out and you normalize the whole 
thing. Now that ensures this vector which I now call phi2 is normalized to unity and 
moreover is orthogonal to phi1. 
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(Refer Slide Time: 00:27:51 min) 
 

 
 
So this will guarantee that phi1 phi1= 1= phi2 phi2 and moreover phi1 phi 2 = 0. Now once 
I got phi1 and phi2, I take psi3 and subtract from it the component of psi3 along both phi1 
and phi2 and I normalize the whole thing. So in this systematic way I end up with a set of 
vectors phi1, phi2, etc which would really be the original vectors psi1, psi2 and so on with 
portion subtracted such that it forms an orthonormal basis. Notice what has gone on here 
(Refer Slide Time: 28:53) in this case. What I did was to say psi 2 is a vector. Here was 
psi1 symbolically and this has some arbitrary length. So I divide by its norm and then I 
created this vector phi 1. 
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(Refer Slide Time: 00:29:08 min) 
 

 
 
This is phi1 by dividing by its length that’s a unite vector now. And then I had a psi2 and I 
took the dot product of psi2 with phi1 on the left hand side. That essentially is this portion 
and I subtracted that out. So what was left out was this vector (Refer Slide Time: 29:45) 
and then I normalize that vector to unity. So this became phi2 and so on. So this is all I 
did in this orthogonalization procedure. What you have to note is that to remove the 
portion of this vector (Refer Slide Time: 30:01) along the vector phi1, what I did was to 
take a dot product with phi1 on the left hand side and then I multiply by the unit vector 
phi1here. 
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 (Refer Slide Time: 00:30:19 min) 
 

 
 
So what I have tacitly done is to use the fact that if you give me any vector psi and I take 
any other unit vector phi then this object here applied to this vector psi (Refer Slide Time: 
30:40) from the left projects that portion of psi which is along the unit vector phi. So if I 
act on the vector psi from the right hand side, this is nothing but phi by psi which is just a 
complex number. You can remove it to the left or right. So it’s a coefficient multiplied by 
unit vector here. 
 
Given a set psi1, psi2, etc I would like to create an orthonormal set and I called that set 
phi1, phi2, etc. What I am given is a set of vectors which are not perpendicular to each 
other. What I am creating is a set which is perpendicular to each other. I will continue to 
use phi as far as possible for orthonormal base sets. And the reason is I am going to use 
symbol phi for arbitrary state vectors of quantum mechanical systems. So I don’t want to 
confuse it with basis vectors. The point I made here was that these objects are different 
objects. This vector should be identified with a column vector of some kind. This is not a 
column vector (Refer Slide Time: 33:40). 
 
This object is a complex number and whether you write column vector times number or 
number times column vector doesn’t matter and therefore I moved it here.  On the other 
hand, if I identify this with the a column vector and this with a row vector this 
multiplication here is column on the left row on the right. So what sort of object is this? 
It’s a matrix because if this is represented by a column vector with n rows and one 
column then this psi here (Refer Slide Time: 34:43) is an n by one matrix. Its n rows and 
one column. This quantity here (Refer Slide Time: 34:58) on the other hand is a one by n 
and this here is n times one. So this is an n by n object this goes away and it’s an n by n 
matrix and it acts on a column vector to produce a column vector once again in the left. 
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So objects of this kind (Refer Slide Time: 35:20) are to be identified with operators. They 
act on vectors and produce other vectors. So this gives us a first introduction to the very 
important idea that in a linear vector space you have, in addition to the vectors, another 
set of objects called operators and these operators would act on the vectors and produce 
other vectors. 
 
A good way of remembering how beautiful this notation is ket vectors are like column 
vectors, bra vectors are like row vectors and if you put bra on the left and the ket on the 
right, you get a number but if you put the ket on the left in the bra on the right you get an 
operator. Now of course it does in a given linear vector space even this (Refer Slide 
Time: 36:15) is an operator. 
 
(Refer Slide Time: 00:36:17 min) 
 

 
 
Psi 1 psi 2 does not have to be the same on both sides in a given vector space with a 
certain dimensionality. You have to take a ket vector and take a bra vector and if the 
spaces are same dimensions, they make an n by n object like a matrix. so such quantities 
are operators but in the special case in which psi1= psi2= phi, this operator is a very 
special operator because you have a ket vector and the same bra vector on this side and 
when it acts on other ket vectors, it projects out the portion of that ket vector along this 
vector. So it’s called a projection operator.  
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(Refer Slide Time: 00:37:20 min) 
 

 
 
So this object phi n phi n is a projection.  That’s what you do when you take an arbitrary 
vector in three dimensional spaces. Let me write it in terms of the familiar notation i,j,k. 
If I have V = V1 i + V2 j + V3 k, how do I find the coefficients V1, V2 and V3? I take i dot 
the vector because I know this is an orthonormal basis. So I dot j= 0 and I dot k =0 and 
what I am really doing is to take i dot V on the left hand side and that’s guaranteed to 
give me V1. 
 
(Refer Slide Time: 00:38:36 min) 
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In abstract notation the same thing would look like some vectors psi = V1 phi 1+ V2 phi 2 
+ V3 phi 3 and I want to find out what’s V1 here and given the orthonormality relation phii 
phi j= delta ij and this is an orthonormal basis. To find V1, I have to take the dot scalar 
product with phi1 and psi which would give V1 because phi1 and phi2 is 0 and phi1 and 
phi3 is 0. Normally we are used to calling components of vectors as vectors themselves 
which is not true. V1, V2 and V3 cannot be called as components of the vectors since 
components mean a part of the vectors and the parts of a vector can only be vectors. So I 
should I call the entire V1 phi 1 and so on as components. To get the components, I do 
phi1 phi1acting on the vector psi. And what does this give you? Well when phi 1 hits this, 
it gives you one. When phi1 hits psi, it gives a V1 and what we are left with is a ket phi1. 
So we really have phi 1 V1 which is the same as V1 phi 1. So the projection operator is this 
(Refer Slide Time: 40:45). In three dimensional vector space, very often in addition to dot 
product and a cross product, in the olden days there used to be quantities called dyadic or 
tensor products. 
 
(Refer Slide Time: 00:40:58 min) 
 

 
 
So they would actually write the projection operator as i i. the idea is that if you took ii 
and doted with V on the right hand side, you get V1 i and of course you immediately see 
that once I take up a vector and project along all directions, I get the vector itself. So it is 
obvious that this is a projection operator and it has following properties. Let’s call the 
projection operator as Pn. so Pn squared will be twice the operator. Once you take a vector 
and project along the x axis and you project again, you are just going to get nothing new. 
It’s going to be itself. Pn squared should be Pn itself and indeed that is true because all 
you have to do is write it twice together.  
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(Refer Slide Time: 00:42:47 min) 
 

 
 
What happens if you took a summation over phi n phi n? This is going to produce some of 
all the components of this vector. In other words it’s going to produce the vector itself. So 
this is equal to the unit operator. The unit operator is something which when applied to a 
vector reproduces the vector.  
 
(Refer Slide Time: 00:44:07 min) 
 

 
 
Another interesting property is for example, Pn squared is Pn. So Pn (Pn – 1) = 0. 
Imagine Pn is an some finite dimensional vector space and matrix squared is equal to the 
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matrix itself, such a matrix is called as the idempotent matrix where if you square it, you 
get itself. So the Eigen values of the projection operator are 0 or 1. So we are going to use 
two very crucial properties of orthonormal basis in linear vector spaces 
 
(Refer Slide Time: 00:45:43 min) 
 

 
 
The first one is orthonormality and the second one is a set of projection operators and this 
is called completeness. For example let’s look at a two dimension linear vector space.  
 
(Refer Slide Time: 00:47:07 min) 
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In this two dimension vector space, I would like to represent the unit vectors along the x 
and y directions by column vectors. This is a representation on the right hand side this is 
the abstract vector. In a two dimensional space, the natural thing to do is to use column 
vectors with two rows and one column. phi2 is zero one and that’s a y direction. It’s 
immediately clear that the inner product of phi1 with phi2 is 0 and phi 1 phi 1 is 1. So phi i 
phi j = delta ij is satisfied. Now let’s ask what the projectors look like. 
 
(Refer Slide Time: 00:48:08 min) 
 

 
 

Now phi 1with phi 1 has to be a matrix. This would give a 1, 0 0, 0. You can also have 
phi 2 with phi 2 which would result in the matrix 0, 0 0, 1. 
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(Refer Slide Time: 00:49:07 min) 
 

 
 
So this satisfies the completeness rule since the sum of phi1 phi1 and phi2 phi2 gives you a 
unit matrix. 
 
(Refer Slide Time: 00:49:31 min) 
 

 
 
 Phi 1 with phi 2 will be a 2 by 2 matrix. This is also an operator but not a projection 
operator.  This is equal to 0, 1 0, 0. Now phi2 with phi1 will give a 0, 0 1, 0. 
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(Refer Slide Time: 00:50:38 min) 
 

 
 
 
Now you know that any 2 by 2 matrix in the natural basis, if I write a b c d, this 
represents an operator because it acts on column vectors and produces another column 
vector. So it’s a general operator but this general operator is shorthand. This is shorthand 
for a times 1,0,0,0 + b times 0,1,0,0 + c times 0, 0, 1, 0 + d times 0,0,0,1. So it’s clear that 
these four matrices are forming a basis in the space of operators which act on the vectors 
of your original two dimensional linear vector space. Let us denote a as a11, b as a12,c as 
a21 and d as a22. So it’s a11 phi1 phi1 + a12 phi1 phi2 + a 21 phi2 phi1+ a22phi2 phi2.  
 
This is an explicit matrix representation and these are abstract operators (Refer Slide 
Time: 52:45). When I provide a basis of this kind an orthonormal basis not only can I 
write every vector as a linear combination of these unit vectors but I can also represent 
operators on these vectors in the natural basis which is the set phi i phi j. Just as the set of 
vectors phi i or phi j, the ket vectors form a basis. The set of operators ket phi i bra phi j 
where i and j run over all the possible values. They form a basis for expanding operators. 
Now you begin to see why a11 is called the matrix element. The reason is you could write 
this term as phi1 a11 phi1. How do I find a11 given an arbitrary vector psi? The way I find 
its component along any of the unit directions is to use the projection operator. So a11is 
nothing but bra phi 1 A ket phi 1. So if I want to find a11 from this relation, I do ket phi 1 
on the right. That kills this (Refer Slide Time: 55:49). I do bra phi1 on the left. That kills 
this because phi 1with phi1 is 1. And you get a 11. Then phi2 with phi1 is 0. So that goes 
away. phi 1 with phi 2 is zero and here both are zero. So now we begin to see that this 
notation is so beautiful that ket vectors represent vectors in the space and bra vectors 
represent vectors in the dual space. a bra on the left and ket on the right is an inner 
product. It’s a complex number. a ket on the left, bra on the right is an operator. The basis 
in the linear vector space also provides basis for operators in this space.  
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And finally objects like this (Refer Slide Time: 56:18) are the matrix elements. So these 
quantities are called matrix elements. 
 
(Refer Slide Time: 00:56:45 min) 
 

 
 

And I will continue to use the work matrix element even when the vector space is infinite 
dimensional and these operators are not matrix operator. They may be differential 
operators, integral operators, integro differential operators and anything at all. We are 
going to look at spaces where there number of dimensions is not only infinite 
dimensional but continuously infinity dimensional. So you can’t even label letter one two 
three four up to infinity but this is goes to continuously. So the concepts are not very hard 
to generalize. We have to be careful of some technicalities like we were about l2and so on 
but I would continue to use these objects as matrix elements. Now when we come to the 
postulates of quantum mechanics then we will see that objects like this are measurable 
quantities. These are the measured values. These are the things that you would get to 
make actual physical measurements. So it’s important to recognize what sort of objects 
we have here.  
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 (Refer Slide Time: 00:58:11 min)  
 

 
 
So the third lesson is writing here given an orthonormal basis phi i, you first have this 
then you have completeness and then you also find that any vector psi can be expanded 
uniquely in a form psi = summation over n Cn phin uniquely. That’s the beauty of these 
orthonormal basis. that once you make an expansion then the set of numbers Cn uniquely 
specifies the vectors psi and vice versa. 
  
(Refer Slide Time: 00:59:16 min) 
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Any operator A in this space just as any vector can be expanded in the form A = 
summation over n, m A nm phi n phi m and these are called the matrix elements of this 
abstract operator. So this (Refer Slide Time: 01:00:13) set forms a basis. Of course when 
n= m, these are diagonal matrix elements and when n is not equal to m, these are off 
diagonal elements. There is no guarantee here that every matrix can be written as 
diagonal form. We will talk about Eigen values of operators and so on very shortly but 
this is the basic mathematical framework that you need. We need a few more important 
concepts such as what is meant by Hermitian conjugate, an adjoint and so on. We will 
talk about that next time but I want to impress upon you very firmly the fact that this 
machinery, once you read it now it’s almost automatic which is a most self correcting. So 
completeness and orthonormality are very useful relations. The next thing is to talk about 
function spaces and I will do that tomorrow. 


