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The values of the total angular momentum quantum number of the electron are 3/2’s and 5/2’s. 
  
(Refer Slide Time: 00:01:13 min)  
 

 
 

I haven’t proved this but I made the statement that if you took 2 angular momentum; J 1 and J 2 
and defined that to be the total angular momentum J, then this J runs from modulus j 1 - j 2 up to 
j 1 + j 2. i didn’t prove the statement but its easy to see that its plausible from the rules of what 
happens when you take the raising operator and act on states and so on. 
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But in the present instance, for an electron L + S is the total angular momentum, J the quantum 
number of L is l and that of S is always a ½. The spin of the electron is a 1/2 and therefore if this 
l = 2, then the only allowed values are 3/2’s and 5/2’s. So this statement is true. What happens is 
l was 0? If you were in the S state of the electron in an atom, what happens then? The only 
allowed values are 1/2 because you have to take modulus j1 - j2. So the only allowed value is ½. 
Then the total angular momentum is in fact just the spin angular momentum of the electron. 
   
(Refer Slide Time: 00:02:50 min)  
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As you know in the hydrogen atom which I have assumed you studied in the chemistry class, the 
states of the electron for a hydrogen atom are specified by the principle quantum number n which 
takes on the values 1, 2, 3, etc and then an orbital angular momentum quantum, l and this runs 
over the values 0, 1 up to n – 1. So when n = 1, you have only the possibility of l = 0. So you 
have the 1s state and then the 2s 2 p states and so on.  
 
The magnetic quantum number m which is the quantum number corresponding to any 
component of the orbital angular momentum takes on values from - l up to + l in steps. And then 
there is a spin quantum number and of course we know that the spin quantum number S is 
always a 1/2 and the projection, denoted as mS is = - 1/2 and a ½. These are the only 2 
possibilities. and now you could ask what the degeneracy of the electron is when a given state 
with n, l, m etc. the general state with principle quantum number n and that degeneracy factor gn 
so happens that for the 1 over r potential, the Coulomb potential energy levels depend only on n 
and not on any of these quantum numbers unless you break degeneracy by including some other 
interaction.  
 
For instance you put a magnetic field, that will couple to the spin of the electron and there is 
magnetic potential energy - mu dot v and that will distinguish between + 1/2 and - 1/2 for ms and 
so on. There are other factors which I will come to which will also tell you that the quantum 
numbers could depend on l, m etc. But if you don’t have any of that then this gn, since En,l,m 
and the other quantum numbers is a function of n alone for the hydrogen atom, its actually - 1 
over n squared in Rydberg units, therefore this gn is = the number of possibilities over ms =  - 1/2 
up to + 1/2 times 1 because that’s the number of possibilities you are counting, the number of 
possibilities for m = 0 - l up to + l and then you have to count the number of possible values of l 
from 0 to n - 1 and this is = gn. This straight away gives you factor 2. So this is = twice this and 
this gives you 2 l + 1. So you have to sum l = 0 to n – 1, 2 l + 1 and this is = 2 n squared (Refer 
Slide Time: 06:02 to 06:10). So that was asked as a separate question and that was in fact in one 
of the fill in the blanks. It said the degeneracy of the electron in the hydrogen atom is gn taking 
into account its spin is 2 n squared. If you didn’t take the spin into account, if you ignore that 
internal degree of freedom, then it’s just n squared. Now if you switch on a magnetic field, the 
following is going to happen. there will definitely be a coupling between the intrinsic magnetic 
moment of the electron and the external field that will break this degeneracy in mS. And then if 
you have any potential which is not central then there is also a dependence on m because if it’s a 
central potential, no axis in space is distinguished from anything else and therefore there is 
degeneracy over m. 
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In general, if you had a central potential alone V (r),  which was not a coulomb potential or some 
very special potential like the harmonic oscillator potential but an arbitrary general central 
potential with no special symmetries whatsoever, then what would the degeneracy be for a 
particle of spin ½? There is a factor 2 which comes from the spin. But over and above that, there 
is a degeneracy in m. so in such a case, the energy levels would be a function of n as well as l 
and what would be the degeneracy of each of these states for a given n and given l? It would be 2 
l + 1. all the m values would give you exactly the same energy. If you included spin, its twice 2 l 
+ 1 in that case. Now what happens in practice even in the hydrogen atom is that there is an extra 
contribution called the spin orbit coupling.  
 
There is a coupling between the spin of the electron and its orbital angular momentum in the 
following sense. It’s actually a more complicated effect. But it’s as if, if you pretend for a minute 
that you are on the rest frame of the electron, you still have an intrinsic angular momentum S or a 
magnetic moment. you see the proton going around you which is a current loop and therefore 
there is magnetic dipole moment associated with the orbital motion and that will be proportional 
to the orbital angular momentum the magnetic moment which was l and therefore there is going 
to be a term in the Hamiltonian proportional to l dot S. that’s called lS coupling and the moment 
you have this or spin orbit coupling and the moment you have an l dot S coupling, you have 
broken the symmetry which the coulomb potential has. therefore the energy levels become 
dependent on l. in other words, this (Refer Slide Time: 09:37) accidental degeneracy that these 
energy levels don’t depend on l is gone out and there is in fact a difference in energy between the 
different l states for a given n.  
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And that’s the reason why the spectrum of the hydrogen atom looks like 1S. This corresponds to 
n = 1, l = 0. I am ignoring now. So there is no external field and therefore no dependence on the 
spin at all. And then there is a 2S state and 2p state. This corresponds to n = 2, l = 0, n = 2, l = 1. 
These states are split. They would not be split if you didn’t have a spin orbit coupling. Both these 
would have exactly the same energy. And then of course there is a 3S, 3p and a 3d state and so 
on. They are all split because of spin orbit coupling. As the effective split is extremely small 
compared to the actual energy value of the eigenvalue of either the 2 S or the 2 p state, there is a 
small splitting. But as you go up in the periodic table and as the atomic number z value of the 
nucleus increases, it turns out that the spin orbit coupling becomes more and more prominent and 
there comes a stage when it’s quite significant. 
 
 In fact, it is so significant and there are other effects as well, there is an effect called the 
hyperfine splitting which arises due to the coupling between the magnetic moment of the 
electron and the magnetic moment of the nucleus itself. And that’s an even smaller effect but as z 
increases, this becomes sufficiently large so that you have significant amount of splitting. And 
then this neat ordering of these energy levels; the S state, the p state and then the d state and so 
on is gone. There could be the f state, maybe lower in energy, then the d state and so on. This 
happens when you reach the transition metals and is responsible for a lot of interesting effects. 
but the important point I want to make is that both the spin orbit coupling as well as the effect of 
an external magnetic field serve to break the symmetry that the original hydrogen atom has the 
coulomb problem has. And so the general lesson is the application of a field breaks symmetry in 
some sense. After all, this space in this room is isotropic but all the directions are not equivalent 
because there is a vertical direction in which there is a gravitational field that breaks the 
translational symmetry. And that’s the reason if you have a particle moving around in this room 
under the effect of this gravity, the x and y components of its momentum are conserved in the 
classical picture because there is no force in that direction but the z component certainly is not. 
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So linear momentum consolation is broken in one direction because of the symmetry breaking 
field.  
 
The next question was the particle mass moving in 1 dimension is incident upon a delta function 
barrier, not an attractive delta function but a barrier and the statement was the reflection 
coefficient of the particle is identically = 0. This is certainly not true. We saw explicitly that 
there is a definite effect of the barrier even though it’s an infinitely thin barrier. The fact is the 
potential goes to infinity at that point and therefore there is a finite reflection coefficient. we 
compute at this reflection coefficient as a limiting case of what happens in a rectangular barrier. 
What you have to do is to take the product of the width of this barrier times the height, retain that 
to be a finite constant and then you can compute what it is in the limit. The second statement is 
false. The only normalizable eigen state of the raising operator a dagger of the linear harmonic 
oscillator is the ground state of the Hamiltonian. Is this true or false? It’s false because certainly, 
the ground state of the Hamiltonian is not an eigenstate of a dagger. And in fact, a dagger has no 
normalizable eigenstates whatsoever in the space of square integrable functions. What about a? 
Does that have eigen states?  The ground state of the Hamiltonian is also is an eigenstate of a. but 
then, all coherent states are eigen states of a. now there are several reasons why you call it a 
coherent state. I will mention some of these a little later. I am going to talk about coherent states 
specifically. But right now, by coherent state I mean an eigen state of the lowering operator a for 
the harmonic oscillator. So, one should really call them harmonic oscillator coherent states if you 
like. So you have been careful to do that every now and then. They are also minimum 
uncertainty states. As you saw that in suitable units, delta x and delta p are each = 1 over square 
root of 2. They are Gaussian wave packets in the position representation or in the momentum 
representation.  But they are not the ground state of the harmonic oscillator itself but displaced 
with respect to the ground state. There are several ways of defining coherent states and they all 
happen to coincide in this particular instance. 
 
The next question was the angular momentum commutation relations together with a 
requirement that the eigenstates of the angular momentum be normalizable suffice to determine 
the possible eigen values of j squared and j dot n where n is a unit vector along any arbitrary 
direction. This is true. We saw that this was so but the important thing is to put in the 
normalization condition and that was true even for the harmonic oscillator because i required 
normalization on the states and that’s how I got a discrete spectrum. If you don’t require 
normalizable eigen states, then there is no guarantee that the spectrum is discrete. In a more 
general family of wave function or eigen states, you could have a continuous spectrum for the 
same operator. So again in these cases, given an operator its spectrum is decided by what class of 
eigenstates you would like to look at.  
 
You would like to have for physical reasons. We want normalizability for the conservation of 
probability and the interpretation of quantum mechanics. But conceivably mathematically they 
could be more. There could be a continuous spectrum with non-normalizable states. So that 
statement was true. A particle moves in 1 dimension in a symmetric potential V (x) is V (- x) .all 
the energy levels of the particle are discrete. So you are given that you only have bound states all 
the wave functions die down exponentially fast at infinity on both sides. The position space wave 
function of the particle in the ground state phi 0 of x is an even of function of x. True. In this 
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problem, given that the potential is V (x) = V (- x) in 1 dimension, there is no degeneracy 
everything is a discrete spectrum and there is nothing no degeneracy. There are no other 
functionally independent constants of the motion. Nothing other than the Hamiltonian. Because 
classically you know that saying the Hamiltonian H of qp = constant fixes the phase trajectories. 
You can’t have a second independent constant of the motion functionally.  
 
Quantum mechanically it means you cannot have another operator other then the Hamiltonian or 
some function of the Hamiltonian which commutes to the Hamiltonian. So the levels are non-
degenerative. And then if the potential is symmetric the Hamiltonian commutes with the parity 
operator and therefore you can find a complete set of common Eigen states of the 2. Now the 
parity operator has Eigen states all even functions and all odd functions. But the Hamiltonian has 
special Eigen functions. They form a complete set in the space. So the conclusion is every 
eigenstate of the Hamiltonian is also a parity Eigen state. Which means every Eigen state of the 
Hamiltonian is either an even function of x or an odd function of x in the positions space 
representation.  In the ground state there are no nodes. If you write down the Schrodinger 
equation, every time the function crosses the axis, it has to go up come down again go to 0 on 
both sides. It costs energy because there is a second derivative term in this Schrodinger equation. 
So the lowest energy state would just start of from 0 at - infinity it goes up and it comes down 
and it’s normalizable. It has no nodes. by the requirement that it should be either in even or odd 
state, since it never crosses the axis it is mostly in even state. So that is a true statement.  
 
Consider the set of functions phi n of x = the oscillator Eigen functions. This is the normalization 
constant e to power - f squared Hn of x where Hn is the Hermite polynomial. Any arbitrary 
square integral function of x in - infinity infinity is any l2 function can be written as a linear 
combination of the elements of the set in a unique manner. True or false? This is true because 
this set forms an orthonormal basis. Once it’s an orthonormal basis and any function in that 
function space can be written uniquely. So the coefficients determine the function completely. 
What happens if you didn’t have, suppose for a minute I looked at l, 2 from 0 to infinity instead 
of - infinity to infinity. Let’s say we looked at the solutions of the 3 dimensional Schrodinger 
equations and I want the radial part of the wave function. The radial coordinate r and from 0 to 
infinity you would still require square integrability. So you would now want from 0 to infinity 
the function mod square etcetera is finite. What would happen in that case? Would be Hermite 
polynomials form a complete set still? Would they be orthogonal? Do you think so? Would they 
be a good basis to expand things in? They may not be unique. Do you think so?   
 
First of all we have this weight factor e to the power - 1/2 x squared. Hn of x is a polynomial. 
That grows at infinity. But e to the power - 1/2 x squared dies down faster than any power and 
therefore you guaranteed that all these polynomial would be integrable when you square it. But if 
you function if you are going to variable is going to run from 0 to infinity in x for example then 
you don’t need e to the power - x squared e to the power - x would do. You put the x squared 
because it should be it - infinity too. And I don’t want a mod x because that would mean there is 
cusp at the origin and so on. So that’s one reason why we have e to the power - x squared 
appearing there naturally. But from 0 to infinity e to the power - x would do. And what do you 
call that set of functions with the weight factor e to the power - x integrable? They are the 
Laguerre polynomials. That’s why that appears in the hydrogen atom problem in the natural way. 
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Consider a particle with spin quantum number ½. The particle can never be in a spin state in 
which the uncertainty product delta Sx delta Sy is 0. There were mixed results from this 
question. So let me explain what’s happening.  
 
(Refer Slide Time: 00:22:07 min)  
 

 
 

We would like to find out what’s delta Sx delta Sy in any state. In any arbitrary state, remember 
that the uncertainty principle says that this is greater than or = 1/2 the modulus of the 
commutator of Sx with Sy. But this is = h cross over 2. This is ih cross S z times the expectation 
value of Sz in an arbitrary state. How big can Sz be? No matter what state you are in, that can’t 
be bigger than ½. Because the Eigen values Sz would be either + 1/2 or - 1/2 in units of h cross. 
So this is finite.  Can it be 0? Yes of course. Classically, you can see that if this is your axes of 
quantization and you put your spin along the x axis, it’s an Eigen state of Sx for example. Then 
the expectation value of Sz is 0. Just as when you put it in an Eigen state of Sz, The expectation 
value of Sx and Sy are 0. In exactly the same way, you could have it in a state where the 
expectation value of this is 0. Classically, this would mean the spin quote and quote lies along 
the x in the xy plane. There is no z projection. So the least value of this quantity in fact is 0. So 
the statement is actually false. It can definitely be in such a state. So you see the significance of 
the generalized uncertainty principles. Really you should go back to this algebra and see look at 
here and this could be 0.  It can’t be negative because the product of uncertainties can be never 
being negative. It could be 0 in some situations.  Again the harmonic oscillator functions but I 
will put a tilde and put a p there. Otherwise it’s exactly the same function as on the position 
basis. Are Eigen functions of the Fourier transform operator?   
 
The answer is yes. They definitely are because this is the momentum space Eigen function of the 
harmonic oscillator. The position space Eigen function had exactly the same functional form but 
we know the momentum space Eigen function is a Fourier transform of the position space 
function. Therefore here is a set of functions whose Fourier transforms are essentially constants 
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time the original functions. What can those Eigen value is be? There are the fourth roots of unity. 
Because we know that the fourth power of the Fourier transform operator is the identity operator 
in this function space.  Those Eigen values can only be 1 i - 1 and – i. the ground state of the 
oscillator corresponds to Eigen value 1. That we know follows also from the fact that the Fourier 
transform of Gaussian is a Gaussian and with suitable normalization coefficients, it’s exactly the 
same function.  
   
(Refer Slide Time: 00:25:47 min)  

 
 

Consider the 1 dimensional potential barriers V (x). Let the reflection and transmission 
coefficients be R and T. so I have in arbitrary potential barrier and i would like to find out for 
incidence from the left, there is reflection R and there is transmission T.  
 
and now you are asked suppose you started from the right, there would be a reflection R prime 
and a transmission T prime and the question is: is R = R prime and T = T prime? Now the way 
we derived this expression was simply to say e to the power ikx was incidence from the right e to 
the power - ikx should been incident) from the right and e to the power - + ikx should mean 
going rightwards from the left. The way we derived this entire expression had nothing to do with 
the directions in which we moved. It’s completely arbitrary all we did was to say that it’s a plane 
wave asymptotically on either side. So in fact the reflection and transmission coefficients are 
identical. it doesn’t matter which direction you have been incidence. It doesn’t require the 
symmetry property of the potential because we never use that.  So do it for a non-symmetric 
potential and you will discover that this is exactly the same answer. 
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So here is a simple potential which would look like this. Do it for a potential of this shape. It 
would remain exactly the same thing.  We want to make sure the potential vanishes at infinity. 
So i said there is a finite barrier. This is just a barrier at some point and it definitely doesn’t mean 
that the potential extends. If it does, then the energy has to be greater than that value. Otherwise 
you can’t even have such a state.  
 
(Refer Slide Time: 00:28:06 min)  
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So his point is if the potential were to be a barrier like this and this was 0 of energy you can’t 
have an energy state below this value. To start with it, it has to be above that (Refer Slide Time: 
28:24). And of course it’s easy to see what would happen if you had a lack of symmetry. 
Suppose you have V (x) looking like this. Now we computed things because they are analytically 
computable. We computed things where the potential barrier was actually compact. Beyond a 
certain stage on either side there was no potential at all. But that’s not absolutely essential. You 
could have a situation like this. This asymptomatically goes to 0 and these asymptotes to some 
finite value here. One could look at this barrier as well. It’s just that it’s only at - infinity and + 
infinity that you apply these plane wave conditions otherwise it’s not necessary a plane wave at 
all the function Eigen function can be quite complicated. But for computing R and T you don’t 
need to know the exact potential except the formal expressions that you have when you compute 
the numerical values of the coefficients which would depend on the potential. You need to solve 
the Schrodinger equation here. 
 
Let j be the total angular momentum quantum number of a system. Then in any arbitrary state psi 
of the system the operator J squared must necessarily have the expectation value h cross squared 
J times J + 1. What we are actually saying is if it has definite value then it’s an eigen state of J 
squared. So we are really saying that an arbitrary state of the system is an Eigen state of the total 
angular momentum. True or false? It’s true. You haven’t given any other conditions. So it’s 
certainly true. So the idea is that you have maybe an orbital part. You have other in degrees of 
freedom. So the total wave function is a product of the spin wave function and the spatial wave 
function for instance and it’s always an Eigen state. Just like an electron no matter what you do 
to this electron, its spin quantum number is ½. Therefore you are guaranteed that if you measure 
S squared, the answer is going to be 3 quarters h cross squared. So that is certainly true always. 
(Conversation between student and professor :). That’s a good point he has raised.  
 
(Refer Slide Time: 00:31:23 min) 
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In the normal course of events, if you took a Cartesian coordinate delta p, this is certainly greater 
than or = 1 1/2 the modulus of the expectation value of x with p. but it so happens that this is = ih 
cross the times unit operator and therefore, this thing here becomes h cross over 2 the modulus of 
the expectation value of the unit operator. But the expectation value of the unit operator is by 
definition, 1 no matter what you do. That’s the reason you get the usual commutation relation 
saying it can never be 0. its greater than or = 1/2 h cross. But in the spin case, this commutator is 
Sz. so what you have to deal with is this quantity <Sz> and this could be 0.  So that’s the reason 
its different from what it is for the usual pair of Cartesian coordinates. So I will give a problem 
where you work this out explicitly and you will see this. The next 1 was fill in the blanks and the 
first question was a simple question but was a little bit of trick.  
 
It said a particle moves in a 1/2 oscillator potential.V(x) is given to you in any case- 1/2 m 
omega squared x square and infinity. For x greater than 0, it’s the oscillator. For x less than 0, 
there is a wall. so its like attaching a spring to 1 end to the origin, the other end to this particle 
and letting this particle vibrate but not fully along the x axis but whenever it hits the x = 0, it 
bounces back. So in this 1/2 oscillator potential the question asked is: what’s the ground state of 
this problem.   
 
(Refer Slide Time: 00:33:38 min) 
 

 
 

So the potential is infinite here. This is 1/2 m omega squared and squared and its infinite for x 
less than 0 (Refer Slide Time: 33:54). Now, you are asked what the ground state energy Eigen 
value is and the eigen functions. Now you see the earlier problem which you solved the oscillator 
problem at the Hermite polynomials etcetera and you used to boundary conditions at - and + 
infinity the wave function went to 0. Now it’s exactly the same differential equation but it 
applies in the region x greater than 0. so in this region, you have the equation - h cross squared 
over 2 m d 2 phi over dx 2 + 1/2 m omega squared x squared phi = E phi and this is for x greater 
than 0. Since the potential is infinite, the wave function is 0 in this region including at this point 
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(Refer Slide Time: 34:54). So when you solve this and you impose the condition of square 
integrability that the function be finite at infinity the energy levels turn out to be discrete as 
before the solutions of a Hermite polynomials but they would be those Hermite polynomials 
which vanish at the origin. They are the odd ones that vanish at the origin. The even ones don’t 
vanish at the origin. Therefore they can’t be solutions to this problem. What’s the lowest energy 
value? Its 3 1/2 h cross omega. So this spectrum has all the odd eigenvalues only. So the lowest 
energy value E ground state = 3 1/2’s h cross omega purely from the boundary condition. So the 
even ones are not allowed in this case and it picks out a way other one. So by the way that now is 
the set that forms a complete set. So only the odd ones are sufficient they form a complete set 
once again.  
 
So, if you insist on the weight function e to the power - x squared instead of e to the power – x, 
then you don’t get the full set of Hermite polynomials provided you impose the boundary 
condition. You look at a class of function which vanishes at the origin.  Then e to the power - x 
squared times the odd Hermite polynomials form a complete set. What happens if the spring 
constant becomes negative? What happens if the potential is - 1/2 constant times x squared? 
  
(Refer Slide Time: 00:37:16 min) 
 

 
 

This is your potential. Can you have bound states in this problem?  There are normalizable Eigen 
functions of the Hamiltonian. No bound states at all. Classically the origin is an unstable 
equilibrium point. It just falls off from the origin. So corresponding to that in quantum 
mechanics there are no bound states. The general lesson is that bound states would correspond to 
periodic solutions in the classical case. Anything that is periodic becomes a bound states in 
quantum mechanics. No periodic orbits are allowed here. The next was the Hamiltonian of a 
perturbed oscillator is given by the usual h cross omega a dagger a + 1/2 + lambda times a + a 
dagger and the question is: what’s the exact value of the ground state? This is just the shifted 
oscillator. All you have to do is to recognize that you have shifted the oscillator because a + a 
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dagger is x. what you have d1 is to take p square + x square + put an x term so complete squares. 
It’s like shifting the oscillator and changing the 0 of the energy. All you are asked to find is: 
what’s the change in the 0 of the energy. 
  
(Refer Slide Time: 00:38:33 min)  
 

 
 

So that’s easily found because you have h cross omega a dagger + 1/2 + lambda a + a dagger. 
Notice lambda is real and this is a Hermitian quantity. So the Hamiltonian is Hermitian and the 
Eigen values are guaranteed to be real. So you could write this as h cross omega times a dagger a 
+ lambda over h cross omega a + a dagger + ½ h cross omega. This is the 0 point energy level. 
So all you have to do is to define b = a + lambda over h cross omega. So b dagger is a dagger + 
lambda by h cross omega. The important thing is the commutator of b with b dagger is still = 1. 
That’s all that decides the spectrum. So this whole thing becomes = h cross omega b dagger b + a 
1/2 - lambda squared over h cross omega. If I complete squares, there is an extra term i have 
added which is lambda squared over h cross square omega squared but there is 1 sitting outside 
here and that’s it. So what’s the ground state energy?  
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This portion has a ground state energy which is 1/2 h cross omega. So E ground state = h cross 
omega by 2 - lambda square over h cross omega. That’s the exact answer.  You just subtract that 
portion out. That’s it.  
 
(Refer Slide Time: 00:40:39 min)  
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So what’s been done by adding this thing is to start with this potential and move to a potential 
which looks like this (Refer Slide Time: 40:39). That’s all that’s happened. It’s still a discrete set 
of eigenvalues. All we are saying is that what was 0 here has been shifted to - lambda squared 
over h cross.  The next one said: let S be the spin operator for spin 1/2 particle and n and n prime 
2 arbitrary directions and you are asked to find the commutator S dot n S dot n prime.  
 
(Refer Slide Time: 00:41:28 min)  
 

 
 

Remember that we have relations for the Pauli matrices. So S dot n S dot n prime = h cross over 
four because S is h cross over 2 times a Pauli matrix. Then the commutator of sigma dot n with 
sigma dot n prime.  So this is = h cross square over 2 i n cross n prime dot sigma. It’s got to be 
operator then at the end. So there has to be a sigma. You can re-express it in terms of S if you 
like.  Now up and down are the usual Eigen states and you are asked: what’s the operator Sx Sy 
in this basis. It’s just a simple trivial exercise, understanding what’s meant by the basis. 
 
 
 
 
 
 
 
 
 
 
 
 



 17 

(Refer Slide Time: 00:42:43 min)  
 

 
 

So we know that Sx Sy = h cross squared over 4 sigma x sigma y but sigma x sigma y is i sigma 
z which is = ih cross over 2 Sz. so we can retain it in either of the forms. It doesn’t matter really. 
Then, what is this matrix? As a matrix this is = h cross squared over 4 i and then a 1 0 0 – 1. 
That’s it. So as an operator, remember this is in the basis in which you diagonalized along Sz 
itself.  
 
(Refer Slide Time: 00:43:33 min)  
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So as an operator it says Sx Sy = ih cross squared over 4 [|up> <up| - |down> <up|]. In this basis, 
it’s a diagonal operator.  So the 1 with the bra, the ket up bra down ket down and the bra up 
doesn’t appear at all. These elements are 0 and this - sign takes care of this – sign. That’s it. Then 
in the state cos theta e to the power - phi sin 1/2 theta the expectation value of Sx + iSy.  
 
(Refer Slide Time: 00:44:48 min) 
 

 
 
 

Now once again you just have to write the representation for these. You have to compute a 
simple matrix element. By the way, what is the Sx + i Sy? It is h cross over 2 and its = sigma x + 
i sigma y. this is 0 here sigma y has - i on top. So it becomes 2 and then it has 0 and has 0 which 
is h cross times 0 1 0 0. And then the expectation value of this quantity is = (given this state) cos 
theta over 2 e to the i phi complex conjugate is needed when you take the bra. That’s the only 
place you have to be a little careful. t so its h cross 0 1 0 0 on cos theta over 2. That’s it. So you 
just have to carry out this trivial multiplication. So this is = h cross over 2 e to the power - i phi 
sin theta because cos theta over 2 sin theta over 2 multiplied by 2 and divide and that’s sin. 
That’s it. so that’s the answer. Now of course, you should check if theta is 0, where are you then? 
you are in eigen state of the Sz itself and then i know the expectation value of Sx and Sy are both 
0. So you should check if theta is 0. That is certainly true. It vanishes at theta = 0. Now the 
degeneracy of an electron we have already talked about and then the formal solution of the 
Schrodinger equation for a free particle for the propagator here, what do you think it is? Recall I 
had already given the answer for a harmonic oscillator and if you said omega = 0, then you get 
the answer for the free propagator. That has combinations like an omega on top and a sin omega 
t below and as omega goes to 0 sin x over x goes to 1 or sin ax over x goes to a so we need to use 
that fact.  
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(Refer Slide Time: 00:47:50 min)  
 

 
 

Even otherwise you could write this down for the free particle propagator. It would be something 
like m over 2 phi h cross t. i don’t swear to this but its something of this kind exponential of a - x 
- x prime whole square - m over 2 ih cross t and this is = k of x x prime t. I just wrote this down 
because i remember the solution to the diffusion equation and i know that ih cross over 2 m is a 
diffusion coefficient for the Schrodinger equation. How are you going to exponentiate it you 
found this by actually solving this equation? 
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So the statement is: if you write delta psi over delta t ih cross is - h cross squared over 2 m d 2 
over dx 2 psi, then regarded as a function of t alone, this is a first order differential equation and 
this quantity is an operator in x but not in t. so in a sense, psi of x at time t is this exponential of 
this operator acting on psi of x at time 0. But the exponential of that operator is an integral 
operator. so when you explicitly write it out, although formally you can write it in this form, you 
get an integral operator with some kernel. 
  
(Refer Slide Time: 00:50:08 min)  
 

 
 

 
Just as if I write e to the power a d over dx on f ( x), this is not a local operator. Even though d 
over dx is a local operator, each point you find the derivative. This is not a local operator because 
all powers of this derivative are involved here when you do the expansion of the exponential. 
Therefore, this as we know is actually = f (x) + a. so it’s a translation operator. in exactly the 
same way, it turns out e to the power sum b d 2 over dx 2 on f(x) cannot be written as something 
which depends on x alone. It’s not a local operator just as this depends on x + a set of finite 
distance away. in this case, it turns out that this can only be written as an integral for - infinity to 
infinity dx prime acting on f ( x) prime but what acts on it is a k( x , x prime) and this kernel here 
is of the form e to the - x - x prime whole squared over something which involves b and so on. so 
it’s a nonlocal quantity. It shouldn’t be too surprising because if I have a function at some point 
here (Refer Slide Time: 51:48), if I specify the value of this x axis, you know what the function’s 
value is. Now if I differentiate this function, then I need to know the value of the function at 2 
neighboring points so that i can take the slope. If I would like to find the curvature at that point, 
the slope is not enough. I need to take the second difference. That means, I go a little further and 
take the difference of the differences and so on. So in a sense, to go a finite distance, you need an 
infinite number of derivatives. That’s what is happening here to the infinite number of all 
powers. all derivatives are involved. so it is not surprising that the value of this quantity depends 
on the function everywhere else with that weight factor with that kernel. So the answer is 
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definitely a function of x finally, but it would be a function of x depending on everything else. 
That’s what is happening here. So what we found here is this explicit solution to this equation 
which you can find in many ways but this quantity is a propagator. It has the advantage that if 
you give an arbitrary initial function and not a delta function or say that the function is 0 
everywhere except at 1 point or anything like that, I can still find the solution.  
  
(Refer Slide Time: 00:53:21 min)  
 

 
 

So the formal solution to this once I put that in, then I know that psi(x, t) is an integral k ( x, x 
prime) t dx prime psi ( x prime 0 ). So this is the initial value so you convert it this it’s an initial 
value problem. So given the initial probability amplitude I am able to find the probability 
amplitude at all latter times with this propagator that takes me from the initial to the final state.  
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(Refer Slide Time: 00:54:06 min)  
 

 
 

The last one was the action of j + on jm. This is something we have already worked out. It must 
vanish when m = j. so that’s our mnemonic device. It says j - m and then it is j + m + 1 it’s the 
raising operator. So it takes j and converts it and makes it m + 1. Had you had j -, this would be j 
+ m and that would be j - m and this would be m – 1. It lowers it by 1. Now I didn’t ask for the 
solution. I asked for the equation of motion and the equation of motion is a classical equation of 
motion. 
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So it just says d over dt < r> = p over m. that’s the equation of motion. Of course if you solve it, 
then you need to know what is the expectation of r at z = 0. So this is the equation of motion. It 
follows from Heisenberg’s equation of motion. for a free particle the Hamiltonian is p squared 
over 2 m. so dp over dt is 1 over ih cross the commutator of r with H. the expectation value of a 
dagger a in a coherence state alpha with a linear harmonic oscillator S tells us 1 of the meanings 
of this complex number alpha which is the eigen state of a and the expectation value is not hard 
to find. 
  
(Refer Slide Time: 00:56:02 min)  
 

 
 

Remember, that the coherent state alpha was defined as e to the - mod alpha squared summation 
n = 0 to infinity alpha to the n over square root of n factorial acting on n.  You could now ask 
what’s a dagger a acting on this and find with an alpha on the left hand side. So alpha a dagger a 
alpha = e to the - mod alpha squared because you are going multiply 2 of these fellows here. And 
then a summation n = 0 to infinity alpha to the n alpha star to the n because this would have been 
m on the left but I am going to use the orthonormality condition.  
 
So it becomes alpha star on this side. Divided by n factorial because you can’t do square root of 
n factorial. You can’t sum but n factorial in the denominator is easy. and then put an alpha a 
dagger a. when it acts on n, it just produces an n and n and of course this is mod alpha squared to 
the power n. this sum is easy to do. You start from n = 1 onwards. n = 0 is 0 by definition. This 
series is = mod alpha squared. So if you put beta = a 1 alpha which incidentally is alpha on 
alpha, then this quantity here (Refer Slide Time: 57:58) is nothing but norm of beta on beta = 
mod alpha squared. So this is the meaning of mod alpha squared. It’s in fact the expectation 
value of the number of quanta. If we regard this as state of the radiation field, it’s a number of 
protons in a coherent state. The average value of the number photon because you are not in the 
number state. You are not an Eigen state of a dagger a but in the superposition these states. 
Therefore the sum average value and that’s mod alpha square in this problem. Now what is the 
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allowed value of mod alpha squared? It is 0 to infinity.  Its 0 if and only if alpha is 0. When alpha 
is 0, then the state that you get is in fact the ground state of the harmonic oscillator in which the 
expectation value of n is 0 anyway. It’s the vacuum state for the radiation field. Otherwise you 
get a finite number. 
   
(Refer Slide Time: 00:59:12 min)  
 

 
 

Now of course you can also generate this. You could write this as = a dagger to the n over square 
root of n factorial on 0 in which case you get e to the power alpha a dagger on 0. The advantage 
of this is there is no summation. It tells you there is some operator acting on the ground state 
produces this coherence state but an even better way of writing this is by using Lemma 
combinations. 
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You can also write this as e to the alpha a dagger - alpha star a acting on 0. That’s a very 
important way of writing it. This is called the displacement operator D of alpha. It’s a function 
and alpha star but I will just omit the alpha star there. it’s a unitary operator. So in a sense a 
coherent state is a unitary transformation on the ground state of the harmonic oscillator. And this 
unitary transformation is parameterized by a complex number here. Therefore, the natural 
question to ask is: what’s this really telling you? Well, this set of unitary transformation forms a 
group and there is a group multiplication law which says D (alpha) D (beta) is D(alpha + beta) 
times a phase factor. It’s called wild group because after all, a and a dagger form a a dagger and 
the unit operator form the Heisenberg algebra. We will come back to this because they play a 
significant role in quantum optics. Now let me stop here today.  


