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Perturbation Theory 
 
Today, let’s look at a very important aspect of quantum mechanics which goes by the name of 
“Perturbation Theory”. The idea is the following. 
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Generally, the class of problems or the class of Hamilton’s for which you can find the 
eigenvalues and the eigenfunctions explicitly is very small. Apart from a few well know 
examples like the hydrogen atom or the harmonic oscillator and any number of dimensions, the 
number of exactly solvable problems is very small. Just as in classical mechanics too, you 
realize that the number of exactly integrable problems is also very small. Most problems are not 
integrable. In exactly the same sense, most Hamiltonians in quantum mechanics cannot be 
analytically solved. In the sense that, you can’t write down eigenvalues and eigenfunctions 
explicitly for them. So several approximation methods have been evolved ever sense quantum 
mechanics began, as a matter fact with varying degrees of rigor and success and today 
Perturbation theory is a well-established part of quantum mechanics. What we are going to do 
here is to look at its rudiments, the very basic elements of certain kind of Perturbation theory. 
Now what I have in mind is a system whose Hamiltonian H can be written as a sum of 2 parts. 
The first part is supposed to be the free or solvable Hamiltonian, H 0 which we are going to 
assume is something for which you can find the eigenvalues and eigenstates explicitly plus a 
small correction to it.  
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 Now of course, one has to make some sense out of this word “correction” classically. If I wrote 
down the correction as some H prime, then one could say if H prime is numerically always 
small compared to H 0, this is a small correction to it. To keep track of how big this correction 
is, one introduces generally a parameter, lambda which is taken to be small. This is sufficiently 
small that lambda H prime serves as a correction to H 0. Now, quantum mechanically H 0 and H 
primer operators. So the question of what do you mean by “small” is not very clear 
immediately. We can do it in 2 ways, either i say that lambda is a parameter very close to 0, 
some real number which is very close to 0 and H 0 and H prime are comparable to each other. 
That’s one of the  possibilities. or I set lambda = 1 and i say H prime is such that all its matrix 
elements are very small compared to H 0 in some given basis. 
 
Now we are going to take the attitude that lambda is a small parameter. we will put it in 
explicitly because we would like to keep track of terms of first order, second order, third order 
and so on and they would refer to powers of lambda.  In this course, we have restricted our 
attention to Hermitian Hamiltonians. So H 0 and H prime are Hermitian operators and lambda is 
a real number. So the eigenvalues of H would continue to be real which is what we want. What 
I mean by smallness of this term lambda H prime will become clear as we go along. Now of 
course you could also say, in general the Perturbation that you apply to an unperturbed system 
with Hamiltonian H 0 could be time dependent.  
 
You could actually apply an electric field on a charged particle which has got some time 
dependence. So in general this is the time dependent Hamiltonian. If H 0 has energy levels of 
some kind, then the moment you switch on H prime, it would cause transitions between these 
stationary states. And the question of physical interest is given the system initially in some 
given eigen state of H 0, what’s the probability that it’s going to jump to some other state under 
this Perturbation. What’s the probability per unit time? These are called transition rates or 
transition probability and they will become relevant. On the other hand, you could also have 
situations where H prime is not dependent explicitly on time. It’s just a Hermition operator. We 
would like to ask: given the eigenvalues and eigenfunction of H 0, can you find the eigenvalues 
and eigenfunction of H 0 + lambda H prime. Now you appreciate the problem is totally trivial if 
H prime commutes with H 0. Then if you can diagonalize, you can simultaneously diagonalize 
2 mutually commuting matrices and find a common set of eigenstates. Therefore there is no fun 
in it at all. On the other hand, if H prime doesn’t commute with H 0, then nontrivial things can 
happen. Just to set this stage and show you what can happen, let’s take a very simple example 
where H 0 is a 2 by 2 matrix. 
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Suppose H 0 has 2 energy levels, let me call them E1 and E 2. i have already diagonalized H 0 
and written it in its eigen basis so that you have 2 eigenvalues and the off diagonal elements are 
0. Now it’s easy to see that if H prime is another diagonal 2 by 2 matrix, then the eigenvalues 
are obvious. You write them down immediately. On the other hand, if H prime is not the 
diagonal matrix and doesn’t commute with H 0, then you have to do a little bit of work. 
Suppose H = H 0 + lambda times (0 1 1 0). This is the simplest you could have. Then the 
question is: what are the new eigenvalues. Well, this is not hard to do because H now is E1 
lambda lambda E 2 and the task is to find the eigenvalues of this 2 by 2 matrix which is not 
very hard to do. But they clearly will not remain E1 E 2. They will have certain function of 
lambda here in addition to the original eigenvalue. You have to solve the following secular 
equation. So lambda1, 2 = lambda squared - lambda times E1 + E 2 - + E1 E 2 - delta squared = 
0. That’s the secular equation which is going to give me the eigenvalues of H. and what are the 
roots here? 
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This implies that the roots lambda1, 2 are E1 + E 2 + or - square root of E1 + E 2 whole 
squared -4 times E1 E 2 - delta squared. So E1 + E 2 whole squared -4 E1 E 2 is E1 - E 2 whole 
squared. So this is root (E1-E2) whole squared +4 delta squared divided by 2. Now of course to 
simplify it further you have to tell me whether E1 is bigger than E 2 or E1 is less than E 2. 
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 Let’s without loss of generality take E1 to be bigger than E 2. Then this implies that lambda1 is 
E1 + E 2 + i pull this out and it becomes E1 and - E 2. so it’s E1 + E 2 + E1 - E 2 times1 +4 
delta squared over E1 - E 2 whole square to the power half and this whole thing raised to one 
half. So what does lambda1 become? lambda1 = E1 + delta squared over E1 - E 2 + order delta 
to the power 4. It goes on to all powers. So the important lesson is that even though the 
parameter was linear in the Hamiltonian, this had just first order term in delta. When you 
compute the eigenvalues, you have all powers of delta in general. 
 
Similarly lambda 2 is E 2 - delta squared over E1 - E 2 + terms of order higher order of delta 4 
and so on. So what’s the important lesson we learn? Even if the Hamiltonian has a parameter 
like lambda or delta and it’s linear in delta, when you actually compute the eigenvalues in 
general you expect an infinite series. There will be corrections to the eigenvalues of order delta, 
delta squared, delta cubed and so on. In this particular problem, the way it appeared since the 
same delta appeared in both places, only delta squared appears and therefore all the odd powers 
vanish. Only the even powers of delta remain. But that’s not true in general. It’s clear that 
depending on the form of the Hamiltonian, you would have an infinite series in delta. Now in 
the 2 by 2 case, the problem is completely trivial because you give me a 2 by matrix and I can 
diagonalize it provided certain conditions are satisfied. I can find the eigenvalues always. There 
is no difficult at all. We would like to address this problem in general. This perturbation which 
in this case was just delta is not sufficient that this delta is small compared to the 2 original 
eigenvalues E1 and E 2. So if you look at this matrix and say the unperturbed is just these and 
these are the perturbations, perhaps the perturbation can be the corrections can be found in a 
power series as long as the off diagonal elements are small compared to the diagonal elements. 
What’s the actual criterion here? It must be small compared to the energy differences. So it’s 
not sufficient to say that it is small compare to the original eigenvalues but it should be small 
compared to the differences in energy. 
 
Then it looks like we are in business and we can do perturbation in a power series. The reason I 
emphasize this is because in general, you are not going to be able to get an analytic formula 
like this. You see once I have an explicitly formula, I don’t need the perturbation theory. But in 
general, for more complicated problems, you will only be able to find things to a certain order 
in this Perturbation. Therefore we must be careful to find out when this series converge. So 
with this a little toy model, let’s look at the general problem. The other important lesson is what 
happens if E1 = E 2?  Then you have something totally different happening. This kind of 
expansion is not permitted at all. Then you have to do what’s called degenerate perturbation 
theory. You have to now do the problem all over again. You can’t do this kind of little trick 
here. So we are going to assume, to start with that this perturbation theory is time independent 
and non-degenerate. Slowly we relax all these conditions. By that I mean, the levels of H 0 are 
taken to be non-degenerate. If 2 of the eigenvalues were equal then you have to be very careful 
by the way. In this particular case, it will be totally trivial but look at what happens. We had the 
correction with the infinite series and so on. But look at what happens if you set E1 = E 2. So 
let’s do that and ask what are the new eigenvalues. 
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The character of the eigenvalues is going to be change completely because now its lambda - E 
whole squared = delta squared. So lambda = E + or – delta. It’s correct to all orders in delta. So 
this big infinite series just collapsed and you just got a + and a -. Now incidentally that again 
illustrate a general principle. 
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 We had a degenerate level at E. i switched on this off diagonal perturbation and it split into 
2.There was an E + delta and an E – delta, taking delta to be positive. So it’s as if this 
degeneracy got lifted by the perturbation and one of them went up and the other went down. 
That too will turn out to be a general feature. But appreciate the fact that the moment these 
levels became degenerate, the nature of solution became very different. There wasn’t this 
infinite series in delta at all. It simply collapsed. That may not happen all the time but it’s 
immediately evident that you have to redo perturbation theory. By the way, this problem also 
gives us a hint as to how to solve a general problem in which you have pair of degenerate levels 
or more than a level with some finite degeneracy. In the subspace of that degenerate level, you 
have to redo the problem in this fashion.  So that’s what is going to happen. Now let’s put all 
this down in a formal way. So what are we going to assume? We are going to assume, to start 
for simplicity, that this H 0 is solvable and that it has a discrete spectrum. Later we must 
generalize this to a continuous spectrum. That’s not very hard to do. And also these levels are 
all non-degenerate from each other. When you have a continuous spectrum, you have to be 
careful because the levels are actually sitting on top of each other in a continuous band. So you 
have to go back and do it carefully. 
  
(Refer Slide Time: 00:19:42 min)  
 

 
 

But to start with, let’s assume it’s a discrete spectrum and H 0 has a spectrum which is not 
equally spaced. I assume that H 0 has eigenfunctions phi n

0. I am going to put superscript 0 to 
denote the unperturbed portion of problem. This is equal to En 0 phi n 0 and this quantum 
number n labels these levels. Now I switch on the perturbation and ask what happens to these 
energy levels. If the Perturbation is sufficiently small, in a sense which will become apparent as 
we go along, then i physically expect that this energy level will shift a little bit, up or down. We 
are going to assume that the perturbation is such that the matrix elements of lambda H prime 
are going to be small in some definite sense compared to these energy splitting.   
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 So that if this jiggles around a bit, you can still identify the n th level. If E1
0 came down and E0

0 
went up there, then of course you have a very different problem altogether and you can’t 
handle it with perturbation theory. But otherwise we have got a very modest aim which is to 
say these levels are still distinguishable and they get shifted a little bit. The question is: what’s 
the shift. And these states would also get shifted. There is no reason why phi and superscript 0 
should be the Eigenstate. So we assume that corresponding to these is H on phi n = En phi n. so 
we assume the same labeling is possible except that En is not quite En 0 but En 0 + some 
corrections and phi n is not phi n 0 in the state space but its the vector + some corrections. The 
task is to find out what are these corrections. Now we are going to impose normalization. So I 
am going to assume that this forms a complete set of state in this space. So this original Eigen 
functions form a complete set of states and form an orthonormal basis. 
  
(Refer Slide Time: 00:22:49 min) 
 

 
 

So certainly I am going to assume that phi n 0 phi l 0 =delta nl. They are orthonormalized now I 
try to find out what’s phi n going to be. So what would be the general form for phi n? It’s clear 
that if i focus on one particular state. So this is n th energy level. This was the original state. 
Maybe the new state is here, E 0. Maybe the next state is here, E1and E 2 etc. En is the 
unperturbed state. Now I would like to find out what it is in general? So, the starting point is to 
say that based on our experience with this 2 by 2 problem, in general if i fix a particular n, then 
i can certainly write En = En 0 ,the unperturbed energy level + corrections to it which would 
depend on lambda. I am going to assume that these corrections can be written in powers of 
lambda. We are going to question that assumption later but we will make this assumption to 
start with. Then I call the first order correction En1. So what is the meaning of this assumption? 
it says that this perturbation is such that it’s analytic at lambda = 0, in the sense that, the actual 
perturbed energy level is a power series in the small parameter lambda which converges inside 
some radius of convergence. That’s the assumption and therefore it starts lambda, lambda 
squared and so on.  
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 If you discovered the correction, the first correction was proportional to square root of lambda, 
and then this assumption is wrong. Similarly I am going to assume that phi n = phi n 0 + first 
order correction which is lambda times phi n1 + lambda squared phi 2 + … In general, it’s an 
infinite series. So the idea is to use this normalization. We have to find normalized 
eigenfunctions. So we are also going to say phi n phi n equal to1. Actually we would have phi n 
phi l = delta nl. But right now, i am focusing on just 1 of these states. Phi n is a normalized 
eigen function with this input now, we have to consistently solve the problem. We have 
assumed that everything is a power series in lambda and is absolutely convergent which means 
if 2 powers series are equated, you know you can equate term by term if they are absolutely 
convergent. And that’s the whole point of successive approximations. You assume things are 
convergent in absolutely convergent power series. Put a small parameter there and equate 
coefficients of like powers. That’s all that’s going to be done. Now you could ask: what’s the 
rational for it? How do we know this is going to happen? That you don’t know in general. If 
these operators are crazy operators, you don’t know it. for example, if H prime is a differential 
operator and you write everything in the position basis for example then there are theorems 
which tell you that if you have differential operators in which a parameter appears in an 
analytic fashion, then the eigen function and eigenvalues are also analytic around lambda = 0. 
Based on that, we are going to now use it and try to generalize it of course there would be 
notable spectacular exceptions and i will let you point them out as we go along. But right now 
let’s assume things are not pathological and ask what happens here. 
  
(Refer Slide Time: 00:29:32 min)  
 

 
 

So I plug this expression and this expression into that and what we get is H 0 + lambda H prime 
acting on phi n 0 + lambda phi n1. We will work up to lambda squared. So let’s work correction 
to order lambda squared just to see what happens and we could if you had enough energy to 
write down lambda cubed, lambda 4 and so on. But we will see a pattern emerging.   



10 

 This is En but En is En 0 + lambda En1 + lambda squared En 2 + etc acting on the same thing. 
Now we equate powers. Well, H 0 on phi n 0 by definition is En 0 on phi n 0. So the order 
lambda terms already match. Then we ask: what are the first order terms? We equate 
coefficients of lambda. So what we get is H 0 acting on phi n1 and then there is a contribution 
which is H prime on phi n 0

. Those are the only order lambda terms on the left hand side. Look 
at the lambda squared terms. There is again an H 0 it acts on phi n 2 that’s got to be matched by 
an En 0 acting on phi n 2 and i bring it to the left. So it’s H 0 - En 0 acting on phi n 2

 and the 
other terms. Now you begin to see the pattern. H 0 - En 0 appears here all the time acts on the 
highest correction phi n1, p hi n 2 here and so on. Then H prime on the first order correction 
acts on the immediately lower correction phi n1 and then finally En 2. So as the correction in 
the energy level goes to higher order, what it acts on is of a lower order obviously so that the 
powers of lambda match. You write the entire series down in this fashion. If this series 
converge, then you have an infinite set of equations to find all the coefficients. So what’s the 
task?  
 
The task is to find phi’s and the E’s. Please remember that these are vectors in Hilbert space. So 
there is no guarantee that one vector is parallel to the other vector. It has other vectors in this 
Hilbert space pointing in other directions. This is the set of equations that we have to solve. 
Now it’s very easy to see how to do this systematically, order by order. From this equation, I 
can find phi n1 and En1 and they act as inputs into this. The first obvious thing that comes to 
our mind is take the scalar product of both sides with respect to phi n 0. Well, you don’t know 
what this does when it acts on phi n1, but you know what this does when it acts on this (Refer 
Slide Time: 37:04) and that’s just En 0 because it’s just this equation and it’s a real number. So 
if i take the adjoint, you get phi n 0 bra with H 0 acting on the right which is En 0 bra phi n 0. 
So this term cancels out. This is 0 by definition. En1 is a number and therefore it comes out and 
phi n 0 phi n 0 is unity since it’s normalized. So it gives us our first important result. 
 
(Refer Slide Time: 00:37:51 min) 
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 It says phi n E En1 = phi n 0 H prime. In other words, you give me the perturbation and i find 
the diagonal matrix element of this perturbation in the unperturbed basis and that’s the first 
order correction. So by definition this = H prime nn. It’s the nn th matrix elements in the 
unperturbed basis. Remember, I assumed the Hamiltonian H0 is diagonalizable. I find its 
eigenvalues and eigenfunctions. Then all these operators can be represented in this basis which 
is a set of eigenstates of H 0. So in that basis, this is the diagonal matrix element. The first order 
correction was just the diagonal matrix element. Recall that the other earlier problem we did 
with an E1, E2, and a delta delta, the first correction that came was a delta squared. There was 
no delta correction at all and the reason was the perturbation did not have any diagonal part. In 
the original basis, the matrix became E1 delta delta E 2 and there was no delta appearing in the 
diagonal elements. Therefore there were no diagonal elements and that perturbation did not 
give a first order correction. That’s the reason it started with a delta squared. So now we have 
this crucial piece of information that you perturb a system and ask what’s the perturbation of n 
th energy level. Then correct to first order, it’s just the diagonal matrix element of the 
perturbation in this unperturbed basis. The question of what phi n1 is still remains.  
 
(Refer Slide Time: 00:40:05 min)  
 

 
 

Phi n1 can be written as a superposition of states in this Hilbert space and the basis set we have 
chosen are the eigenstates of H 0. So I can certainly write this as a summation over l over all phi 
l 0s with some coefficients. These coefficients would depend on which energy level I am trying 
to correct. so that’s going to depend on n and of course it would involve also the summation 
index l. if i do that, i need this equation but I will come back to it and write this down. 
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So let me substitute for phi n1, the first order correction to this vector which is an infinite series 
in the original basis. I plug that n there. then i get a summation over l Cnl H 0 - En 0 on phi l 0 + 
H prime - En1 phi nl. By the way, i am going to treat En1 as a known number. So we may just 
leave it here. The task is to find Cnl’s. I take the scalar product on both sides with some 
member of the unperturbed basis, phi m for example. So I do phi m 0 on both sides. Phi m 0 is 
going to act on H 0 and it will produce Em 0. This is just a number. It’s going to remain as it is. 
So this term will become summation over l Cnl Em 0 - En 0 phi m 0 and then it’s going to be 
phi m 0 acting with phi l 0, scalar product which is a delta lm.  
 
Because it’s a delta lm, this entire thing collapses and you are left with just Cnm. so this term is 
Cnm Em 0 - En 0. because it’s orthonormal, phi m 0 phi l 0 gives you Kronecker delta along 
with + phi m 0 H prime - En1 phi n 0 = 0. Now what is this going to give us?  Well, the matrix 
element between m and n is just H prime mn. So this term here is + H prime mn. Nothing more 
than that (En1), which we already know. phi m 0 phi n 0 is delta mn = 0. So we are in business. 
There are 2 things here. First is what happens if n = m and the second is what happens if n is 
not equal to m. so it gives us a solution which says if n is not equal to m, then this term (Refer 
Slide Time: 45:40) is 0. 
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So you immediately get Cnm = H prime mn over En 0 - En 0. What is it if m = n? What’s the 
diagonal portion? What’s the physical meaning of the diagonal portion? you are trying to find 
the first order correction to phi n. we already know that phi n is already phi n 0 + lambda times 
phi n1 + higher order terms. We are writing an expression for this first order correction and the 
coefficient are what we are trying to find out. Now this state has to be normalized too. It’s easy 
to see that this equation is not enough to determine Cnm because you put n = m, this vanishes. 
But you now take recourse to normalization. I would like phi n phi n to be normalized order by 
order. so what’s going to be happen if there is a first order correction here and this was a 0 here 
(Refer Slide Time: 47:29)? You can, without loss of consistency take that over lap to be 0. in 
other words, if you insist on normalization and put some arbitrary Cnn, you will discover that 
to correct to first order when you normalize, it suffices to set Cnn = 0. That’s the consistent 
way to normalize the state. 
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That’s not surprising because you see this is the original phi n 0. It’s some vector in the Hilbert 
space. Now my statement is: the correction to it might have a component along this to first 
order and in general, in all transverse directions. The statement I am making is that the first 
order term, if you want it to be normalized; there is no change along this direction at all but 
only orthonormal to it.  
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 So with that proviso, we can write this term down explicitly. Cnl is just ln.  
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So I get a correction which says phi n1 = summation over l not equal to n H prime ln divided 
by En 0 - El 0 acting on phi l 0. So that determines the first order correction. You can check that 
the function phi n 0 + lambda times phi n1 is also equal to1 to first order in lambda. Of course, 
if i take phi n1 phi n1, that’s not equal to 0. There is a correction to order lambda squared but 
that’s going to be compensated by the lambda squared correction to phi n. so the whole idea is 
to keep normalizing correct to some order and pushing the problem further and further away. 
then you get a consistent solution. So these are the first glimmerings and I want you to step 
back a little bit and appreciate what’s involved here. So the first order correction to this level 
En 0 has shifted a little bit. It could have shifted upwards or downwards depending on this sign 
of the quantity En1. Just the diagonal matrix element of the perturbation in the unperturbed 
basis. It’s a very simple formula to remember. The first order correction to the state vector is 
phi n is phi n 0 + lambda times phi n1 and phi n1 has all these off diagonal elements because l 
is not equal to n and this divided by this quantity called the energy denominator. Now you 
began to see why this energy denominator cannot vanish. Then you have degenerate 
perturbation theory. The denominator is explicitly summed over all l not equal to n in this sign. 
What’s the second order correction? One plugs in all this information into the second order 
equations and solves for En 2 and phi n 2 and so on. let me just write down the answer for En 2. 
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This turns out to be phi n 0 H prime phi n1. it turns out to be the overlap of the matrix element 
between the unperturbed and the first order correction and that is l not equal to n, phi n 0 H 
prime H prime ln divided by En 0 - El 0. 
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 Remember these are numbers and not operators. This is the matrix element of H prime in the 
unperturbed basis between n and l. Therefore its H prime nl and nothing more than that. 
  
(Refer Slide Time: 00:53:32 min)   
 

 
 

So this is summation l not equal to n H prime nl H prime ln divided by En 0 - El 0. Similarly, a 
longer expression for phi n 2 which I leave you to work out. But you can simply this a little bit. 
These are both complex numbers and this is Hermitian (Refer Slide Time: 54:11). So if I took 
the complex conjugate of this, you get phi l on the side phi n on that side and H prime remains 
itself because it’s equal to its Hermitian conjugate.  
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Therefore I can write this as H prime nl modulus squared. So we have En = En 0 + lambda H 
prime nn + lambda squared summation l not equal to n H prime nl whole squared En0 – El0. So 
we have a second order correction as well. It’s clear for the energy denominator to converge. 
You are going to get more and more energy denominators and this is now a reflection of what 
we had already seen in the simple example where we got an E1 - E 2 and you got a delta 
squared. That’s exactly what’s happening here. So it’s clear that the perturbation series has a 
chance of converging provided the matrix elements of this perturbation are small compared to 
the energy differences. That’s the general rule under which you would have some hope of 
making this converge.  
 
Now of course there could be special problems as we saw where this (Refer Slide Time: 56:10) 
vanishes and start with this and this could also vanish it could start with the x term and so on 
but1 has a systematic perturbation expansion. Notice something interesting. If I ask for the 
perturbation of the ground state of the system, then n is 0. Then in the ground state, E 0 0 is 
smaller than all the excited states and the summation is over all the excited states. This (Refer 
Slide Time: 56:35) number is never negative and the denominator is negative. So it means the 
second order correction to the ground state is always negative. Like I said there are many 
problems in which the first order correction could be 0. Then you are guaranteed that the first 
correction will be negative which means the ground state will go down rather than go up. That 
follows from this simple expression here. Let’s try to apply this to a very simple problem. This 
problem is just the harmonic oscillator with a perturbation added to it. 
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So I start with the harmonic oscillator which is p squared over 2 m + half m omega squared x 
squared. This problem is solved I know what the energy levels are. I am going to try to find to 
corrections to this under the perturbation. So this is my H 0 and H = H 0 + nonlinear terms. Let 
me add lambda x cubed in this case. Well, one could sit down and do this problem explicitly 
but you have to be a little careful. Let me ask if I add an x cube term, what do you think will 
happen to the ground state of the harmonic oscillator which had an energy half h cross omega? 
What do you think will happen if i had this with some positive number lambda? What do you 
think will be the first order correction? You have to find the matrix element of lambda x cubed 
in the ground state. That’s all you have to do. Physically, what do you think will happen? You 
have this feeling, maybe this is going to become 0 because this potential was symmetric. Now 
you say you want to find the matrix element of odd functions. What’s the matrix element? 
After all, this matrix element would correspond to calculating in our problem 0 x cubed 0. But 
if i wrote this in the position basis, then this stands for phi 0 of x which is a Gaussian e to the 
power - x squared over 2. That’s a Gaussian and this is the complex conjugate of it. So you 
have product of 2 Gaussians e to the power - x squared and that’s multiplied by x cubed and 
integrate it.  
 
You expect it to be 0 (Refer Slide Time: 59:53). Indeed, that will happen because you see you 
can do this more easily as follows. x we know is a + a dagger square root of therefore I can 
write this as H prime nl modulus squared over 2m omega. h cross has dimensions ml squared t 
to the power -1 and the m and t inverse cancel with the m on the downstairs and so this is  root 
of 2. So I have proper commutation relation between a and a dagger which should be 1. 
Therefore E 0 0 = h cross omega over 2. That’s the ground state energy. I want to find first 
order in lambda. By our formula, it must be equal to 0 a + a dagger cubed 0 and then h cross 
over 2 m omega to the power 3 half’s. Now if I expand this, we know a on 0 is 0. We know a 
dagger acting on the left of 0 is again 0. Now that expansion is going to either have 3 a cube 
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 and a dagger cubed. All of which will give you 0 matrix elements. Or 2 a’s and 1 a dagger 
which is going to vanish. So it’s clear that the first order correction is 0 the second order will 
not be 0 in general. But this is a misleading problem because, if you draw the potential, 
classically what does it look like?  
 
(Refer Slide Time: 1:02:45 min)  
 

 
 

It’s an x squared term + an x cubed. so it’s clear that near the origin, V (x) near the origin is 
going to look like this but sooner or  later, the x cubed term is going to take over. If lambda is 
positive, it’s going to fall down and then of course this goes up. What’s happening to the 
energy level here? It cannot be a stationary state because this will tunnel through out there and 
disappear if you wait long enough. So this is a symptom of that disease here. In this problem, 
although you can do this perturbation theory formally, the fact is our primary assumption that 
under perturbation, the set of bound states just shifted a little bit but remain bound states is no 
longer true. So in fact, this perturbation series cannot converge absolutely. You are going to 
write it down. It could be an asymptotic series or something like that. But if you work out all 
the terms it, cannot be an absolutely convergent series with any finite radius of curvature. 
However, it will give you the shift and energy because they form an order called metastable 
states. If the parameters are such that the tunneling time is very long, then the tunneling 
probability is small. It will give an approximation to the energy. So this was not so great an 
idea. 
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 (Refer Slide Time: 1:04:13 min)  
 

 
 

But what happens if  I do this x4? Then you are in shape because now presumably, the potential 
looks still parabolic here but it becomes a little steeper. It is parabolic for sufficiently large x 
because the x4 takes over. Now you can see that classically, motion is always periodic orbits. 
quantum mechanically, it will be a discrete spectrum in this problem rigorously. Then, we 
could ask: what’s the correction going to look like? How are you going to compute this number 
x4? What I have to do is to take this a + a dagger to the 4 and actually write it out. There is 
going to be a huge number of terms.  

 
(Refer Slide Time: 1:05:27 min)  
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 This is what I want to compute and please remember that a on 0 is 0 and 0 on a dagger is 0 
because it’s the ground state. If I expand this out, the a to the power4 term, the first term is 
obviously going to give me a 0. It’s going to disappear. Similarly, the a dagger to the 4 is going 
to give me a 0. Then there are terms in which there are 3 a’s and a single a dagger and that term 
is obviously going to be 0. Similarly 3 a daggers and a single a is also going to be 0. The only 
terms that will contribute are those in which you have a like number of powers of a and powers 
of a dagger and how do you compute this? Well, you have to sit down and write this thing out 
explicitly. But let’s see if there is a cheaper way of doing this a + a dagger squared in this 
problem because this is a squared + aa dagger + a dagger a + a dagger squared. That’s equal to 
a squared + a dagger squared.  You should do what’s called normal ordering. In other words, 
take all the a’s to the right, take all the a daggers to left and then use the fact that a on the 
vacuum is 0 on both sides. So what are the terms that are going to contribute here? There is 
going to be a term which is a squared. So what I want is the 4th power of this term + aa dagger 
is a dagger a +1. But a dagger is a number operator. So this is 2 N +1 where N is the number 
operator. The number operator acting on the vacuum is 0.  
 
So that’s a cheap thing to do. So what is going to survive? It is a squared a dagger squared. The 
a’s a dagger squared a squared term will vanish and then this squared is going to survive (Refer 
Slide Time: 01:08:35). When I do 0 here and 0 here on this side, this terminates in itself. This 
can be written as aa a dagger a dagger and you bring the a dagger to the left once again and 
write it in terms of number operators. You are going to get a contribution 2 from here and a 1 
from here. So the whole answer is going to be just a 3. All other terms vanish. So this is a trick 
tried to normal order such products. Put all the a’s to the right all the a daggers to the left and 
then when acting on the ground state, it gives you 0. Whatever numbers survive will be the 
only contributing factors. So in this problem, it will turn out that this is 3 times h cross omega 
whole squared. This is the first order corrections.  
 
This goes up. The second order correction is guaranteed to go down. But if lambda is 
sufficiently small that will be negligible compared to the lambda correction. One final point, 
just to deflate the whole thing. Do you think that this perturbation series is absolutely 
convergent with a lambda x4? This is a very tricky issue. It’s not simple at all. The answer is it 
cannot be an absolutely convergent series and the reason is very interesting. If this is true and 
the series converges absolutely, then it means that the power series that you get have a finite 
radius of convergence about lambda = 0. So everything is supposed to be analytic about lambda 
= 0. in other words the problem should be unchanged in a sense, even if a lambda is negative, 
the Hamiltonian should be Hermitian, so I can’t make lambda complex, I can make it positive 
or negative, but if make lambda negative, what happens to that potential?  
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 (Refer Slide Time: 01:11:27 min)  
 

 
 
If lambda is negative, lambda greater than 0 or less than 0, it is still parabolic. But sooner or 
later, the negative lambda will take over and the potential will go down. So the ground state 
that you get here or any of these excited states would also be metastable states. That problem 
technically does not have only bound states for negative lambda. Yet that’s the assumption that 
the perturbation is analytic in lambda and therefore makes sense as long as the Hamiltonians 
remains Hermitian. So this is a technical point and much work has been done on time to make 
sense out of this perturbation series. But it doesn’t diminish from the fact that this perturbation 
series will give you a very good numerical value. This is very typical of what happens in 
asymptotic series. Numerical values would be very accurate but technically, the series itself 
may be formally divergent and so things of that kind start happening.  
 
Here, I don’t want to get into that but this tells you a little bit about how non-degenerate time 
independent perturbation theory functions. The crucial results for our purposes are that the first 
order correction is the diagonal matrix element of the perturbation. The second order correction 
is the off diagonal elements mod squared divided by the energy denominator with the 
corresponding expression for the wave function. Notice that even in the first order correction in 
the wave function in the state vector, these energy denominators appear. So in the second order 
correction, you would expect a product of 2. So this is the way the perturbation series is 
developed. The next task which I am going to do next is ask what happens if you have 
degeneracy. Finally, we will look at what happens if you have a time dependent perturbation 
and then look at its simple applications. So let me stop here today.  
 


