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So let me complete this correspondence that I promised to bring out between the groups 
of rotation in 3 dimensions and a certain group of 2 by 2 matrices called SU 2 and the 
correspondence goes as follows.  
 
(Refer Slide Time: 00:01:29 min) 
 

 
 

You recall yesterday we have got to a stage where we recognize that a rotation about 
some direction specified by the unit vector n through an angle psi lead to a parameter 
space, the polar angles specifying n and the angle psi which was not simply connected. 
This parameter space in fact was doubly connected and there were 2 classes of closed 
paths in this space which could not be reduced to each other. There were 2 inequivalent 
classes of close paths and I said that this is ultimately what was responsible for the fact 
that you had single and double valued representations of the rotation group. Because we 
also saw that the second class of closed path could be sent to a point. 
 
 It could be reduced to a trivial a transformation if you did 2 such closed paths; in other 
words, you did a rotation of 4 pi instead of 2 pi. And I mentioned that all those 
representations of the rotation group which transformed such that when you went through 
a rotation of 2 pi and you returned to the original state were called tensor representations 
and the others were called spinner representations. Today I want to show you very briefly 
in the beginning that you can look at rotations not in terms of 3 by 3 matrices which 
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would act on the xyz components in some frame of reference but rather as 2 by 2 
matrices which satisfy a certain property of unitarity. So the connection that we want to 
establish is between the group of physical rotations of SO 3; 3 by 3 unimodular 
orthogonal matrices and SU 2 which are the group of 2 by 2 matrices which are unitary 
and have determinant +1. And the way it goes is as follows. you see, instead of 
representing a point in space as a column vector, that is, an arbitrary point (x,y,z) in 3 
dimensional space, instead of representing it  as a column vector in this fashion and 
calling it the position vector r, its possible to represent it another way as a 2 by 2 matrix. 
All we have to do is to replace r by r dot sigma where is the Pauli matrices. and this 
stands for a 2 by 2 matrix and its components are trivially written down from the known 
values of what the sigma matrices are and it (z, - z, x – iy, x + iy) (Refer Slide Time: 
04:27). 
 
And now it’s a trivial matter to verify that if you give me xyz, I uniquely have this matrix 
and if you give me r dot sigma, I can work back and find what xyz are. This is trivial 
because as you can see immediately by structure of the matrix. We have also pointed out 
that any 2 by 2 matrix can always be written uniquely in terms of the Pauli matrices and 
the unit matrix. So once you give me the components of the Pauli matrices; once you give 
me r dot sigma, I give you the vector r itself. So therefore, there is a correspondence 
between the vectors r and the matrices r dot sigma. Now on this, you would have a 3 by 3 
element, so g, if its an element of SO 3 and if its stands for a rotation about the unit 
vector n through an angle psi, it is some 3 by 3 matrix and what you are end up getting is 
r goes under the rotation to r prime which is = this g acting on this column vector r. so 
this is a 3 by 3 matrix which acts on this column vector r and produces x prime y prime z 
prime.  
 
In exactly the same way, there exists a 2 by 2 matrix which we will discover 
corresponding to this element g such that U acts on this 2 by 2 matrix with a U inverse 
here and this gives you r prime dot sigma. So therefore, this 2 by 2 matrix U which we 
are going to discover is a representative of this rotation here. And the question is what 
kind of relation is there between g and U. once that is specified, and then I might as well 
represent points in space by 2 by 2 matrices r dot sigma and rotations by U rather than g 
here. And the task is to discover what are the properties of this matrix U. what is the 
matrix U that corresponds to a rotation in SO 3? Obviously you would also be 
parameterized by theta phi and psi but what sort of matrix is it? It’s a 2 by 2 matrix so 
that if the result is still a 2 by 2 matrix here.  
 
So this is the mapping between one way of representing the rotations and another way of 
representing the rotations. These matrices U will turn out to be the group of 2 by 2 
matrices which are unitary and which have got determinant +1. The original one was 3 by 
3 matrices which were orthogonal and had a determinant +1 and also the elements were 
also real. There is not guarantee here that the elements are going to be real. They would 
have e to the i phi and things like that sitting there. So this is the program.  The advantage 
is that the group Su 2 simply connected it’s not doubly connected it’s like a sphere and 
we will see what it is. So instead of proving the formal correspondence let me motivate it 
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by telling you how this geometrical construction can be done. What one does is to say 
that you can make a mapping from the surface of unite sphere in 3 dimensions to a plane 
by something called stereographic projection. 
 
(Refer Slide Time: 00:08:35 min) 
 

 
 

So let me specify 3 axis say xi, eta and zeta and put a unit sphere center at the origin such 
that this (Refer Slide Time: 08:54) is the equatorial plane and that’s the unite circle and 
lets call this plane the xy plane (Refer Slide Time: 09:06). So the x direction is along the 
xi direction and the y direction is along the eta direction and this is the xy plane. In fact 
it’s a complex plane. Then what is a stereographic projection? It corresponds to taking 
the North Pole whose coordinates are 0 01; xi and eta are 0 and zeta is1, and then 
drawing a line from there to intersect this sphere at some point and then to go and 
intersect the plane at some point. And the point where it intersects this sphere is mapped 
onto this point on the plane. And you can see that for a every point on the sphere, there is 
a point on the plane and vice versa. This is stereographic projection. The North Pole 
(Refer Slide Time: 09:59) of projection is mapped onto the point at infinity. The South 
Pole is mapped on to the origin in the complex plane; x + iy. The equator is mapped onto 
the unit circle. And what are these maps? 
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(Refer Slide Time: 00:10:18 min) 
 

 
 

Well, xi is =2 x over mod z squared +1. z = x + iy; that’s my complex z plane here. Eta 
=2 y over mod z squared +1 and zeta is = mod z squared -1 over mod z squared +1. 
 
(Refer Slide Time: 00:10:38 min) 
 

 
 

I leave you to figure out the inverse maps. Then of course, this is a unit circle. So you 
always satisfy xi square + eta square + zeta square =1. So you map this sphere called the 
Riemann sphere onto the complex plane by stereographic projections. 
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This projection has many interesting properties. For example it preservers it maps circles 
on the sphere onto either circles or straight lines on the plane because any latitude is 
clearly mapped onto the circle concentric with the origin. Any longitude is mapped onto a 
straight line passing through the origin. The map of the point at infinity is the point at 
infinity in the complex plane. Now a rotation in physical 3 dimensional space would 
correspond to rotating the Riemann sphere. And what does it do on the plane is the 
question. It induces a transformation on the plane as well and it’s easy to check. I am not 
going to prove this specifically that in 3 dimensional space, if you rotate the xy plane 
about the z axis, then the rotation matrix is a very simple form.  
 
(Refer Slide Time: 00:12:23 min) 
 

 
 

So if for example, n = ez about z axis and instead of psi = some angle gamma, I am 
imagining the 3rd Euler angle gamma. So I rotate in the xy plane about an angle gamma. 
then its clear that this element g of SO 3 is given by cos gamma, sin gamma, 0, - sin 
gamma, cos gamma,0 and 0,0,1 (Refer Slide Time: 12:57). Only the x and y coordinates 
change and the z doesn’t. if you put that back here and I ask what does that 
transformation correspond to rotation in this plane about this  z axis, then its easy to see 
that U is = e to the i gamma over 2, 0, 0, e to the - i gamma over 2. so this element g, the 
counter part of it, in this other way of looking at rotations is in fact the pair of matrices 
here (Refer Slide Time: 13:50). 
 
Similarly no transformation or no rotation at all would mean the identity matrix here for 
g, just 1,1,1 and the diagonals. And that would correspond to setting gamma = 0 here. So 
it would be + or - the unit matrix in this language here (Refer Slide Time: 14:13). And 
that’s not going to change. You can see if I put the identity matrix or - the identity matrix, 
i am going to retain just the same r dot sigma. Similarly for rotation about the zeta, xi and 
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eta axes. They are a little more intricate but one can write them down because you know 
how to write it down in this case. 
 
For instance, if there is a rotation in the in the y z plane, then its clear that the x thing 
would give me an unchanged value and you can compute what it does correspondingly 
new by those transformation rules. Then the question is, what kind of matrices do you 
have for U? it turns out that the matrices you have for U, the requirement that the 
matrices be of this form and that the magnitude of r be preserved suffices to ensure that 
these matrices U must be unitary and unimodular. 
 
(Refer Slide Time: 00:15:24 min) 
 

 
 

By unitary it means that the hermitian conjugate is the inverse of the matrix. U U dagger 
is = the identity matrix. Incidentally, this also implies U dagger U. it says U dagger U 
inverse. Orthogonal says O transpose is O inverse whereas that says complex conjugate 
transpose is the inverse. That is the difference unitary and the orthogonal. Orthogonal is 
what happens if the matrices have got real elements. The unitary matrix with just real 
elements is orthogonal. So all 2 by 2 matrices which satisfy these conditions would 
represent physical rotations in 3 dimensional space. And it’s an easy matter to put these 
conditions in. start with the general matrix abcd with possibly complex entries and put in 
the requirement. How many independent elements for a complex matrix with 2 by 2 
matrix are there? There are 4 elements; each of them can be complex. So you have 8 
independent real parameters. Now you impose the condition that it should be unitary. 
There are 4 conditions and the determinant must be +1. So it becomes 5 conditions and 
you end up with 3 parameters.  But 3 is precisely the number of parameters you have here 
to specify rotations. Therefore it’s a very reasonable, plausible and provable exactly that 
in fact those are the correct matrices which would represent rotations but what is general 
2 by 2 unitary matrix going to look like if determinant +1? It’s going to be of the form 
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alpha sum beta - beta star alpha star. That’s what a general U would look like but the 
determinant must be +1. So it satisfies mod alpha squared + mod beta squared=1. 
Therefore these matrices; the real and imaginary parts alpha 1 alpha 2 beta 1 beta 2, none 
of them can exceed 1 in magnitude because a sum of the mod squares of alpha and beta 
must be =1. And written out in terms of components, what does it mean? 
 
(Refer Slide Time: 00:18:29 min) 
 

 
 

Therefore what is the parameter space of SU (2)? SU(2) is parameterized by 4 real 
numbers, alpha1 alpha 2 beta1 beta 2 satisfying the constraint that the sum of the squares 
of all these4 real numbers must be =1. Therefore, it’s a sphere in 4 dimensions. The 
surface of a sphere embedded in 4 dimensions or S 3. So the parameter space of SU (2) is 
S 3. S 3 is simply connected. Phi1 of S 3 is trivial and is 0. On the other hand, SO (3) is 
not simply connected. So what is the connection between these 2?  
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(Refer Slide Time: 00:19:45 min) 
 

 
 

Well, you have 1 group. Here is a set of all matrices in SU (2). And here is a set of all 
matrices in SO (3) (Refer Slide Time: 19:57). For every rotation here; a point here is a 
rotation with some n and some psi, there are two SU (2) matrices which differ by a sign. 
So this gets mapped here and this gets mapped here (Refer Slide Time: 20:15).  Some 
matrix U here gets map to sum element g here (Refer Slide Time: 20:20). And this is - U 
and that gets map to the same element. The unit element here (Refer Slide Time: 20:28) 
is mapped by both the identity and - the identity both these guys get mapped on to this 
(Refer Slide Time: 20:49). So this implies that there is not a 1 to1 mapping but a 2 to1 
mapping. So it’s the 2 to1 homomorphism from SU (2) to SO (3). 
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(Refer Slide Time: 00:21:12 min) 
 

 
 

Now these 2 elements themselves which get mapped onto the identity element here are 
called the center of this group and what one writes in technical terms is that SO (3) is 
isomorphic to SU (2) quotiented with Z 2 because these 2 elements; the unit 2 by 2 
matrix and - the unit 2 by 2 matrix themselves form a group under group operation of 
multiplication. 
 
(Refer Slide Time: 00:21:51 min) 
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Because i times i is i, - i times - i is i and once again i times - i is – i. so they form a group 
among themselves. And it just the cyclic group of order 2. It is the group isomorphic to 
the set of integers under addition modulo 2. So you could identify this i with all even 
integers - i with all odd integers and the groups are identical. It’s the same z 2. So one 
says that SU 2 quotiented with Z2 is SO (3). the parameter space of this is S 3 and you do 
pi1 of this, S 3 is simply connected and you end up with z 2 along which is pi1 of SO (3). 
This group is called the universal covering group of SO (3). SU (2) is the universal. 
  
(Refer Slide Time: 00:23:10 min) 
 

 
 

Every Lie Group whose parameter space is not simply connected is guaranteed to have a 
universal covering group whose parameter space is simply connected. And there is a 
homomorphism n to1 homomorphism between the covering group and the elements of 
the original group. so it’s not an isomorphism but a homomorphism. In this, you have the 
all the value representations of SU (2). It would include the single valued as well as the 
double valued representations of a SO (3). So really the fundamental group is SU 2 rather 
than SO (3) there because this is the bigger structure as you can see. Now the interesting 
thing is we discovered these properties of the angular momentum eigenvalues and so on 
by just the algebra of the commutators. The fact is that every Lie Group of this kind has 
an associated algebra of infinitesimal generators which when exponentiated would give 
you the elements of these matrices. Just as I take an infinitesimal generator of rotations 
and exponentiate it, I get a finite rotation. That algebra is called the Lie Algebra 
corresponding to the Lie Group. And the Lie Algebras are exactly the same. 
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 (Refer Slide Time: 00:24:53 min) 
 

 
 

The Lie algebra of SU 2 which is written as su2 and so3 (in small letters), these are the lie 
algebras. The Lie algebras of the generators are exactly the same and each of them is just 
the angular momentum algebra. So these 2 groups locally look similar. so in a 
neighborhood of this g, if you look at infinitesimally different rotations, as compared to 
the parameters of g, you would get an infinitesimal neighborhood here as you would in an 
infinitesimal neighborhood here (Refer Slide Time: 25:36). And if you looked, only in 
this neighborhood or only in this neighborhood. But globally the group structure is 
different from that group there because there is a 2 to1 homomorphism. So the Lie 
algebras of a group and its covering group are always the same but the global structure is 
different. 
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(Refer Slide Time: 00:26:14 min) 
 

 
 

For any dimension, the group SO (d) in d dimensions, where d is 3,4, 5 etc, the covering 
group for it is called spin, d. that’s the covering group. A spin 3 happens to be SU (2) for 
3 dimensions. Otherwise it’s called the spin group. Now the next question is the spin for 
the higher dimension, if you say 4, 5, etc is it SU d n -1? The answer is no. Now; there 
are some special relations SU (4) occurs as a covering group later on but not in general. 
It’s just the spin group. A physical significance most important one in our present 
purpose is SU (2). So its worth understanding SU (2) very well and SU(2) has the 
advantage that its simply connected and every matrix in SU 2 has that simple form and 
you  could easily represent it in terms of Pauli matrices. So you see why the Pauli 
matrices play such a fundamental role in understanding quantum mechanics, spin and so 
on.  
 
This is because it is really connected with a rotation group and not just spin half. May be 
a few exercises on this and I will clarify some of these things. Let’s now go back to our 
physical problem of a particle in a spherically symmetrical potential. We haven’t done 
this. we talked about bound states in1 dimension, we looked at potential problems in 1 
dimension but we haven’t yet looked at the problem of a particle in a spherically 
symmetrical potential. So let’s do that. You have already solved that hydrogen atom 
problem in the chemistry course long ago. Let me try and justify what was done there and 
generalize this a little bit. What is our task? We would like to motion in a central field.  
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(Refer Slide Time: 00:28:37 min) 
 

 
 

I have in mind the spinless particle. I am not going to look at spin now which is moving 
in a central field of force like the Kepler problem. Now classically I know that in such a 
situation angular momentum about the origin or the center of force is conserved. And that 
fact will remain true in quantum mechanics as well and what we need to know is what 
does it imply for the energy levels of the system. So here is a problem where in addition 
to the Hamiltonian, you are going to have other operators which commute with a 
Hamiltonian and therefore simultaneous eigenstates can be found and what is the 
consequence for the energy eigenvalues in eigenstates. So what is the Schrodinger 
equation? It’s - h cross squared over 2 m del squared. That’s the kinetic energy part and 
now I am writing it in the position basis and I am interested in stationary states. In other 
words, eigenstates of the Hamiltonian with specific energy is E. the Hamiltonian is just p 
squared over 2 m + a potential which is a function only of the radial coordinate, r. No 
theta. No phi. 
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(Refer Slide Time: 00:29:49 min) 
 

 
 

Now just to recall what happened in classical mechanics that p squared was the square of 
the linear of the momentum. It could therefore decompose into the radial momentum and 
the angular momentum. So you could also write this classically as = p radial momentum 
squared over 2 m + angular momentum squared over 2 m r squared, that’s twice the 
moment of inertia +  V ( r). And we know it’s easy to prove that L is a constant of the 
motion, dl over dt was 0 or the Poisson bracket of L with the Hamiltonian was 0. 
Classically there was nothing to forbid you from simultaneously finding sharp values for 
Lx and Ly and Lz. but quantum mechanically, they don’t commute with each other and 
therefore you can’t do that and quantum mechanically, we expect we would be able to 
diagonalize any 1 component of L.  
 
So the Hamiltonian is exactly the same. The definition of L remains unchanged. L is r 
cross p. r and p doesn’t commute with each other. The cartesian components of r don’t 
commute with the counter parts of p. on the other hand, I write L as r cross p and r p are 
Hermitian operators. So shouldn’t I symmetrise this or something like that? xi and pj 
commute with each other unless i = j and since in the cross product, you never have a 
Cartesian component of the coordinate and the same component of the momentum, this 
commutation problem isn’t there.  
 
Otherwise, suppose that one is the case, what should I have done? I should do r cross p - 
p cross r and take it divide by 2 but i don’t need to do that here. What would be the radial 
momentum by the way? Because classically, I would have {r, pr} =1 and quantum 
mechanically that should translate to [r, pr] = ih cross times the identity operator. Now 
my general rule is that in the position basis p goes to - ih cross del. and this is fine for 
each Cartesian component but i have to be little a careful about the radial component. 
Normally classically I would define the radial component, pr as simply r dot p divided by 



 15 

r itself. It’s the unit vector along the radial direction dotted with p to give me pr. what 
should I do quantum mechanically, these operators don’t commute? pr classically is r 
over r dot p. it’s the component of p dotted with the unit vector in the radial direction. 
That’s my definition of the radial momentum. 
 
(Refer Slide Time: 00:33:47 min) 
 

 
 

But I could also have written this as p dot r over r. There is no commutativity problem 
classically. Quantum mechanically what should I do? Which1 should I choose? But you 
can’t choose either one of them because if you choose this or that, you will have a trouble 
with hermiticity. It should be hermitian. If you got a product ab, the hermitian conjugate 
is ba. If b and a don’t commute with each other, you are in trouble. So what should the 
quantum mechanical thing be? pr would be p dot, notice I can’t bring this r out here, r 
over r + r over r dot p, that would be a good compromise but it should become hermitian 
which this is , so I need this + sin and then I have to make a half here.  
 
By doing this I ensure that pr is actually hermitian as it should be so that the eigenvalues 
are real. More technically self-adjoint but this is guaranteed to give real eigenvalues. So 
that is the right way to write it. So what would the quantum operator be? p Cartesian is - 
ih cross delta over delta xi. There is no problem with that. But pr is not - ih cross delta 
over delta r. that will not satisfy this condition here. So it turns out that 1 over r delta over 
r r satisfies the conditions that you need. You can work it out by putting p as - ih cross del 
there.   
 
So this becomes = - ih cross delta over delta r +1 over r. that’s the operator corresponding 
to the radial momentum. and then indeed, in quantum mechanically also one can write V( 
r) in this form here where pr in the position space has this representation (Refer Slide 
Time: 36:24). So we have to make sure it’s actually hermitian. Then what does the 
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Schrodinger equation become? by the way, I am assuming that you are familiar with the 
fact that the way you arrive at a particle moving in a central potential originally for 
physical problems is when you have 2 particles which experience a certain interaction 
which depends only on the distance between them, the centre of force and then you go to 
the center of the mass coordinates eliminate the center of mass and then relative 
coordinates you get a1 body problem in a central potential. So I am assuming this job has 
already been done. So the Schrodinger equation now can be written down. its just H 
acting on psi = ih cross delta psi over delta t and for stationary states which are 
eigenfunctions of the Hamiltonian, then the time independent Schrodinger equation is del 
squared phi(r) + V(r ) phi (r ) = E phi ( r ). This is the time independent Schrodinger 
equation for stationary states. That is the equation we have to solve.   
 
Let’s write it out in the position basis and see what happens explicitly. In the position 
basis, all we have to do is to take del squared and write it out because that’s what p 
square is. 
 
(Refer Slide Time: 00:38:57 min) 
 

 
 

It’s 1 over r square delta over delta r r squared delta over delta r +1 over r squared sin 
theta delta over delta theta. There aren’t too many things worth memorizing but delta 
squared in spherical polar coordinates is worth memorizing. Otherwise you have to work 
it out each time which is a nuisance. +1 over r square sin squared theta delta 2 over delta 
phi 2. So if I use this (Refer Slide Time: 39:50) prescription, then it is clear that what I 
have is p squared = - h cross square delta squared. And I am writing this as = pr squared 
+ l square over r squared. So what is L squared? We can identify L squared here in the 
position basis. It’s quite clear from here that L squared is 1 over sin theta delta over delta 
theta sin theta delta over delta theta +1 over sin squared theta delta 2 over delta phi 2. 
That’s L square in the position basis written in spherical polar coordinates.  
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So now tell me why shouldn’t I bother about the order between little r and L squared? 
They have nothing to with each other because they are independent coordinates. This is 
entirely radial and that’s got only the angular variables. So they commute with each 
other. Therefore it doesn’t matter whether I wrote this as L square over r squared or 1 
over r square L square or L square times1 over r square it didn’t matter. But one is right 
to be cautious. now this equation suggests immediately that you can simplify it because 
this coefficient V (r) which is a hard part, you don’t know it’s a general potential and 
depends only on little r.  
 
So it at once suggests that you try to solve the problem by the method of separation of 
variables. And then you have to use uniqueness theorem to show that that is a unique 
solution. If you get more than1 solution for the same boundary conditions then you have 
to superpose all these solutions with appropriate normalizing constants to get a physical 
solution. And so far I haven’t said whether E is positive or negative. It’s only an energy 
eigenvalue. So since the Hamiltonian is Hermitian, you are guaranteed this E is a real 
constant and now what values of E are physically acceptable depends on V ( r), the 
boundary conditions and what you require of the solution.  
 
(Refer Slide Time: 00:42:40 min) 
 

 
 

So the first step is to put phi(r, theta, phi) =  R ( r )multiplied by an angular function 
which depends on theta and phi alone. So some F (theta, phi).  Substitute it in here. use 
the fact that the radial part delta over delta r part acts only on capital R and the angular 
part, the sin and the derivatives with respect to theta and phi act only on the F. now to cut 
a long story short, we know that in this problem and this is true classically. 
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 (Refer Slide Time: 00:43:30 min) 
 

 
 

And quantum mechanically, you know that L squared with H is 0. That’s simple to prove 
that angular momentum is conserved in this problem. The only difficulty would have 
been if this V(r) had dependent on other coordinates as well on the theta and phi. That’s 
not true here. [Lz, H] = 0. You could have chosen any component but I just choose this z 
axis because once I have chosen spherical polar coordinates, I have singled out an axis 
the polar axis. So let me quantize along that direction. So I have a situation where I have 
a set of 3 mutually commuting observables H, L squared and Lz.  
 
Therefore I expect that they have a common set of eigenvalues. I expect therefore that the 
eigenvalues would be labeled by the quantum numbers corresponding eigenvalue of H L 
square and Lz. I therefore 3 quantum numbers. Let me call them the radial quantum 
number, the angular orbital momentum quantum, l and m. now what sort of equation, 
once you go through this rule, what sort of equation would this function F satisfy? It has 
to be an angular momentum eigenstate and F is only the portion which carries the angles. 
So the equation it would satisfy is precisely this. 
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(Refer Slide Time: 00:45:29 min) 
 

 
 

L squared acting on this F must be = the angular momentum eigenvalues which would be 
this (Refer Slide Time: 45:40) because you already know that the square of the angular 
momentum has eigenvalues h cross times l times l +1. So essentially these functions this 
function F would be labeled by the eigenvalues little l and little m too. So what is the 
equation it would satisfy? It’s conventionally denoted as Ylm and it’s labeled by l and m. 
it’s a function of theta and phi out here. This would be = -l times l +1 Ylm (theta, phi).  
Now the next thing to do is to assume that this Ylm of theta and phi is a product of a 
function of theta and a function of phi, again separation of variables and it is suggested 
by the form of that equation there. So let me write the solutions down.  
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(Refer Slide Time: 00:48:45 min) 
 

 
 

Ylm of theta and phi are the following and then it becomes a standard equation. Once you 
separate out the phi part and require that it be single valued in phi which we already 
know that m must be an integer running from - l to l, then the equation that you get is 
called the differential equation satisfied by the associated with the Legendre polynomials. 
And the actual solution looks like this. Ylm of theta and phi has got a normalization 
constant which I remember is 2l +1 over 4 pi (l-m) factorial over (l + m) factorial (refer 
Slide Time: 49:50). This is for m greater than or equal to 0.that - L less than = m + L 
itself is 01 2 etc. at the moment, this is all we know. We don’t know that it stops at some 
principle quantum number n -1. We are just solving the angular part and that’s just a 
standard in solving the problem of the orbital angular momentum. This is nothing to do 
with V ( r). We don’t yet know what V ( r) is. So this is the definition of Ylm ( theta, phi). 
It’s called spherical harmonic. And incidentally, for m less than 0 because m can take on 
negative values as well, you need a definition and that definition is as follows. 
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(Refer Slide Time: 00:50:54 min) 
 

 
 

Yl m = -1 to the power mod m Yl mod m star of theta phi. So it just differs by a phase 
factor and then that the e to the im phi complex conjugate. These quantities are the 
associated Legendre polynomials and they are tabulated. They are derivatives of the 
general polynomials themselves.  
 
(Refer Slide Time: 00:51:52 min) 
 

 
 

So if recall the definition, Plm ( x) is = (1 – x squared) to m over 2 d m over d x m Pl (x). 
There may be some normalization factors I have left out. But as I recall it, it is the 



 22 

derivative of Pl ( x). Pl of x itself is the ordinarily Legendre polynomial. P 0(x) is1, P1 (x) 
is P1 x is 1/2 of 3 x squared -1 and so on and so forth. So Pl ( x) has got parity -1 to the l. 
it’s a polynomial of order l. and its got a nominalization rule. So if you recall that’s 
(Refer Slide Time: 53:14) = 2 over 2n+1 delta nl. So those factors have been put in here 
and you end up with a similar normalization condition here. If you integrate this 
multiplied by its complex conjugate and you integrate over theta and phi, over all solid 
angles then you would get Kronecker delta in mm prime.  
 
So I am not going to bother to write it down in that case but one can derive it fairly 
trivially. So these functions are already normalized. We have already formed an 
orthonormal basis for the angular functions. The question is what happens to the radial 
part. Now notice that once you have taken care of the phi dependence which came from 
here by that e to the im phi, then matters become very simple. You can go back and ask 
what it does for the radial equation itself. What is the equation obeyed by R? And then 
something very simple happens. The equation obeyed by capital R is what we want to 
discover.  
 
(Refer Slide Time: 00:54:38 min)  
 

 
 

Remember that I put phi = this times now it is Ylm of theta and phi and I would like to 
know what is the equation obeyed by this. now that equation will have the radial part 
which is the - h cross squared over 2 m 1 over r square d 2 over dr 2 etc but this part of 
del square which involves d 2 over dr 2 has also a d over dr part. And the disadvantage of 
that is that d over dr is not self-adjoint. d 2 over dr 2 is. So, one would like to get rid of 
the first derivative always. And this is done in a standard form by saying let U ( r) = rR 
(r) and then you write differential equation down for U . But before I do that, lets go back 
and ask what is the equation obeyed by this a capital R. it was - h cross square over 2 m1 
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over r squared d over dr of r squared d over dr R, that was a kinetic energy part + V ( r) 
times R that came from the potential energy. 
 
(Refer Slide Time: 00:56:25 min) 
 

 
 

And then there was portion which came from the angular portion which was - h cross 
squared over 2 m r squared and L squared, but L square is + h cross square l times l +1 
over r squared, this also acts on R in this fashion = E times R and the Ylm canceled out on 
both sides. Now take a look at this equation. If this potential V ( r) is finite everywhere, 
then so should the wave function also be finite everywhere. So what is the boundary 
condition I require on this R, especially R = 0, what should I expect? What should happen 
to this at R = 0. I expect it to be finite. So if I want to get rid of the first derivative term 
by putting a U (r) here, this is finite at the origin which would imply that U ( r) must 
vanish at the origin. So the boundary condition I require is that they should vanish at the 
origin. Is there anything I require of the potential at the origin because remember, that 
even though it looks like a1 dimensional problem now, there is a huge difference in the 
fact that little r runs from 0 to infinity rather than - infinity to infinity.  
 
So 0 less than = r less than infinity. That’s very important. So I need to specify now some 
conditions at the origin as well as + infinity whereas in a 1 dimensional problem on the 
line I just specified it at - and + infinity. Now we have to be careful about the origin. Now 
for this equation it’s a second order differential equation, the most singular part is going 
to come from this 1 over r squared everywhere. So it is clear that this 1 over r squared is 
going to play huge role near the origin and you don’t want in a second order differential 
equation, if you recall the Forbenius theory of second order differential equations, you 
would like the singularities to be ordinary singularities. You want this to be Fuchsian 
equations only then you would have respectable spectrum and so on and so forth. Now 
these statements can be made fairly rigorous but I don’t want to get into the technicalities 
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of differential equations here. You don’t want a singularity worse than1 over r square at 
the origin. So the assumption i am going to make, we will relax this assumption and i will 
tell what happens relax it is that limit as r goes to 0, r squared V ( r) = 0. In other words, 
V (r) does not have a singularity worse than 1 over r squared. You could ask what 
happens V (r) is exactly =1 over r squared.  That is the limiting case and we will come 
and look at it specially. So, as long as V ( r) if it blows up at the origin, it  blows up no 
worse than1 over r to the 2 – epsilon. If this limit is finite, that would imply that V (r) 
goes like 1 over r squared near the origin. Then this is a limiting case. It will turn out that 
if the strength of this1 over r square is some number alpha, for alpha less than a certain 
critical value you would have respectable bound states, for greater than, that thing will 
fall into the origin. They will be collapsed. And if that limit is infinite, if its unbounded, 
then the V ( r) goes to 0. It blows up worse than 1 over r squared at the origin.  
 
Then it is collapsed with the origin. So the1 over r squared potential is the marginal case. 
On the other hand, the potential which we are interested in, the Coulomb potential is 1 
over r and that’s very safe already. So we will relax this and come back to this later. Now 
on the wave function, I am going to put in the condition, limit r tends to 0 U( r) = 0. So 
that’s my boundary condition at the lower end. And at that upper end, the boundary 
condition should be normalizable. Now what is the normalization condition on phi? It 
says integral mod phi square dv should be finite.  
 
That’s all you need and after that we will fix the constant so that the thing comes out to 
be1. Now the angular part is already normalized to1. So this would imply that integral 
mod R squared less than infinity is r squared dr. and integral 0 to infinity mod U squared 
dr less than infinity .that’s all you need here because r times r is in fact U by definition. 
So this sets our problem. this is a boundary condition under which I am going to solve the 
equation for U. limit U  goes to 0, U( r)  is 0 and U ( r) should vanish at infinity 
sufficiently fast that this integral is finite (Refer Slide Time: 01:03:00). Please notice that 
this requires this requires for bound states I want this normalization this requires that U 
goes to 0 as r tends to infinity sufficiently rapidly, for bound states for normalizable 
solutions. Now what is the equation for U itself? 
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(Refer Slide Time: 01:03:27 min) 
 

 
 

The equation for U itself is d 2 U over dr 2, the first order term has gone away + 2 m over 
h cross square I bring the e to this side - V ( r) - l times l +1 h cross squared over 2 r 
squared on U = 0 . That is the second order equation obeyed by U. but it’s showing us 
something very interesting. Again I call your attention to the fact that 0 less than equal to 
r is less than equal to infinity. It’s a like a 1 sided problem. Not a full 1 dimensional 
problem but a 1 sided problem with a barrier at the origin because I want to put this 
boundary condition u of r = 0. That would be the case in a1 dimensional problem if I put 
an infinite barrier at the origin. Then the wave function is 0 at the origin. So it’s like 
saying I have a potential on a line, - infinity to infinity, the physical region is 0 to infinity 
but I have an infinity barrier at R = 0. No negative r allowed. And what is the effective 
potential? 
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(Refer Slide Time: 01:05:03 min) 
 

 
 

It’s a function of r. it’s the actual physical potential + l times l +1 h cross squared over 2 
m r squared. So it’s as if there is an extra potential due to the orbital angular momentum 
of the particle and that’s called the centrifugal barrier because this potential as you can 
see, is 1 over r square with the positive sign. Therefore it’s always a repulsive potential. 
so if I have a potential, here is r, here is V ( r), if this potential was some nice bound state 
kind of potential (Refer Slide Time: 01:06:00), suppose this was the potential, then I 
would expect some bound states inside here. Now with the advent of this extra term here 
which blows up at origin at l = 0, this isn’t there at all. This is what will happen in the 
ground state but for higher excited states, when l is not 0, that offers a repulsive potential 
and therefore this potential would start looking like this (Refer Slide Time: 01:06:26). 
With increasing l, it becomes shallower and the minimum shifts to the right. This is 
exactly the classical counter part of the fact that when you have a bound state, the higher 
the angular momentum, the further the orbit is. 
 
And that is precisely what is happening and the potential is getting weaker. It’s getting 
less and less strongly bound. It’s getting more and more weakly bound and that’s exactly 
what increasing l would be. Now you begin to see why the 1 over r square potential is so 
critical. It depends on the relative signs of this and that’s because if you had a1 over r 
squared potential, depending on what the l value is, you may or may not be able to 
support a bound state. It may fall into the origin or it may get kicked out completely. So 
that’s why the1 over r squared behavior of this near the origin is like a kind of marginal 
case. It divides 2 classes of potentials. So I will stop here and we will take it up from this 
point. We will try to solve this for various cases. I want to explicitly write down the 
solution because this involves special functions of various kinds but I will point out what 
happens if you have, for example, a free particle or harmonic 3 D oscillator or in the 
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Kepler problem and what is special about the Kepler and oscillator potentials, and then it 
brings us to the idea of degeneracy here. So we will take this up tomorrow. 
 


