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Conversation between Student and Professor: Professor- The question rephrases the 
following 
  
(Refer Slide Time: 00:01:23 min) 
 

 
 

If you have potential of some a finite potential barrier of this kind for instance, then the 
question asked is if this is the height of the barrier V 0 (Refer Slide Time: 01:42), and this 
is V (x) verses x there is a finite probability that the particle is found in this (Refer Slide 
Time: 01:51) classically forbidden region even if its total energy is E. If this is the total 
energy of the particle, a classical particle shot on this potential is going to come down 
here. it is at best going to be able to reach this (Refer Slide Time: 02:05) point. it can’t 
climb up this potential barrier beyond this point and then it goes back. And the reason is 
its kinetic energy cannot be negative. If this is the total energy and that’s the potential 
energy, this would imply the kinetic energy is negative which is not possible. Now the 
question asked is now quantum mechanically also the kinetic energy’s expectation value 
can never be negative. 
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We saw that because the expectation value of p squared in any state of the system is 
essentially <psi| p p| psi> and of course this is the square of the norm of the vector p psi 
and therefore that can’t be negative either. but the question is if we shoot a particle of 
energy E less than V 0 but greater than 0, greater than this (Refer Slide Time: 03:00) 
asymptotic value on this side, certainly there is a finite probability that the particle is in 
this region and there is a transmission probability to this side. The question is when the 
particle is in this reason does it imply that the kinetic energy is negative? So this idea 
doesn’t exist in quantum mechanics. There is no concept as what’s the momentum of the 
particle when it’s here at this location. Therefore there is no question of saying when it’s 
in this region, what’s the kinetic energy because the total energy eigenstate is not an 
eigenstate of the kinetic energy or the potential energy separately. It’s completely 
property of the state as a whole and that’s this state has a way of function which is spread 
out from - infinity to infinity everywhere.  so this is important to recognize that you 
cannot speak in quantum mechanics of what the value of the potential energy is when the 
particle is in a given region or at given point similarly for the kinetic energy.   
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Let’s go to the other question. The operators x and p have continuous spectra in classical 
physics. We know that - infinity less than less than x less than + infinity and similarly for 
p. when you convert these 2 operators, then in quantum mechanics automatically all the 
possible eigenvalues which were there classically and also all the possible values which 
existed classically or eigenvalues quantum mechanically and the spectrum is continuous. 
Of course if we put in boundary conditions and so on, then the operator might have a 
discrete spectrum. This is what happens for instance if you put this in a box and then say 
that the wave function must vanish at the ends of the box, then as you know just like 
waves on string, the eigenvalues could get quantized. For example the eigenvalues or the 
energy is get quantized if you are in a potential well or if you are in a confining potential. 
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Even if you don’t have, boundary if you have a circle, then the eigenvalues can get 
quantized. For instance if you look at the eigenvalues of the z component of the angular 
moment they must satisfy - ih cross delta over delta phi times the wave function F (phi) = 
m h cross F (phi). And then this wave function F (phi), if we require it to be single 
valued, the possible values of m are discrete. So the angular momentum component Lz 
has eigenvalues mh cross m = integer and that comes about by the single valuedness 
requirement or the periodic boundary condition requirement. Conversation between 
student and professor: Student – Still the variable x is continuous?  
  
Professor – yes, the variable x i mean x become gets replaced by an operator. So let me, 
for the momentum, just to distinguish the operator call it x operator and that acts on 
eigenstate which are labeled by the eigenvalue itself. The eigenvalue we know is 
continuous. So we have an equation of this kind. This is the ket vector corresponding to 
the particle having a precise position x. now because it’s a continuous spectrum, the 
normal equations you write down for discrete spectrum have to be modified slightly. For 
example, orthonormality would be something like delta(x - x prime) rather than a 
Kronecker delta and completeness would be an integral over dx |x>< x| = the unit 
operator. now as far as notation is concerned, this looks like a trivial change from 
kronecker delta you gone to this and from summation over all possible eigenstates, you 
have actually done an integration but it’s more profound than that (Refer Slide Time: 
07:24 to 07:31). It takes little more work to discuss what a continuous basis is. And i 
have slurred over those technical details and simply assume that you have continuous 
basis label by these here (Refer Slide Time: 07:45). But of course, you could raise many 
objections to it like what’s the value of the delta function when the argument vanishes. 
Formally these become infinite and what’s meant by this projector etc but we have not 
got in to those technical details. So we haven’t really spent much time discussing the 
technical details of continuous spectra. 
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Now the Hamiltonian itself, if you look the harmonic oscillator which is p squared + x 
squared over 2 in suitable units, p and x have continuous spectrum but the square of x + 
square of p over 2 has a discrete spectrum and this is possible. Are these bounded 
operators, in the sense that do they have finite norm? no, because the eigenvalues can 
become as large as you please for each of these and therefore there are states in the 
system whose norms would become enormous and even if you normalize by dividing by 
norm of the states, it’s clear that roughly speaking, once the eigenvalues of an operator 
become unbounded, the operators are unbounded too. The spectrum of this operator 
which as you know is 1/2 h cross mega 3/2 etc, is bounded from below but not from 
above. In the total energy, if it’s not bounded from below, you are in trouble because it 
means the ground state is – infinity and things would fall to the ground state. It takes an 
infinite amount of energy to raise it from the ground state but this is exactly where 
quantum mechanics plays a role and helps you get a finite value. 
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We are going to do that when i talk about the hydrogen atom because for the hydrogen 
atom the potential is central potential and its 1 over r potential these goes like - ze 
squared over r in suitable units. Now of course classically, the ground state of the 
electron, when it’s orbiting round a positive charge, would be inside the nucleus itself. it 
would be at  r = 0 because it will just fall down into potential but quantum mechanically 
we know that the answer is some -1 over n squared and then it keep increasing. so in 
Rydberg units its – 13.6  eV. What feature of quantum mechanics is responsible for 
raising the energy level from the classical - infinity to – 13.6 eV? What do you think it is?  
 
Classically, the equilibrium state would be the particles at 0 momentum right at the origin 
and that violates the uncertainty principle. So you can’t have both. Therefore quantum 
mechanically, the system compromises by saying you come too close to the origin, the 
potential energy gets too low, the kinetic energy gets too high and so on. It compromises 
by saying there is a ground state here (Refer Slide Time: 10:55) at this point. And of 
course, as the energy increases, you have more and more states and the fact at this 
potential goes to 0 very slowly like 1 over r is what is responsible for infinite number of 
bound state. Had it cutoff at some finite point, then you would only finite number of 
bound states. 
 
For instance, you look at the attractive delta function potential in 1 dimension. You have 
just 1 bound state. You put 2 of them. You could have a second bound state. You take a 
finite well, you will always have a ground state but you might have1, 2, 3, etc. but you 
extend the range of the potential to infinity. Then the possibility that you also have an 
infinite number of bound states arises. And that’s what happens in the case of the 
hydrogen atom. So if this potential goes to 0 sufficiently slowly at infinity, then you can 
have an infinite number of bound states. We will write down the criterion for this as well. 
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on the other hand if the potential goes to 0 too rapidly at the origin, then there is what’s 
call collapse to the origin and the strength of the potential is so large that even quantum 
mechanics cannot rescue you do not have any bound states. Any potential that goes to 0 
faster than 1 over r square at the origin become singular and apart from special cases, you 
don’t have the conventional kind of bound state at all in such potentials. so going to 0 too 
fast at the origin is bad, going to 0 too slowly at infinity also can lead to an infinite 
number of bound states on the other side. So the coulomb potential is poised very nicely 
in between 1 over r and it has an infinite number of bound states. But the lowest bound, 
certainly the spectrum is bounded from below. There was another question on spin.  How 
did the idea of spin arise? This i should have mentioned since i didn’t give much about 
the history of the spin. This is perhaps little mysterious still. You see the spectra of 
atoms; the spectral lines correspond to transitions between the various energy states 
available for the electrons in these atoms.  
 
Now long ago when quantum mechanics for first formulated and the hydrogen atom 
spectrum for instance was being explained in quantum mechanics, it turned out that the 
discrepancies between the predictions of the normal Schrödinger equation for these 
spectra lines and what was actually observed. And various resolutions were purposed, but 
one that turned out to be the right one had to do with the concept of an intrinsic angular 
momentum or spin. This was postulated by various people, in particular Uhlenbeck and 
Goudsmit. They specifically said that there is such a thing called spin and it is a 2 valued 
variable. And then the famous experiment of Stern Gerlach established what this meant. 
And the experiment goes as follows. 
 
(Refer Slide Time: 00:14:41min) 
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You recall that i mentioned that the intrinsic magnetic moment of the electron was = 
some gyromagnetic ratio which is g times a charge of the electron over twice the mass of 
the electron multiplied by the spin operator of the electron and of course, we also said the 
g was = 2, e = - modulus of e and the spin operator was h cross over 2 times of Pauli 
matrix and this was an operator which had eigenvalues + or -1 along any direction. So 
this whole thing became = e h cross mod e h - over 2 m e sigma and this (Refer Slide 
Time: 15:44) was called the Bohr magneton.  
 
Now you could ask: what’s the consequence of this and how do you measure this 
directly? What was the done by Stern Gerlach was to show that this has a real measurable 
effect once you place these electrons in a magnetic field. But of course, placing free 
electrons in magnetic field is quit a trick. So what they did was to take silver atoms and 
silver has 47 electrons, 46 of them lie in close shell essentially contributing nothing to the 
magnetic moment. And this whole shell is essentially spherically symmetrical. so might 
assume that in a ground state, these things are actually in a total angular momentum = 0 
state. The 47th electron, the 5s electron is also in an orbital angular momentum = 0 state 
but it has a spin. 
 
The full silver atom essentially acts like a single magnetic moment due to the intrinsic 
magnetic moment of the electron or the spin of the electron. Now once you have a 
magnetic moment, you place it in a magnetic field then there is mu dot p potential. And if 
the magnetic field is inhomogeneous, there is a force and the force is - the gradient of this 
potential. So the idea they had was to prepare a beam of silver ions it’s monochromatic 
and so on. The sense that they made it’s collimated; it’s made monoenergetic and so on. 
and then by methods which we won’t go into, so here is the path of that and then you put 
it in the path of an magnetic field who’s pole pieces are like this (Refer Slide Time: 
14:42). This is an inhomogeneous magnetic field.  
 
You can see that there is a drastic change in the magnetic field. It’s not parallel lines of 
force at all but it’s inhomogeneous and changes as you go along any of the direction say 
the z direction. and then what happen is if you look at only the z direction of this field the 
force is proportional to delta over delta z mu times Bz where mu is the magnitude of this 
mu dot B is = mu delta B z by delta z. therefore if along this direction, the z component 
of the magnetic field changes substantially. You would have, due to this (Refer Slide 
Time: 18:33) term here you do have different forces depending on whether you had the + 
eigenvalue or the – eigenvalue. So in one case the force would be upwards in the other 
case of force would be downwards. therefore the path of this would either go like that or 
like this (Refer Slide Time: 18:52) and if you put a screen here and measure the 
intensities here, you would discover how many such sates there are in fact to you find out 
if this spin is 1/2 or 3 ½ or whatever.  
 
You can find out what this spin is because there may be that many spots depending on 
what the allowed values of this mu r. So this is how it was established that indeed the 
spin of an electron is ½. but we know from the general theory of angular momentum that 
whatever be the eigen origin of this angular momentum, the allowed eigenvalues of the 
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angular momentum operator itself are in fact 0, ½,1, 3/2, and so on. And then it was 
recognized that the spin was in fact one of the 1/2 integer valued representations. Now 
one could ask what the deeper implications of this spin ½ are, where did it really come 
from, why did the angular momentum quantum number itself turn out to have either 
integer values or 1/2 integer values. We saw that it came out of the algebra of the angular 
momentum operator themselves.  
 
But orbital angular momentum takes only integer values and i give a sort of hand waving 
arguments saying that’s because it has got to have single value wave functions. You 
could ask what about the spin wave function. Does it not have single value wave 
functions and so on, what does it imply. And where does this 1/2 really come from. i will 
spend a few minutes and tell you where the 1/2 integer comes from and why you have 
double value representations for the rotation group. But this was the historical origin of 
spin.  
 
So it will be affected by the orbital angular momentum. so if for example you have n = 2 
then the total angular momentum would have values in L - 1/2 to L + ½ and then it could 
go from 3/2 to 5/2 so something like that and each of those would get split into 2 z +1 
values and it you would have a large number of lines here. This is why they chose very 
cleverly an atom where it was guaranteed that the total angular momentum would be that 
due to the intrinsic angular momentum of the outer most electron of a single electron and 
that unambiguously established that it is spin ½.  But of course in more complicated 
items you have much more complicated spectra. Now in the hydrogen atom, notice that I 
mention there was thing called as spin orbit coupling where there was a coupling between 
the magnetic momentum of the electron and the orbital motion of the electron. 
 
The magnetic moment which the electron sees as a result of the proton going around it if 
you like and forming a current loop. that leads to and affective Hamiltonian which is 
proportional to L dot s and that breaks the central force nature of the potential which 
electron sees and then the degeneracy that you have of the L levels being degenerate is 
completely removed. You can also remove the degeneracy of the coulomb potential by 
applying a magnetic field. A magnetic field applied to any atom is going to lead to a 
splitting of the different time levels and it’s called the Zeeman Effect and you could also 
break it by applying an electric field and that’s called the Stark Effect. So these are 
spectroscopy effects which the early days of quantum mechanics established the reality of 
spin and so on in various ways. So the essential picture is correct. Now for few minutes 
on why we have spin ½.   
 
 
 
 
 
 
 



 10 

(Refer Slide Time: 00:22:49 min)  
 

 
 

Just to recall to you what the 2 pictures are in the Schrödinger picture, as opposed to the 
Heisenberg picture, you had the Schrödinger equation ih cross d over dt psi (t) = H psi(t) 
and let me now distinguish between the pictures by writing HS here. Then the state vector 
was time dependent and physical operators were assumed be time independent including 
the Hamiltonian. There is no explicit time dependence. So we look at all those operators 
which don’t have explicit time dependence. Then the state vector involves in time. psi ( t) 
is e to the - i ht over h cross psi(0). And the expectation value of any operator <A>at time 
t is given by psi (t) A psi (t) and this is in the Schrödinger picture. The time dependence 
for physical measurable quantities comes about because a state vector changes with the 
time. Now one can make a unitary transformation on this picture and arrive at Heisenberg 
picture where the state vectors are supposed to be time independent.  
 
So let me put psiS everywhere. This in the Heisenberg picture could be taken to be the 
Schrödinger state vector at some fiducial instant of time which i will choose to be 0. It 
doesn’t have to be but at some origin of time. When the physical operators are supposed 
to obey the equation of motion A H, now let me put in explicit time dependence here. The 
operator supposed to be a time dependent operator. This is HH(t) in principle. in principle, 
this doesn’t change at all. What is true in both cases is that if you solve this (Refer Slide 
Time: 25:47) equation, this says AH (t) is e to the power iHt over h cross, AH(0) e to  the I 
H t over h cross. The way you match these 2 pictures is by saying, for physical quantities 
i want exactly the same answer on both sides. So I require that this (Refer Slide Time: 
26:29) also be = the expectation value of AH(t) which is the same as phi AH(t) phi. I 
require these 2 to be exactly the same. That implies all the other things working 
backwards. So it turns out that according to the solution here, if you look at H itself on 
both sides, since H commutes with itself, these 2 factors come right across when i 
substitute for AH. 
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(Refer Slide Time: 00:27:05 min) 
 

 
 

And I get H of HH(t) is the same as HH (0) which by definition is SS. this is what I get 
provided SS did not involve time. But of course there are problems where the 
Hamiltonian itself involves time. For instance if i am pumping energy in to a system, then 
the Hamiltonian explicitly time dependent. its not in autonomous system. What happens 
then? Well, the Schrödinger equation continues to be true. 
 
(Refer Slide Time: 00:27:47 min)  
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And now the solution to this is not so trivial. psiS(t) is not an exponential but a more 
complicated operator, some U ( t) with acts on psiS(0) and this has got the form of what’s 
called time ordered exponential. It’s more complicated operator and if time permits in 
this course i will derive this expression here. It’s not too difficult to drive an expression 
for this. This is a unitary operator which is not e to the i ht nor is it the very simple e to 
the - ih over cross, integral 0 to the t dt prime Hs (t prime). This is what one would expect 
naively because if this was not an operator, this is just a function here. this certainly 
would be true and in the case when it becomes time independent, you just get Hs and then 
t out here which was the original solution but this is not true because there is no 
guarantee that Hs ( t prime) commutes with Hs of any other time.  
 
And since e to the A, e to the B is not e to the A + B you can’t write it in this fashion 
here. Instead you write it in what’s call the time ordered exponential denoted in this 
(Refer Slide Time: 29:30) fashion which is formally like an exponential but it involves 
certain time ordering inside here. In any case, the solution is some unitary transformation 
acting on this. Then you can go to the Heisenberg picture from the Schrödinger picture 
for any other operator using the fact that the 2 would coincide with each other at some 
specific instant of time like 0. So that’s always permitted. i can take an (Refer Slide 
Time: 30:15) exponential here and an exponential here, use for it the operator at some 
instant of time, Hs(0) for instance. 
 
 That will give you the unitary transformation from one picture to the other. so you can 
still go to the so called Heisenberg picture. Nothing is going to be different except in 
technical detail but it would not be the original very simple exponential that you wrote 
down but this is just a matter of convention here that the 2 pictures coincide at t = 0. 
that’s all I need but now if you ask what does the evolution itself look like when you have 
a slightly different view point here, in such cases notice that the Hamiltonian continues to 
generate time translations always because that’s what a content of this Schrödinger 
equation is. But if this for example, had explicit time dependence, then there is an extra 
term here (Refer Slide Time: 31:13) which has got a partial derivative term and so on. 
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So this is a simple exercise to work out what’s the shift transformation to the Heisenberg 
picture when you have explicitly a time dependent Hamiltonian. Let me write this down. 
 
(Refer Slide Time: 00:31:33 min) 
 

 
 

This is the unit operator - i over h cross, 0 to t, dt1 HS ( t1). the second term would be + (- 
i over h cross whole squared) 1 over 2 factorial, if you didn’t have any problems with 
time ordering, this would be integral 0 to t dt1, integral 0 to t dt 2 HS (t1) Hs (t 2) + higher 
orders. But, because you have this problem with time ordering, the 2 factorial goes away 
and this becomes 0 to t1. So the later time appears on the right and the earlier times 
appear on the left in this fashion and that neatly cancels the 1 over 2 factorial here. 
Because this (Refer Slide Time: 32:49) quantity here, if they are classical commuting 
variable is a symmetric function of t1 and t 2. And what you are doing is in the t1 t 2 
space, you are integrating over this square (Refer Slide Time: 33:03) but the integrant is 
symmetric and therefore the integral over this triangle is = the integral over this triangle 
(Refer Slide Time: 33:17). So you can get the rid of the factor 2 and write in this fashion 
here. And you have taken care time ordering; earlier times to the left and later times to 
the right.  
 
  
 
 
 
 
 
 
 



 14 

(Refer Slide Time: 00:33:29 min) 
 

 
 

In the next term, the cubic term, you have a 1 over 3 factorial. if you take 1 axis in this 
fashion, it would be over this cube t1 t 2 t 3, each of side t. there are now six ways in 
which you can order t1, t 2 and t 3. And there is exactly one way in which you have t1 
greater than t 2 greater than t 3. So the 3 factorial cancels in the denominator and gives 
you an integral 0 to t dt1, 0 to t1 d 2, 0 to t2 dt 3, H(t1) H (t 2) H(t 3) and so on. And it 
exactly cancels. so each time you have this hypercube and the 1 over n factorial goes and 
you have an ordered prescription. That’s what is meant by this time ordered exponential 
and that turns out to be right solution for this operator for this unitary evolution. So this is 
not difficult problem at all. Although you must remember that explicitly time dependent 
Hamiltonian means you don’t have stationary states any longer. Now, a couple of 
statements, since I would like to do the radial force problem but let me start on that 
tomorrow. Let me spend the rest of today telling you why this spin 1/2 arose, where did 
this come from really. So let me do this quickly and let me also bring on the connection 
between SO(3) & SU(2). 
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(Refer Slide Time: 00:36:05 min) 
 

 
 
It goes as follows. You know that in 3 dimensional space I would like to generate 
rotations and what’s my definition of a rotation? It’s a linear transformation of the 
coordinates which leaves a point unchanged; the origin in this case and is homogeneous. 
That means the origin is map to be origin and everything else changes and it has 
determinant +1. This implies that the handedness of the coordinate system is not changed; 
the right handed coordinate system remains right handed coordinate system. those 3 
suffice to fix rotations and they form a group this group is called as SO3, S stands for 
determinant +1, O stands for orthogonal because a transformation have to be orthogonal 
in order to ensure that the distance between any 2 points is not changed under the rotation 
and it’s in 3 dimensions, so it’s called as SO 3.  
 
The set of 3 by 3 matrices which are orthogonal which have determinant +1 form a 
group. The unit matrix is the identity element and these matrices form a representation of 
the abstract group of rotations. so the rotations are operations in they are abstract but they 
are explicitly represented by the set of 3 by 3 orthogonal matrices with determinant +1. 
Now the next question is, what’s the parameter space of this set of rotation? In other 
words, what are the values of the angle that specify the possible rotations? Now these can 
be specified in many ways. As you know you can go to one coordinate system to a 
rotated one by specifying 3 Euler angles. but you can specify those Euler angles in many 
different ways. They all turn out to be equivalent to each to other but it’s nothing unique 
about it. 
 
The most convenient way of specifying these rotations is to say that rotation occurs about 
some axis in space with respect to some fixed coordinate system through a certain 
amount of rotation. so to specify the direction in space, i need a unit vector and to specify 
the amount of rotation i need one more angle which can take on values from 0 to pi. So 
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the rotation is specified by a unit vector and then angle take values from 0 to 2 pi and let 
me call my angle psi, I don’t want to confuse with theta and phi which are used for polar 
coordinates for n here. i fix a coordinates system to start with first in the lab and then I 
say I am going to make a rotation about this unit vector and of course, there is a 
perpendicular plane to this unit vector. Once I draw reference a line on that, i am going to 
rotate about a certain angle from 0 to 2 pi. So the parameters i need to specify the rotation 
are n and psi. 
 
(Refer Slide Time: 00:39:48 min) 
 

 
 

n is a unit vector, so it is specified by 2 polar angles. In Cartesian coordinates this would 
be (sin theta cos phi, sin theta sin phi, cos phi). There are 2 independent variables here 
because the squares of the 3 components of n add up to unity. the physical range of theta 
is 0 less than or equal to theta less than or equal to pi that goes from north pole to the 
south pole and the physical range of phi is 0 less than or equal to pi less than 2 pi. That’s 
the azimuthal angle in the xy plane and theta is a polar angle. In spherical polar 
coordinates, what are the surfaces; x = constant y = constant z = constant? They are 
planes. What about r = constant? They are spheres. What about theta = constant? They 
are 1/2 cones. If a cone has an acute angle, then theta is less than pi over 2. if it’s got an 
obtuse angle, then theta is between pi over to and pi. What about phi = constant? They 
are 1/2 planes because the pass through the origin and you distinguish between phi and 
phi + pi.  
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(Refer Slide Time: 00:41:38 min) 
 

 
 

What’s the range of variation of psi? It’s obviously 0 less than or equal to psi less than or 
equal to 2 pi less than 2 pi. That’s the amount of rotation; you can do in psi direction. So 
now we have 3 variables which specify ranges and we can pretend that we can put them 
as points in a certain space and we can model that 3 dimensional space, we have 3 
variables. 
 
(Refer Slide Time: 00:42:09 min) 
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The way it’s done is to say I will use a sphere as my model and the direction from the 
origin on this sphere to any point inside or on this sphere is going to be this specification 
of the unit vector n. so if i say this is n (Refer Slide Time), then the polar angle of this n 
and the azimuthal angle of this n correspond to the theta and phi here of the rotation that 
have in mind. and since i must have a rotation going from 0  to 2 pi, i could take the 
solids sphere to have a radius 2 pi and then say that by convention, the distance from the 
origin to the point i am interested in specifies psi. So you see I have 3 angles modeled in 
solids spheres of radius 2 pi but I like to make very sure that every point in this space 
corresponds to only one rotation. I don’t want any double counting and I don’t want to 
leave out any rotations either.  But in 3 dimensions, it’s fact of life that if i rotate an 
object through pi about an axis it’s a same as rotating it about pi through the opposite 
axis. That’s a fact of 3 dimensional life. So rotating about a certain axis through pi is the 
same as rotating about - that axis through pi once again. If I rotate through an angle that 
is a little lesser than pi, this coincidence doesn’t happen. So happens only with pi. 
 
(Refer Slide Time: 00:44:56 min) 
 

 
 

So this means that this (Refer Slide Time: 45:05) space need not have a radius = 2 pi. Pi 
is enough because if this is pi that sufficient because i also have the possibility of rotating 
about that diametrically opposite direction. But there is a further complication and the 
complication is that this (Refer slide Time: 45:23) point is mathematically the same as 
that point in this parameter space because they both correspond to rotation by pi about an 
axis or its opposite. They physically correspond to the same rotation to the parameter 
space of SO 3 and it’s complicated. It is a solid sphere. Its radius is pi but it has also got 
the property that you must mathematically identify every point on its surface with its 
antipodal point. It’s as if there is an invisible connection between opposite points. And of 
course such a space cannot be represented in 3 Euclidean dimensions. 
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So its respectable space but you cannot represented in 3 Euclidean dimensions but you 
can look at all its mathematical properties given this property. Now this space is 
connected. The connected space is one where you can go from any point in this space to 
any other point in the space continuously without leaving the space. So this space is 
certainly connected. There is no doubt about it but it is not simply connected. a simply 
connected space is one where any continuous closed path in the space can be 
continuously deformed or shrunk to a point without leaving the space.  
 
(Refer Slide Time: 00:47:04 min) 
 

 
 

For instance, if I took the plane of this black board, any point to any other point I can go 
by an arc wise path. Every close path of this kind can be shrunk continuously to a point 
without leaving this black board. So that space is certainly connected and simply 
connected.  
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(Refer Slide Time: 00:47:25 min) 
 

 
 

A space which connects which has for example, one piece here (Refer Slide Time: 47:26) 
an another piece there and this part does not belong to the space is not connected because 
there is a point here and point here (Refer Slide Time: 47:34) and you cannot join them 
continuously by arc wise path which doesn’t leave the space. 
 
(Refer Slide Time: 00:47:46 min) 
 

 
 
 



 21 

On the other hand, if that’s your space (Refer Slide Time: 47:52) with a hole punched out 
in it is connected because you can go from any point to any point continuously without 
living the space but it’s not simply connected because although you can close a closed 
path like this and shrink it down to a point. a close path like this (Refer Slide Time: 
48:14) cannot be shrunk to a point because there is no way you are going to able to cross 
that hole and this path will get stuck at the periphery of this hole. So here is a space 
which is connected but not simply connected. In fact, even if you exclude one point that 
is good enough for the purpose of avoiding a simple connectivity. Even one point is 
punched is remove from the space, then the space is other simply connected. 
 
 So a sheet with a hole punched in it, even a single point is not a simply connected space. 
Then the next question is, if it’s not connected what kind of connectivity does it have and 
this is precisely answerable. One says paths are equivalent to each other if you can 
deform one to the other continuously. So in that sense, this path is completely equivalent 
to this path which is completely equivalent to this path, etc (Refer Slide Time: 49:15). 
They can all like rubber bands be deformed to each other. 
 
(Refer Slide Time: 00:49:18 min) 
 

 
 

But this path here cannot be deformed to this path because that path because that path 
cannot be shrunk to a point where as this can be shrunk to a point (Refer Slide Time: 
49:24 to 49: 29). So what one asks for is what are the classes of paths which can all be 
deformed to each other. All paths which can be deformed to each other form what’s 
called an equivalence class. Then the question of what are the different equivalence 
classes of paths that you have in a space arises. It turns out that by an obvious rule of 
composition of paths of joining paths, these equivalence classes form the elements of a 
group. We started with closed equivalent paths and we said these close paths can all be 
put in different equivalence classes and these equivalences classes form elements of a 
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group and the group composition law is just the composition of paths. So for instance, if 
you had the path like this (Refer Slide Time: 50:35), this path is composed of 2 paths, one 
of which is just this and this here (Refer Slide Time: 50:45) and together they form the 
element of a group. They form a third path. So equivalence classes of paths from the 
elements of a group and this group is called the fundamental group of a space. Its called 
the fundamental homotopy group of this space. 
 
(Refer Slide Time: 00:51:07 min) 
 

 
 

It’s called p1(V) and as a group, it may have interesting properties. For instance, taking a 
simpler example. Suppose this space is just S1; the rim of a cycle wheel. That’s my 
space. i have to live on that space. All paths are on that space. Then what are the 
equivalence classes of paths? It’s clear wherever i start, if i move about like this, then the 
only thing i can do is to go back to from a closed path. Now all such paths can be shrunk 
to point continuously. So I could even come here and go round here and then go back. 
that would still be shrunk to a point but the moment i complete the path by coming back 
to this point (Refer Slide Time: 52:21 to 52:33), then i have actually taken a rubber band 
or rubber tube and covered the rim and there is no possibility without cutting this band, of 
shrinking that band to a 0 any more beyond this point.  
 
And I can then do it twice or thrice and you can see none of these can be shrunk to each 
other. Or I could have done it in the opposite sense because closed paths must always 
specify sense or direction. And you can easily see intuitively that the number of 
inequivalent ways in which you can take a rubber band and cover this cycle wheel is just 
the set of integers. There is a one to one correspondence with the set of integers. If the 
path winds on once in the positive direction, call it winding number 1. If it winds twice, 
call it winding number 2. So in this case, it’s easy to see that pi1 (S1) is in fact the set of 
integers under addition because when you compose paths, all you are doing is adding 
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winding numbers. Clearly, if you go around 3 times in the positive sense and twice in the 
negative sense, you have gone around once in the positive sense. So it’s the group of 
integers under addition and it has implications. What is pi(S 2)? 
 
(Refer Slide Time: 00:53:57 min) 
 

 
 

Now we have the surface of a sphere in 3 dimensions and i put a closed path on it; a 
rubber band. What’s pi1(S 2)? all paths can be shrunk to a point on it without leaving the 
space and this is graphically stated as by saying you cannot lasso a  basketball because 
things will slip off and therefore pi1 of S 2 is in fact not just 1 element. So there are many 
ways of writing it. People write it as {1} or just the identity element or just 0. That means 
a trivial group. You have to be little careful with notation. A group = 0 means it has only 
1 element. There is no other element in there. Similarly pi1(S 3) is 0 and pi1(Sn) is alos 0.  
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(Refer Slide Time: 00:55:13 min) 
 

 
 

Now coming to our space, we ask what pi1 is but before that, this is the T 2. It’s the 2 
torus. And that is form by taking a circle direct product circle. For every point on it in one 
direction, you associate a circle in the other direction too and you get S1 cross S 2 which 
is T 2 which is 2 torus. Now what are the possible closed paths on this? This is just going 
to be z cross z because any closed path on it can be converted to going around this larger 
radius certain number of times and winding around this a certain number of times. So 
closed paths on the 2 torus can be specified by 2 winding numbers. The group we are the 
concerned with for the rotation group is somewhat different. 
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(Refer Slide Time: 00:56:33 min) 
 

 
 

Now we have to discover what all the possible closed paths are when you have the origin 
here such that these points are connected to that. Well, it’s quite clear that if you took any 
path inside or anything lying on the surface, going back, etc, those would all come back 
to same point. They would all be shrunk to a point. So there is one class of close paths 
which is just the conventional class of close paths. 
 
(Refer Slide Time: 00:57:03 min) 
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But there is a second class of close paths which corresponds starting here (Refer Slide 
Time: 57:05), going to the surface but then that point is same as this (Refer Slide Time: 
57:11). Therefore this is a close path in that space, although it’s hard for you to imagine 
that this is so. And it is completely distinct from the other class of close paths which can 
be shrunk to a point because this cannot be shrunk to a point. if you try doing it and you 
try moving, then this moves perversely. If you want bring this closer and start moving in 
the other direction, this is not the way to close this path. on the other hand, the trick is 
you start from the center and you go out, you ended up here and you come back do it 
again right on top of old path; i am just showing this separately for convenience, and you 
come here (Refer Slide Time: 58:00 to 58:14). This can be shrunk to a point because this 
path is entirely equivalent to doing this little trick (Refer Slide Time: 58:25). And of 
course, we move this thing, and then this one is going to move there. So after some time, 
i have done this and that is moved here and this thing is moved there. Whether i move 
this point here, this point moves.  
 
That’s very good and so both are gone (Refer Slide Time: 58:30 to 59:00). So it’s clear 
that by doing this close path a second time, i have actually been able to come back to the 
original.  It’s equivalent no rotation at all but that implies a rotation of 4pi. Instead of a 
rotation of 2 which is a complete rotation, i do a rotation of 4 pi and this object comes 
back to itself. So this means there exist in this parameter space, 2 classes of objects. 
Those that come back to themselves after a rotation of 2 pi and those that come back to 
themselves after rotation of 4 pi. This is the origin of the 1/2 integer valued quantum 
representations of the rotation group. So J = 0,1,2 etc would be called the tensor 
representations and J = ½,  3 /2,  etc is called the spinor representation.  
 
So you know that in the normal tensor representations, a tensor of rank 0 is a scalar and 
then you have a vector, then you have a tensor of rank 2 and so on. The spinner so to 
speak, interpolate between these. So you don’t have the normal properties that you have 
for vectors, tensors, etc namely; when you rotate everything by 2 pi, they comeback to 
themselves. Here, there is a change of sign and the second rotation brings you back to the 
original value. It turns out these are the only 2 things possible. in fact the way you write 
this is to specify this that SO 3 is doubly connected. pi1 (SO 3) is z 2, a set of integers 
modulo 2. Just 2 elements in the group. Then you could ask is there a way of changing 
from pi1 to some other group, which is single valued such that there is mapping from that 
group to this and the answer is yes. And that’s very important for quantum mechanics. 
  


