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Conversation between student and professor: Student: I’ve read in the American Journal of 
Physics that there is a close classical analog of spin. He says that spin is equivalent to the angular 
momentum of the polarized electromagnetic wave. But in the class you mentioned that spin is 
totally associated with quantum mechanics and no classical analog. So isn’t that a contradiction? 
 
Professor- Good question! It’s a deep question and the answer is in several parts. The statement I 
made was that spin was not like orbital angular momentum which has a classical counterpart but 
rather some kind of intrinsic angular momentum, intrinsic to elementary particles. On the other 
hand, it’s been pointed out that spin is like the states of polarization of electromagnetic waves 
and since electromagnetic waves have classical counterparts, we see classical electromagnetic 
waves. Is there not a contradiction? Doesn’t it mean that spin is also a classical object?  
 
Now it’s a valid question and the answer goes in several parts as follows. First of all, we believe 
that elementary particles really are the fundamental constituents of matter and radiation. We 
believe that quantum mechanics and relativity really are the guiding principles for understanding 
all of nature. Then, it turns out that once you accept quantum mechanics, everything is quantized. 
Elementary particles which you see around you are the real quanta of some field or the other. 
Electron is a quantum of the electron field. So to speak, the proton is a quantum of its own field. 
Actually it turns out today; we understand that nucleons like protons and neutrons are themselves 
made of quarks which have their own fields. 
 
In the same sense, photons are the quanta of the electromagnetic field. So even though the 
electromagnetic field appears to be a classical object, the fact is, it too is quantum mechanical. It 
requires the right kind of experiments to probe its quantum mechanical nature. And it turns out 
that radiation too is in the form of quanta. But these quanta of radiation a slightly different from 
the quanta of matter like quarks or electrons and so on. The difference lies in the fact that the 
quanta of radiation has 0 rest mass. On the other hand, the quanta of the electron field or the 
quark field and so on have finite rest masses. The relation between the energy and momentum of 
a 0 rest mass particle is different from that for a massive particle. 
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So on one hand you have E squared = C squared p squared + m squared C4. On the other hand 
you have E = cp when m = 0. This is a linear relation whereas the former is not a linear relation 
at all. This leads to a lot of differences in properties. That’s point 1. The second one is, we said 
that every elementary particle, when you impose the requirements of special relativity, the wave 
functions of these elementary particles would be characterized or labeled by 2 quantum numbers, 
2 labels or eigenvalues of certain generators of the Lorentz group because you require these 
wave functions to transform in a specific manner under Lorentz transformations so that the laws 
of physics can remain form invariant under Lorentz transformations. And these 2 labels, if you 
like, they come from the values of certain operators which induce transformations belonging to 
the inhomogeneous Lorentz group which commute with all the generators of the Lorentz group. 
Those 2 operators are the following.  
 
First of all, when I say the inhomogeneous Lorentz group, i mean that translations in space and 
time namely; shifts of the origin and shifts of time are permitted and there are 4 generators for it 
which I denote it by p mu. The 0 component here corresponds to the energy or the Hamiltonian 
under 3 special components correspond to the linear momentum. And then you have rotations in 
space rotations of the axis and velocity transformations. So there are 4 generators here. Then 
rotations of the coordinate system are specified in 3 dimensions by 3 possible Euler angles. 
Therefore there are 3 parameters and then you can also have velocity transformations in any 
direction what so ever. And therefore, there are 3 velocity components specifying an arbitrary 
Lorentz transformations or boost from a frame at rest to a moving frame. so those are induced by 
a set of 6 generators mu and nu run over the value 0,1, 2, 3 and this is anti symmetric in mu and 
nu and a 2 by 2 tensor in 4 dimensions has 16 components but if it’s anti symmetric, the diagonal 
ones are 0. That leaves 12 components and they are equal in magnitude, opposite sides of the 
principle diagonal and negatives of each other. So there are 6 independent generators here. 3 of 
these correspond to rotations and 3 more correspond to velocity transformations or boost. 
Together these 10 parameters form a ten parameter group called the in homogenous Lorentz 
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group. And our belief is that the laws of physics are form-invariant under such transformations in 
flat space time. 
 
Now these generators also lead to 2 combinations of these which commute with all of these 
generators and those combinations are p mu p mu and the other one is a little more intricate. You 
start by defining a vector w mu which is epsilon mu nu sigma rho p nu j sigma rho. They are written 
upstairs and downstairs for technical reasons which i won’t go into now because these are 
Lorentz transformations in 3 +1 dimensions. W mu is a 4 dimensional vector once again. It’s 
called the Pauli Lubanski vector and this quantity W mu W mu is also invariant. This operator 
commutes with all these generators and so does this. Therefore the irreducible representations of 
the Lorentz group are labeled by the numerical values of these quantities (Refer Slide Time: 
08:50). And this here (Refer Slide Time: 08:54) in suitable units turns out to be m squared. 
 
 Let me put c =1 for the time being. So this is what leads to the rest mass of a quantum of a 
particle. This (Refer Slide Time: 09:08) here on the other hand does something interesting.  This 
thing here is a scalar and you can look at ask what’s it value is in the rest frame of a particle. And 
that turns out be a proportional to m square S(S +1). So this S here which comes out is the 
intrinsic angular momentum quantum number of a quantum and then of course the rest of 
whatever i said about angular momentum follows. So this is the origin of spin and mass for a 
particle. But now you could ask: what does this become when m is 0 because this looks like it 
goes to 0. That’s where the difference comes between a particle with 0 rest mass and one without 
0 rest mass. This turns out to be proportional to the component of the spin in the direction of the 
linear momentum of the particle because a particle with 0 rest mass always moves with the speed 
of light. If you stop it, it’s annihilated. So free photons always move in the speed of light, the 
fundamental velocity and this (Refer slide Time: 10:20) thing here turns out to be S dot p over S 
p if you like, where these are the magnitudes of this vector.  
 
So you can get rid of this. It is just the normalization factor. It’s the component of the spin along 
the linear momentum of the particle and it is called the helicity of the particle. now if you took an 
object with spin quantum number S and asked what are the possible values of S dot p divided by 
modulus p, then it’s like asking what are the possible values of a single projection of the spin 
operator along any direction and there are 2 S +1 such values because S dot n or S dot any unit 
vector has 2 S +1 values when you apply quantum mechanics. So this (Refer Slide Time: 11: 06) 
thing here would have 2 S +1 values since i have normalized by S. these values would run 
between -1 and +1. If i don’t have this (Refer Slide Time: 11:15), they would run from - S to + S 
in steps of unity. So now, coming to an electron, since S is ½, we only have the values - 1/2 and 
+ ½. On the other hand, if you look at an object with spin1 for instance like a photon, and then S 
is 1 for a photon. Therefore you would expect that this quantity would have 3 possible values; -1, 
0 and +1. However, because it has 0 rest mass, the definition of this (Refer Slide Time: 11:47) 
object is different in the case m = 0, not = 0. This object here itself can only have 2 values 
whenever m is 0.  
 
That’s the way it works out and this (Refer slide Time: 12:05) becomes = + or -1 when m = 0. +1 
you would call one helicity and -1 you would call the other helicity. Now comes the connection 
between what happens classically and what happens quantum mechanically. A photon has S =1 
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but it has rest mass = 0. Therefore it does not have the S z = 0 projection. S z or S dot p can only 
be +1 or -1 and that’s the connection with classical states of polarization. Less circularly 
polarized light corresponds to S =1 and S Z =1 or helicity = +1 and right circularly polarized 
light corresponds to helicity -1. So there is still an intrinsic angular momentum and it does arise 
from the spin of the photon. I would go the other way and say the states of polarization of 
radiation arise ultimately from the spin quantum number of the photon. Only these 2 are 
possible. You don’t have S z = 0 projection at all.  
 
That’s true for every mass 0 particle. It is believed that gravitation is carried by the gravitons. 
We have not seen it. People are hunting for it. There are problems with it but if it exists, it would 
have spin S = 2. Therefore 2 S +1 would be 5. You would expect 5 possible projections or 5 
possible eigenvalues of S, the helicity. You don’t have 5. You have only 2. Once again + or -1. 
That’s it, after you divide by the 2 there for the S. now what’s the reason why you could see this 
polarization classically is buried in yet another subtlety. The fact is when a particle has integer 
values of its spin quantum number, and then collection of such identical particles obeys Bohr’s 
statistics. When it has 1/2 odd integer, then a collection of identical particles obeys Fermi Dirac 
statistics.  
 
In Bohr’s statistics, it turns out that you put a collection of identical bosons together; there is no 
restriction on how many of these bosons you can put in a given state. In the case of fermions, 
there is a restriction which is called the Pauli principle which follows actually from the spin 
statistics connection from consistent quantization that you cannot put more than 1 such particle 
in given state at a given time. Since photons or bosons there, is no problem with putting a large 
number of them in exactly the same state. In particular there is no problem with putting large 
number of them in the same polarization state. Therefore you can observe a classical polarized 
beam of light because a whole lot of photons are contributing to the same state. This is also the 
reason by both gravitation as well as electromagnetism got observed long ago.  
 
Gravitation got observed very long ago when the first apple fell down from the tree. The reason 
is again just this. These are classical fields. They are long range fields. They are massless. Now 
whenever forces caused are by 0 rest mass particles being exchanged, the corresponding force is 
a 1 over r force in 3 dimensions. That’s long range. Otherwise if there is rest mass associated 
with the particle, then the corresponding force is proportional to e to the - mu r over r, where mu 
is the reciprocal of the Compton wavelength of the particle and it depends therefore on the mass. 
If mass is 0, you just get 1 over r for the potential. This is what happens in the case of 
electromagnetism and gravitation. but in more complicated cases where particles with mass are 
exchanged, then in the nonrelativistic limit, in the static limit, etc., you end up with a potential of 
this (Refer Slide Time: 16:01) kind. So this is why if you had massive particle exchange, those 
forces would be very short ranged. And that’s the reason why week interactions are very short 
range. Radioactive decay is another word for week interactions. They too are mediated by bosons 
which have spin 1 but they are massive and because of that the range is 10 to the – 15 cm or 10 
to - 18 m or less and this is the reason why you don’t see classically.  
 
The same is true in the case of the strong force which binds the quarks together into nucleons. 
These nuclear forces too are extremely short range. The reason being that, the forces are 
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mediated by particles which are bosons which have spin 1 but which are massive and therefore 
range become short. So even though there is a potential for these things to become classical and 
so on, you don’t see it in real life. So there are 2 effects playing a role here. One is the mass of 
these exchange particles and the other is the statistics they obey. Now you could have 0 rest mass 
fermions. In principle, it was believed for a long while that neutrinos are massless and fermions 
spin ½. So you could ask can i not have a force mediated by neutrinos which would be long 
range and so on and so forth but the fact is you cannot have a classical field of neutrinos. The 
reason is that you cannot have more than one of them put in the same state. You need large 
quantum numbers to observe it. Now the final point is all angular momentum is quantized.  
 
The angular momentum of the ceiling fans is quantized but like I pointed out, the quantum 
number is so large that the discreetness doesn’t play a roll at all. on the other hand, when you 
come to elementary particles and you have something like S times H cross and S is of the order 1 
or 2 and H crosses in our units is 10 to the – 34, you see that as far as the comparison with daily 
life as angular momentum is concerned, this is completely negligible but the quantum effects 
become very significant. now having said all that, let me also say that if you took the classical 
theory of fields, didn’t impose quantum mechanics, only relativity and you looked at that what 
these fields did, then the moment you have multi component to the fields like vectors, tensors, 
spinners and so on, then it is necessary to introduce the concept of an angular momentum carried 
by this in the field even though it’s classical a field. In that sense, this is a classical analog of spin 
at a deeper level. 
 
This is still a classical analog of spin. So it is not possible to have a consistent classical 
relativistic field theory of a tensor field for example without introducing the idea that this field 
actually carries angular momentum but that is also true for the electromagnetic field. The 
electromagnetic field carries an angular momentum. The classical electromagnetic field carries 
an angular momentum but the origin of that angular momentum, when you go deep is due to the 
spin of the photons. So in that sense, there is no classical versus quantum divide that classical 
mechanics is a limiting case of quantum mechanism and everything ultimately has a quantum 
origin. So i hope that explains this confusion. I look at classical physics as a limiting case of 
quantum mechanics. A very essential limiting case necessary, it’s needed for interpretation and 
so on and so forth, but the fact is that we believe that the fundamental laws are quantum 
mechanical. Then let’s get back to what we were discussing. We had stopped last time at the 
radial equation. i need to point out some features of this radial equation. 
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So to quickly recapitulate, our Hamiltonian is p squared over 2 m + V (r) which we wrote in the 
form pr squared over 2 m + L squared over 2 m r squared + V ( r) which is an arbitrary central 
potential. we made some assumption and the Schrodinger a equation we wanted to solve was - H 
cross squared over 2 m del square phi ( r) + V ( r) phi ( r) = E phi(r ). And we discovered that 
this phi ( r ) could be written in the form R ( r) and then the angular part was characterized by 
this spherical harmonic Ylm.  
 
(Refer Slide Time: 00:21:39 min)  
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This radial quantity R(r ), if i wrote in the form U( r ) over r, then there was a convenient radial 
equation for this quantity here which was d 2 U over d r 2 + 2 m over h cross squared [E - V (r ) 
–l(l+1) h cross squared over 2 m r squared] U =0. That was a centrifugal barrier on U = 0. In the 
boundary condition what we required was the following. In order to make this whole thing 
respectable, we made the assumption that r squared V ( r) = 0 as r tends to 0. So it’s not too 
singular at the origin then the boundary conditions where U at r = 0 was 0 and we required it to 
be normalized such that mod U squared d r less than infinity.  
 
So this means you must go to 0 sufficiently rapidly. The r squared in the phase space factor was 
taken care of by this (Refer Slide Time: 23:01) division here and we want it to be 0 at the origin. 
Now this has become a one dimensional problem. Now what can the energy levels depend on? 
first of all, the angular part of the wave function is completely determined by this and it’s 
specified by 2 quantum numbers, L and m. therefore, any state of the system that I’m talking 
about, already has 2 quantum numbers L and m in it and for given values of those quantum 
numbers, we are going to examine this and ask does it have solutions and so on. what we see 
immediately was that the effective potential is V ( r) + a repulsive 1 over r squared potential 
which we call the centrifugal barrier and we also know that even if there are bound states 
supported, these bound state are going to get a little less tightly bound as soon as  L starts 
becoming larger and larger due to the centrifugal barrier.  
 
The question even arises whether for a given potential you may have a bound state or not.  
Because, if this becomes arbitrarily large, it could stop the potential from having a minimum 
value. It could become too shallow. So at once you begin to see the possibility, that in 3 
dimensions, because of the presence of this centrifugal barrier so to speak, the number of bound 
states that are possible is actually going to be restricted. And you could even ask, for the given 
value of L and given potential, is there a bound on the number of bound states you could have 
and the answer is yes. There are such bounds. Now what would the wave function depend on? it 
would depend on the value of the eigenvalue of E. we have to solve this eigenvalue equation 
subject to these conditions and of course, the value of L and possibly on m too. But from this 
equation it’s immediately clear there is no m dependence here (Refer Slide Time: 24:57) at all. 
The quantum number m has completely disappeared from this equation that at once shows that in 
a central force problem no single axis is distinguished from anything else. That is why there can 
be no dependence on m at all which is the quantum analog of the classical statement that in a 
central force problem, you have symmetry about all axis. You have spherical symmetry and 
therefore there is no particular axis singled out at all. The energy eigenvalues E therefore cannot 
be functions of m. now what can it be a function of? That depends on what V( r) is.  it will turn 
out this is a one dimensional problem. So we could use our knowledge of what happens in one 
dimension. We know that in one dimension, (a).  
 
There is no degeneracy and (b). The way functions are ordered in such a way that the ground 
state as no nodes, the first exited state has 1 node; second excited state has 2 nodes and so on. the 
same thing is applicable here except that it’s as if you have a line in which you have an infinite 
barrier to the left of r = 0 because we have imposed the boundary condition that U 0 at r = 0. So 
this is like a 1/2 line problem. Some potential on the right hand side which may support bound 
states and on the left, you have an infinite barrier. then the ground state has no nodes excluding r 
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= 0 which is the boundary point and then the first state has 1 node and so on, exactly like a 
particle in a box from 0 to L. the ground state was sin pi x over L which was 0 at the end points 
by boundary conditions but no node in between. The first excited state had exactly1 node and so 
on. so i expect the same thing to happen here and therefore, i expect that this E would be a 
function of 2 quantum numbers. One of which would be a radial quantum number which would 
run from 0,1, 2, 3, etc and label the energy eigenvalues of this 1 dimensional problem for a given 
value of L and of course, if i change L, this would also once again change the energies. So 
therefore i expect that these energy eigenvalues be a function of some radial quantum number 
and the L quantum number but not m. This is what we expect to start with.  
 
Now we need to examine and ask for a given value of L, are there bound states at all possible or 
not. i have to solve and find out the normalizable solutions, etc. Let’s first settle what happens at 
the origin. Now in order to make sure that we don’t run into technical difficulties, i have 
assumed that V ( r) doesn’t go like 1 over r squared but slower than 1 over r squared. When it 
does go like 1 over r squared, then we have to reexamine in the problem and i will do that very 
briefly. But lets put this assumption in and ask what happens here. What kind of physics do i 
expect? 
 
(Refer Slide Time: 00:28:14 min)  
 

 
 

I expect that heres r, heres is V ( r) (Refer Slide Time: 28:21), a typical potential which would 
support bound states would be there is barrier here (Refer Slide Time: 28:26). So to the left of 
this, the potential is infinite and then on the right hand side, i expect maybe a well like this or 
that (refer Slide Time: 28: 50). 
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Even the 3 dimensional oscillators which is just r squared, this is an infinite well in which you 
have only bound states.  So these are the possible kinds of shapes that I am thinking of. Notice 
that you also have the possibility of Coulomb potential which is like a -1 over r.  This also could 
have bound states. So it’s this kind a problem that i am trying to address at the moment. Now 
let’s first settle what the possible behavior of U (r) can be. We’ve said we will impose boundary 
condition U = 0 at the origin but what kind of solutions come out from this equation? Well, let’s 
look at that equation here. Near R = 0, this is some finite number hopefully. If V (r ) doesn’t go 
to 0 doesn’t explode as fast as 1 over r squared, then the dominant term near r = 0 is just this 
(Refer Slide Time: 30:14) term.  
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And then you have to solve an equation which says near r = 0, U double prime is like 1 over r 
squared times U. that’s what eigenvalue equation tells. Now that’s a simple equation to solve. A 
simple way of solving it is to assume that the trial solution is of the form U as some power of r. 
so U ~ r to the S implies S times S -1 r to the S - 2 and that goes like on the other side, it is in fact 
l times l +1 over r squared. So this is an exact equation sufficiently close to be origin. So this is l 
times l +1 r to the S - 2 which implies S times S -1 is l times l +1 and the solutions are obvious. 
So it immediately implies that U (r) goes like r to the power l +1 because S is l +1.Therefore S -1 
is l.  R ( r) goes like like r to the power l because R( r) is U (r). But there is another possibility. 
It’s a second order differential equation. So you must have 2 linearly independent solutions and 
the other solution implies S = l +1 or S = - l.  
 
So U (r) ~ r to the –l or R(r ) ~ r to the –l-1. But that’s a not a regular solution. That violates our 
boundary condition. Even at l = 0, it violates the boundary condition. You would like U to 
vanish. It violates the solution so it’s not physically acceptable. You see I have a differential 
equation but i also have a boundary condition. Those are the physically acceptable solutions. Just 
as if i give you a differential equation, you may have a non normalizable solution but the 
physically acceptable wave function is normalizable one. So this (Refer Slide Time: 33:30) 
solution is not an acceptable one. It’s not that it doesn’t play any role whatsoever. The fact is this 
is only near r = 0. They are always 2 linearly independent solutions to the general equation and 
the general solution is a superposition of the two.  But you have to also satisfy the boundary 
conditions. So this is the physically acceptable solution (Refer Slide Time: 33:55).  
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And this incidentally answers the question of what’s the actual behavior of U near the origin. 
The behavior is U goes like r to the l +1. So in the ground state, if l is 0, U really goes like r and 
this (Refer Slide Time: 34:11) goes like a constant. So that’s our first lesson. In fact, you could 
do something better. You could say suppose V ( r) was 0, I am looking at free particle motion in 
spherical polar coordinates, what would it look like?  Normally, they would depend on the initial 
state. If I have any initial plane wave state, then of course I must expand the plane wave in 
spherical waves and then look at what happens to each one of these. That happens in scattering 
theory write now I am worried about bound states here. So if you have no potential at all, you 
can’t support any bound state anyway.  
 
But it tells us that if you had this (Refer Slide Time: 34:54) equation, then if the potential 
behaves sufficiently well near the origin, then this (Refer Slide Time: 35:02) is the way the 
physically acceptable wave function behaves near the origin.  so you manage to extract that piece 
of the information. Now you could look at difference classes of potential. For example, suppose 
this is - V 0 (Refer Slide Time: 35:20), it’s a well till the point a and 0 after that. One could put 
that in here (Refer Slide Time: 35:30) and say V(r ) is - a constant V 0 till r = a and after that, it’s 
0 and ask what do the normalizable solutions look like. Now what would the wave function look 
like as a function of r? What should the wave look like in this (Refer Slide Time: 35:50) region? 
It should clearly die down exponentially otherwise you can’t normalize it. And in this (Refer 
Slide Time: 35:56), it could be oscillatory out here and this is the problem of a particle in a 
spherical well. Because now you have said the potential V = 0 till a certain radial distance and 
after that it’s completely 0 and it’s in an attractive potential. so it turns out you can solve this 
problem and I’m going to give it as a problem and tell you to show that you have a bound state if 
the well depth is sufficiently large, unlike the one dimensional case where no matter what the 
well depth was, as long as there are finite depth and width, you always had at least one bound 
state which is the ground state. And then you may or may not have had excited states. In this 
problem in 3 dimensions, it turns out that you need to have a sufficiently deep well in order to 
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have a bound state. Otherwise it’s not going to work because it’s a 3 dimensional problem. And 
then if the well is deep enough, you may have excited states. Our interest now is really to look at 
the Kepler problem, the 1 over r Coulomb problem. Let me explain where that comes from. 
  
(Refer Slide Time: 00:37:14 min)  
 

 
 

If this (Refer Slide Time: 37:18) quantity is = - z e squared by r for the hydrogen atom, then one 
is faced with the task of solving this equation explicitly and there are changes of variables which 
lead you to a special function called the Laguerre function and one can solve this equation 
completely, put it back and write down the exact solutions. I am not going to go through that 
here.  
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It’s a standard piece of algebra in text books but it turns out in that case that the energy levels E 
for the 1 over r potential, are functions of the following combination. They are functions of only 
n = nr + l +1. since this radial quantum number goes 0,1, 2, 3 as i said earlier, l goes 0,1, 2, 3 and 
n itself goes 1, 2, 3 etc and is called as you know the principle quantum number. E n goes like -1 
over n squared in suitable units. There is no explicit l dependence. This is a consequence of the 
fact that the potential is 1 over r. it has extra symmetries. It is not true for a general central 
potential for which the energy eigenvalues are functions of 2 quantum numbers but in this 
special case, it can be reduced to a single combination. This is called accidental degeneracy and 
as i said, on several earlier occasions, it is a peculiarity of the coulomb problem.  
 
In a very short while, I will tell you where this extra symmetry is. nr is 0,1, 2, 3, etc and now if 
you work it out in the required square intagrability etc, then not only is n 1, 2, 3 all the way to 
infinity but l runs 0,1, 2 up to n -1. So as all of you know, this leads to the counting of the 
degeneracy of hydrogen atom state. when the principle quantum is n, then the possible number of 
linearly independent states corresponding to this quantum number n have to be computed by 
summing over from m = - l to + l summation l = 0 n -1 and when you include spin, then the 
electron can have 2 possible spin projections along any direction. Therefore, there is an extra 
factor 2. And it’s a trivial exercise to show that this is = 2 n squared. this is 2 l +1 and summation 
l = 0 to n -1 up to l +1 is n squared and when you multiply it by 2, you get 2 n squared. 
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(Refer Slide Time: 00:40:27 min)  
 

 
  
So this is what happens in the case of the hydrogen atom. We will come in a minute to what the 
reason for this extra degeneracy is. But I emphasize once again except for these problems a 
special symmetry and there are just 2 of them. One of them is a 1 over r potential and the other is 
3 dimensional harmonic oscillator. Except for these two, in general for a central potential, the 
energy will depend on the orbital angular momentum quantum number as well. That degeneracy 
is not lifted. No dependence on m, the magnetic quantum number for any central potential is due  
to spherical symmetry but there is dependence on l. what happens in the case of the harmonic 
oscillator? Let’s do that also quickly.  
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This Hamiltonian V (r ) = 1/2 m omega r squared. And that problem is very to solve. In fact, we 
don’t need spherical polar coordinates at all because r squared is just x squared + y squared + z 
squared and del squared in cartesian coordinates is just the second derivatives with respect to 
each of the Cartesian coordinates. The problem separates in Cartesian coordinates and we know 
what the solutions are for the 1 dimensional oscillator. and now you simply have to multiply it by 
the corresponding wave functions in y and z. so for the 3 D oscillator, it’s very easy to find phi as 
a function of x y z. let’s put all these quantities =1 or something and let’s write down what the 
solution is.  
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So here’s my Hamiltonian. It is px squared + py squared + pz squared over to m + 1/2 m omega 
squared (x squared + y squared + z squared). then its completely trivial to write this solution 
down because we know that in 1 dimension, the solution would be e to the - x squared over 2 in 
units of square root of h cross over m omega. So let’s put all those factors. Hn ( x) and then a 
normalization constant. This is the wave function and n runs 0, 1, 2, 3. Now what do you think is 
the wave function in 3 dimensions? Since it is solved by separation of variables in Cartesian 
coordinates, it’s just the product.  
 
(Refer Slide Time: 00:44:19 min)  
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Therefore the actual wave function  phi as function of x y z would be some normalization 
constant multiplied by e to the - x squared + y squared + z squared over 2  Hn (x) Hn (y) Hn (z) 
except that for each degree freedom, you need a quantum number. So it’s n1 n2 n3. This C would 
be a function of n1 n2 n3 of course, that’s what the solution is. What are the energy eigenvalues 
and therefore this is labeled by 3 quantum numbers n1, n 2 and n 3. And what are the energy 
eigenvalues? E as function n1 n 2 n 3 = h cross omega times n1 + n 2 + n 3 + 3/2 h cross omega. 
Each degree of freedom gives a 0 point contribution 1/2 h cross omega and for 3 dimensions we 
have 3/2s. What are the allowed values of n1 n 2 n 3? It’s 01 2 3 etc. so could write this you 
could write this as n equal n1 + n 2 + n 3 and then you have En = (n + 3 /2) h cross omega. 
What’s the degeneracy of the state n? it’s the number ways in which you can write a non 
negative integer n as a sum of 3 non negative integers n1 n 2 n 3 and what’s that? So the ground 
state is 0 0 0. 
  
(Refer Slide Time: 00:46:47 min)  
 

 
 

So gn = ½(n + 2) (n + 1).  the ground state is just 0 0 0. All 3 quantum numbers must be 0. n =1 
can be done in 3 ways; 1 0 0, 01 0,0 01 and so on. So you have n and you got to put them in 3 
boxes, you need 2 partitions. So actually you have n + 2 objects. You can permute them as you 
like. The number of permutations is (n + 2) factorial but the 2 partitions can be permuted among 
themselves which is 2 factorial and the objects can be permuted among themselves, n factorial.  
So when you divide n + 2 factorial over n factorial 2 factorial you get that. So that’s the 
degeneracy of the state and the wave functions of course would depend on n1 n 2 n 3 and the 
ground state has no node at all. It is just the Gaussian e to the - r square as you expect. So this is 
it in Cartesian coordinates. Now what would happen if you solve the same problem in spherical 
polar coordinates? I can still do that. I should get exactly the same answer.  
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(Refer Slide Time: 00:48:20 min)  
 

 
 

Then I go through this l, m etc and it will turn out the energy values are exactly the same but 
once again in this case is turns out that E = En doesn’t depend on l, m once again in this problem 
too but here l runs 0, 2, 4 for n even and 1, 3, 5 for n odd. It can run all the way up to n. so if you 
work this out this is what happens. I leave it you as a trivial exercise to show that if you sum 2 l 
+1 over these allowed values of l then indeed you end of with that degeneracy, not squared but 
this quantity (Refer Slide Time: 49:14). But again this problem has an extra symmetry, exactly as 
the Kepler problem has. Now what’s the reason why the Kepler problem has this extra 
symmetry? We saw in classical mechanics that a particle making an orbit or moving under the 
influence of 1 over r potential in addition to the angular momentum, it has another vector 
constant of the motion, the Laplace Runge Lenz vector. And that carries through in quantum 
mechanics too. 
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V ( r) = - k over some constant over r. this vector classically was = p cross L - m k r over r. and 
this quantity is constant where L is the orbital angular momentum, r cross p. and just to refresh 
your memory, if the classical orbit was like this (Refer Slide Time: 50:54) in an ellipse with1 of 
the foci being the center of attraction, then the direction of this vector must be constant in time. 
so you can evaluate at any instant of time in particular if you evaluated at this (Refer Slide Time: 
51:09) instant of time, its easy to see that its along this (Refer Slide Time: 51:15) direction 
because at that instant of time the momentum is perpendicular to the radius vector and then its 
easy to see that its actually along the r direction itself.  
 
So the direction of the semi major axis and this direction doesn’t change which means the ellipse 
doesn’t precess and that’s a characteristic of bound motion in the1 over r potential. Quantum 
mechanically, this would be an operator but it has to be Hermitian operator. It’s made up of 
observables. It is the summation as its stands. r of course is a Hermitian operator. p is1 and l is. p 
and l don’t commute with each other. l is r cross V. so there is an r part inside l and that won’t 
commute with p. so this is not a Hermitian operator. How should i fix it?  What should i do to 
this? P cross L - L cross p over 2 – m k r over r. And then indeed you can show that this 
comminutes with the Hamiltonian and the presence of this extra symmetry leads to this 
accidental degeneracy. Actually, that’s not a very satisfactory way of saying it. You could ask i 
have another constant of the motion, so why should i have an extra problem symmetry here. For 
this I have to take you back to classical mechanics and recall to you that the Hamiltonian remains 
invariant and the equations of motion remain invariant under a group of transformations which 
have to be canonical so that they are symplectic transformation and they don’t change the 
structure of Hamiltonian’s equations and Hamiltonian has to remain invariant. So you look at 
that sub group of the symplectic group Sp 6 in this case which keeps the Hamiltonian invariant. 
And therefore the set of solutions goes to the set of solutions. And that subgroup for this Kepler 
problem is So4 it has 6 generator and there are from by linear combinations of A and L.  
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So this is the role played by A and L.  Their linear combinations act as generators of 
infinitesimal transformations under which the Hamiltonian as well as the equations of motion 
don’t change in phase space. So that’s what constants of the motion like this do. Similarly in the 
case of the harmonic oscillator, there are large number of constants of motion here not all 
functional independent of each other but there is a symmetry group. The 3 dimensional 
dynamical symmetry group happens to be Su 3. It has 8 generators and they can be formed from 
these combinations. Actually it turns out that this combination here, pi pj + qi qj where ij runs 
from 1, 2, 3 are actually constants of the motion. Of course you put i = j and sum over I, that 
gives you just the Hamiltonian itself. That’s one of them but that is a tensor of rank 2. That is the 
symmetric tensor. It is a constant of the motion in suitable units. The angular momentum is a 
constant of motion. So qi pj - pj qi are 3 of these combinations.  
 
They are also constants of the motion and they together form a complicated algebra. The algebra 
happens to be that of Su 3. So that’s the reason why that problem has a degeneracy. Quantum 
mechanically you can write down the corresponding expressions for these generators. They 
commute with the Hamiltonian and you expect this extra symmetry but there is one more way in 
which you can predict when a problem would have this kind of symmetry and that is when the 
Schrodinger equation is separable in more than1 coordinate system. This tells you that there is 
some symmetry. This Hamiltonian is separable in 2 coordinate systems. What are they? Clearly, 
they are Cartesian and spherical polar coordinates. Therefore, you would expect certain 
degeneracy here. the hydrogen atom problem is not separable in cartesian coordinates because 
this 1 over r is 1 over square root of x squared + y squared + z squared in Cartesian coordinated 
but this problem is separable in spherical polar coordinates and what are called parabolic  
cylindrical coordinates. So there are 2 coordinates system under which there are separable and 
then you have this symmetry. Incidentally, if you had just free particle motion, just del squared 
in Hamiltonian which is p squared if you like, then there are 11 orthogonal curvilinear 
coordinates systems in which del squared is separable. So if you had not potential at all you will 
expect that in these 11 coordinates systems.  
 
You would have some special features but the moment you put in a potential V (r), that’s gone 
automatically. now of course we know from classical physics to that the only that r square then 
the1 over r of the only 2 central potentials for which all bounded motion is closed orbits. And 
that carries through to quantum mechanics to. So both the oscillator and Kepler potential are very 
special. They are the 2 solvable cases. As I pointed out, even later in relativistic quantum physics 
and field theory, the 1 over r potential place a very special role.  It’s intrinsic to nature itself for a 
variety of reasons.  So I haven’t solved these problems in a tedious way but solutions are 
available in text books so that you have exact expressions for the wave functions. 
 
But I thought I would give some idea why these solutions look the way they do and that’s more 
or less where i would like to stop. What we need to do now is to ask what happens if the problem 
is not exactly integral? What happens if I add QA and arbitrary Hamiltonian and its no guarantee 
at all that i can solve the Schrodinger equation? Then I would try to do it by what called 
perturbation or approximation methods of various kinds of which perturbation theory is very 
crucial and i would like to introduce that.  
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The other point is, very often you have quantum system and you do something to it, from outside 
you apply time dependent perturbation and then it induces transition between the levels of the 
system. That comes under the purview of time dependent perturbation theory. So I would like to 
introduce in this course, at least the rudiments of both time independent and time dependent 
perturbation theory. There are simple rules including famous a called Fermi’s golden rule which 
I would like to definitely talk about because that’s absolutely crucial to applying quantum 
mechanics anywhere. And after that, the very last topic we will talk about is what I have been 
mentioning throughout namely; the spin statistics collections of identical particles and this will 
help us to terminate the course.  
  


