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Now so let’s go back and look at few of the problems in the sheets given earlier. We start 
with set p which was on the harmonic oscillator. I hope some of you have got copies and 
after writing down the Schrodinger equation plus the solution and so on, there is a set of 
problems that are given. So let’s go through these systematically. The first one refers to a 
particle in a box, the orthonormality condition, the completeness relation, etc. You are 
supposed to verify these. So they are just straight verifications. And then i have to also 
ask for the momentum space wave function. 
 
(Refer Slide Time: 00:01: 47 min) 
 

 
 

So the problem was the particle in a box, 0 to L, the energy levels En squared pi squared h 
cross squared over 2m L squared and the normalized wave functions where n is 1, 2, etc 
and the wave function is zero outside the box. you are also asked to find the momentum 
space wave function corresponding to this and that has also been written out here as phi n 
tilde (p) is equal to integral, - inifinty to infinity, dx p x phi n (x) and this quantity here 
(Refer Slide Time: 03:03) the normalized value p x is 1 over square root 2 pi h cross e to 
the ipx over h cross. as you can see, if this thing had been just e to the ipx or something 
like that or a sin or cosine from - infinity to infinity, then this (Refer Slide Time: 03:35) 
would be just a super position of a discrete number of momentum states but, because the 
wave function gets cut off outside the box, it’s localized to within this box. So on the x 
axis, the particle doesn’t ever go outside the box. 
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So this means, the uncertainty in the position can at no stage be bigger than L itself. 
Definitely it is inside the box which means the uncertainty in the momentum cannot be 
smaller than the order of h cross over L. so that immediately says that the momentum 
space wave function is actually spread out unlike the position space wave function. And 
you can compute this once you put this (Refer Slide Time: 04:22) in and then take mod 
squared of this to find the momentum density. In the case of the ground state, if you plot 
phin tilde (p) mod squared, you would get something like this (Refer Slide Time: 04:50)  
 
(Refer Slide Time: 00:0 4:35 min) 
 

 
 

It is a peak here and another peak here at these values and this will be h cross pi by L and 
- h cross pi over L. n corresponds to 1 here. So it’s phi1. I leave this to you to actually 
work it out. So it is an extended wave function in any case. It’s a kind of a statement if 
we have function which has compact support, then the Fourier transform has support 
from - infinity to infinity. The more you try to localize in position, the more it spreads out 
in the momentum. So it is not a momentum eigenstate for sure. In fact, there is a result 
given for this. it is cos squared pL over 2h cross and then there is a rational function. it is 
easy to calculate the position and momentum uncertainty. You have to simply calculate 
some integrals here and then show that delta x delta p for any eigenstate n is certainly 
much bigger than h cross over 2 including the ground state.  
  
The next problem was a particle moving freely in 1 dimension but it was given in the 
position basis by Gaussian wave packet. So the idea is to try to localize the particle near 
some point x 0. The question is what happens to this as a function of time, and compute 
the momentum space eigen function etc. so you are supposed to calculate delta x delta p, 
find the wave function at any instant of time greater than zero, find what the 
corresponding momentum space wave function is, the uncertainties, etc.  
 



 3 

(Refer Slide Time: 00:06:57 min)  
 

 
 

In particular, for this wave packet, which is an interesting wave packet psi (x, 0) = 1 over 
pi sigma squared to the power 1/ 4, these are normalization factors, e to the power – i k0 
x. e to the – (x - x 0) whole square over 2 sigma squared. so mod psi (x, 0) squared is a 
Gaussian peaked about the point x 0 and for this Gaussian wave packet, we are supposed 
to compute the uncertainty in position, momentum, etc and then show that at any instant 
of time, x average is equal to x 0 + pt over m. so again for this Gaussian wave packet, the 
mean value of x moves like a classical particle. It is a free particle. So classically the 
momentum is constant and x would be x 0 + pt over m but now Ehrenfest theorem kicks 
in and you have expectation values moving according to this rule. You can do this 
directly by integrating or writing down the Hamiltonian which is just p squared over 2m 
using Heisenberg’s equation of motion. You are also asked to find the spread of the wave 
packet as a function of time.  
 
This wave packet will spread and the physical reason it spreads is because different 
components of different wavelengths don’t travel at the same velocity. The wave velocity 
and the group velocity are not the same in this case because the energy is dependent 
quadratically on the wave number. It is a free particle. So E is p squared over 2m and p is 
h cross k. E is h cross omega. So omega is proportional to k squared which means d 
omega by dk is not omega over k. that immediately leads to dispersion. The rest were 
some identity in the harmonic oscillator for the linear harmonic oscillator what is the 
expectation value in any of the energy eigenstates? What is the expectation value of the 
kinetic energy and that of the potential energy?  
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They happen to be equal in the case of the harmonic oscillator. These 2 are equal because 
that problem is extremely symmetric under the interchange of x and p. in some sense, its 
quadratic in x and quadratic in p and the Hamiltonians are very symmetrical and then 
there were some Baker Campbell Hausdorff type of identities. The only significant thing 
you must note in this problem set is our definition of coherent state. 
 
(Refer Slide Time: 00:10:02 min) 
 

 
 

So an oscillator coherent state was defined in this following way where alpha is any 
complex number summation n = 0 to infinity, alpha to the power n over root n factorial n 
where these were the oscillator eigenstates. We know that a on alpha is alpha on alpha, 
alpha is any complex number but you can also rewrite this in another form. 
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(Refer Slide Time: 00:10: 47 min) 

 
  
We can also write this as e to the power - half mod alpha squared. We know that n itself 
can be found by taking a dagger and acting on the ground state. Therefore this becomes 
summation n = 0 to infinity, alpha a dagger to the power n over n factorial acting on the 
ground state. because a dagger to the n on 0, divided by square root of n factorial is in 
fact the excited state n. so this is equal to e to the - half mod alpha squared, e to the power 
alpha a dagger acting on the ground state. Now we know the commutation relation 
between a and a dagger, so we know the one between e to the alpha a dagger and e to the 
alpha star a as well. And if you use that commutation relation or any of these relations 
which have been given to you earlier, this can also be written as e to the alpha a dagger - 
alpha star a acting on 0. 
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(Refer Slide Time: 00:11:52 min) 
 

 
 

So, there is a certain operator called the displacement operator; D (alpha), it should be D 
(alpha, alpha star) because it is linearly independent of each, but just for convenience of 
notation I will call it D of alpha. This operator which is the exponential of this 
combination here acting on the ground state gives you the coherent state. Now the reason 
this is called the displacement operator is the following. First of all, this operator is a 
unitary operator. That is easy to see that D D dagger = D dagger D = the identity 
operator. So it’s unitary transformation on the ground state that gives you the coherent 
state. And physically what it corresponds to is the following. The wave function in the 
position bases corresponding to this alpha would be found in the usual way. 
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(Refer Slide Time: 00:13:10 min) 
 

 
 

It is x on alpha and that would be x on n and what is x on n?  By definition it is phi n (x), 
it is the normalized eigen function in the position basis. And what is phi n (x) equal to for 
the harmonic oscillator? There is a Gaussian, so its = e to the - x squared over 2 in units 
of h cross over m omega or whatever. so really you should have m omega over 2h cross 
and so on sitting here multiplied by the Hermite polynomials Hn (x) again in those units 
and then there some normalization constant here, 1 over 2 n factorial square root and so 
on. so for you to find this, you have to put in here and compute it which doesn’t look like 
a very trivial exercise because you have to remember that if i put this in, you have to find 
alpha to the n and then Hn but now you use the expression for the generating function of 
Hermite polynomials and then this sum collapses and you can’t compute this sum and the 
answer is again a Gaussian but centered not at the origin like this (Refer Slide Time: 
14:59) one is but centered at the real part of alpha.  
 
What about the imaginary part of alpha?  What would that correspond to? Would that 
play a role because I am claiming this is a Gaussian of the form e to the – (x - alpha 1) 
whole squared over 2 and other factor and there are phase vectors and so on but alpha 1 is 
the real part of alpha. What you think is a role played by the imaginary part of alpha? it 
would be the center of the Gaussian wave packet in the momentum space wave function 
because you know that the momentum space wave function is a Fourier transform of the 
position space wave function and the Fourier transform of a Gaussian is a Gaussian once 
again. So alpha 2 would appear if you did p with alpha. You would get p - alpha 2 and so 
on. What does that imply physically?  
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(Refer Slide Time: 00:16:21 min) 
 

 
 

It says a Gaussian wave packet has been essentially shifted in the sense that the harmonic 
oscillator, classically not quantum mechanically would correspond to an elliptic orbit in x 
and p. this is an oscillator oscillating about the point (0,0) in x and p. the equilibrium 
point at (0,0) once you apply this displacement operator e to the alpha a dagger - alpha 
star a, you get a new state which is also again an oscillator but would correspond to 
something like this (Refer Slide Time: 16:58). It is simply displaced from this origin to a 
new equilibrium point. This is alpha 1 that is alpha 2 about there. That is why i use the 
symbol D and that is why it is called the displacement operator. It displaces this 
oscillator. What is the uncertainty product delta x delta p for the ground state of the 
harmonic oscillator?  
 
It is exactly h cross over 2.  It’s a Gaussian wave packet. so it is the minimum uncertainty 
state but so is every coherent state for arbitrary alpha. it is again Gaussians. so once again 
the uncertainty product is a minimum value. in fact, if you plot delta x verses delta p, 
delta x is in units of square root of m omega over h cross and delta p is in units of 1 over 
square root of m omega h cross. Then, both these are dimensionless quantities. Delta p 
delta x must be greater than or equal to ½. It’s equal to ½ for this hyperbola. And 
symmetrically at this point 1 over square root of 2e. For each of the two. This (Refer 
Slide Time: 18:37) is where the ground state of the harmonic oscillator is and this is 
where all coherent states are for all of them. You have this minimum uncertainty with this 
symmetry between x and p. the excited states in the harmonic oscillator would be (delta 
xn) (delta pn) = (n + ½) h cross. so the ground state n = 0 is 1/2 h cross and the excited 
states, I have set units such that h cross disappears on both sides. Those would 
correspond to the states here (Refer Slide Time: 19:25) here. They are square root of 3 
over 2 squared, five over 2 and so on.  
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(Refer Slide Time: 00:19:31 min) 
 

 
 

Let’s take e to the alpha a dagger - alpha star a and apply it on 0. i get alpha which is a 
coherent state. What happens if i apply this on some excited state r and not on 0? It’s the 
same operator acting on an excited state of the oscillator. This is called the generalized 
coherent state. It has interesting properties and they are not minimum uncertainty states 
including the ground state. This is denoted by |r, alpha> and it is called a generalized 
coherent state. They again have a lot of applications in quantum optics which we will not 
get into here.  
 
(Refer Slide Time: 00:20: 41 min) 
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What is interesting to note is that these operators D(alpha) D(alpha prime) have 
interesting multiplication properties among themselves and that has been given here as an 
exercise. i have given D (alpha) D(beta) = D(alpha + beta) e to the I, imaginary product 
of (alpha beta star). Then it is fairly straight forward to verify this relation here. This is 
again another way of writing the Weyl commutation relation between x and p. recall that 
earlier when we said x commutator p is ih cross unit operator, what is e to the i ax e to the 
i bp? , where a and b ordinary numbers and that again had a form similar to this. a and a 
dagger if you like are linear combinations of x and p and are non Hermitian. so this is 
essentially the same Heisenberg algebra being rewritten in different ways. The important 
point about the coherent states is that they are not orthogonal to each other and this is 
crucial because |<alpha| beta>| mod squared is e to the - mod |alpha – beta| squared. so 
certainly if it is normalized; if alpha is equal to beta you get 1. Otherwise it is not zero 
since they are not orthogonal states. They are an over complete set. it is not a complete 
set and are not orthogonal to each other. The next problem in problem set 3 was on 
finding the time dependent propagator for the simple harmonics oscillator. So let’s go 
back to the actual time dependent Schrodinger equation and try to solve this equation 
completely by using a Green’s function for it and that is what i call the propagator. So 
let’s write it down and you are just asked to verify this because it requires a little bit of 
mathematics to work it out.  
 
(Refer Slide Time: 00:23:29 min) 
 

 
 

So the equation was i h cross delta psi /delta t (x, t) = - h cross squared over 2m d 2 psi 
over dx 2 + 1/2 m omega squared x squared psi. And now the point is, if you specify 
adequate boundary conditions, and in this case we want the wave function to be 
normalized. so that means psi ( x, t) must go to zero as  x goes to +/ - infinity together 
with an initial condition. then it is possible to write the solution at any time as integral dx 
prime and then a kernel which is the function of  x, x prime and t; psi ( x prime, 0).  
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This quantity is called the propagator because it helps you go from the wave function at 
time zero to the wave function at any later instant of time. That’s called the Feynman 
propagator and i given an expression for the propagator here. It’s a fairly complicated 
expression and the idea is to verify whether it’s true or not. By the way, what is the 
propagator for the free particle? Suppose you had no oscillator at all, what does the 
propagator look like? As a free particle propagator, there is no potential.  Certainly you 
can still write the wave function at time t in this (Refer Slide Time: 25:29) form. It is an 
initial value problem. You are interested in psi of x comma t for all t greater than equal to 
zero. 
 
You are given psi (x, t) at t=0 and you are trying to find what it is at later instance of 
time. So you are interested only in the half line in t namely t greater than 0. It’s a first 
order differential equation in t. so what is the automatic thing to do? You would use 
Laplace transforms. And for the x variable that is defined from - infinity to infinity, we 
would use Fourier transforms. So you do a Fourier transform in x, Laplace transform in t 
and the job is done and you compute the solution. What do you think is going to happen? 
that is the free particle propagator and we could do this very painfully but you can see 
very easily that if you took a Laplace transform in t, if s is the conjugate variable to it, 
this (Refer Slide Time: 26:52) is going to be s times a transform - the initial value and if 
you do a Fourier transform in x and k is the conjugate variable, differentiation with 
respect to x corresponds to multiplication by k.  
 
So it is clear that the transform is going to have a k squared multiplying it (Refer Slide 
Time: 27:11) and it is going to have an s multiplying this (Refer Slide Time: 27:13) and 
there is an in homogeneous term. So eventually this transform is going to be 1 over some 
(s + k) squared or (s – k) squared acting on the initial value and the inverse transform of 
that is an exponential. So it will have an e to the - k squared which is a Gaussian in k and 
if you take the inverse transform of a Gaussian, you would get an e to the - x squared. So 
I would expect in this problem that i am going to get something like e to the - x squared 
over t acting on the initial state. That would be my transform. Are you familiar with the 
diffusion equation? We know the solution to that.  
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(Refer Slide Time: 00:28:19 min) 
 

 
 

I will write this down by inspection because remember, the diffusion equation says delta 
rho / delta t for any concentration rho is D times d 2 rho/ dx 2. That is the diffusion 
equation and what is the solution to this? So if you say rho (x, 0) = delta (x - x prime), 
some special point x prime where every all the entire molecular species is concentrate at 
some point x prime and then you let it diffuse as a function of time, the answer is some 
kind of Gaussian. Then rho ( x, t) = 1 over square root of 4 pi Dt e to the – (x - x prime) 
squared over 4 Dt. that is the standard solution to the diffusion equation. 
 
(Refer Slide Time: 00:29:28 min) 
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So it says if on the x axis, you start with an initial concentration at the point x prime as a 
function of t, after some time we are going to get this and then it is going to get widened 
out and so on. So it is a Gaussian concentrated about that point. Well this equation looks 
pretty much like that because this - h cross squared could be written as ih cross squared. 
So it is essentially the same equation on both sides. so let us write this as - h cross 
squared and bring the i h cross here. So this goes away and there is 1 over i here (Refer 
Slide Time: 30:15) which gives you ih cross. It’s the same solution. So this means that if 
the initial particle was concentrated at the time x prime, that Gaussian is a solution but if 
it’s given by distribution by itself; psi(x prime, 0), all you have to do is to put this 
corresponding solution in here (Refer Slide Time: 30:39). So let’s put that in.  
 
(Refer Slide Time: 00:30: 42 min) 
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(Refer Slide Time: 00:30:54 min) 
 

 
 

e to the - x - x prime whole squared over 4 times D. Now D in our problem is ih cross 
over 2m. It is imaginary and it is not real diffusion of course. It is just the Schrödinger 
equation. The resulting equation is this (Refer Slide Time: 31:24). Had this (Refer Slide 
Time: 31:30) been some initial point t 0, then this would be just (t - t 0) for all t greater 
than t 0. And then the normalization, square root of 4 pi, D is ih cross over 2m, root m by 
2pi h cross. That’s the exact solution to the time dependent Schrodinger equation for an 
arbitrary initial distribution. You specify any psi (x prime, 0) and that is the solution at 
any time t. this quantity this thing here together with this (Refer Slide Time: 32:48) factor 
is called the propagator. In this case the free particle propagator. So what I have done in 
writing this solution here is exponentiating the second derivative operator. Because it 
says pretend that the right hand side is just some number, and then it says the following.  
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(Refer Slide Time: 00:33:21 min) 
 

 
 

delta rho over delta equal to some lambda times rho, lambda is an operator which acts on 
the x variable etc but the solution here is rho at time t equal to e to the lambda t rho at 
time 0. So going back to the original x variable, it says rho x comma t = e to the power Dt 
d 2over dx 2 rho (x, 0). Dt has dimensions of length squared. So this is dimensionless. So 
the question is what is this (Refer Slide Time: 34:12) equal to?  If this was a d over dx, 
what would this be? If this were a first derivative, then you can use Taylor's theorem and 
this would be just rho (x) displaced by D. So this quantity would just be root Dt d over 
dx, this (Refer Slide Time: 34:48) would be just x + square root of Dt but when you have 
a second derivative, then the answer is some integral operator because it must depend on 
all x because all derivatives are acting on it, arbitrarily high orders.  
 
Therefore it must depend on rho not just at one x but at all sorts of places and it becomes 
an integral operator whose kernel is given by this (Refer Slide Time: 35:14). so that is the 
reason you get the Gaussian multiplying the psi and then in integrating over x prime, 
because you are really exponentiating the second derivative operator. And the answer is 
that it is an integral operator and the kernel is a Gaussian. Now for the harmonic 
oscillator, you are exponentiating not just d 2over dx 2 but you are exponentiating the 
operator d 2over d x 2+ x squared and those two parts don’t commute with each other. So 
this is Green function and it is a very non trivial object. That’s not always possible to 
write it down for all problems.  
 
The path integral way of doing quantum mechanics starts at this point. It tells you how to 
find these propagators by what is called time slicing but we are not going to that in this 
course. However, this expression for the harmonic oscillators Green function is 
sufficiently important that you need to know. So that was a reason for giving it. The idea 
is that you give me the Schrodinger equation and you specify the initial wave function, 
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then the future wave function is obtained by some propagator acting on the initial wave 
function. This takes you from any point x prime to any other point x. 
 
(Refer Slide Time: 00:36:57 min) 
 

 
 

The next problem is had this harmonic oscillator Hamiltonian in suitable units + lambda 
(a + a) dagger in suitable units, what does this Hamiltonian correspond to? Lambda is a 
real constant. You are also asked to find the eigenvalues of this Hamiltonian. One way to 
do it this is we are asking what does this correspond to physically, so we should go back 
to the physical variables x and p. if you go back to the original variables, the Hamiltonian 
was equal to 1/2 p squared + 1/2 x squared. We have set h cross as 1, omega as, 1 m as 1 
and so on + some constant lambda (a + a dagger). But what is (a + a dagger)? It is root 2 
x. what does that (refer Slide Time: 38:27) correspond to? But physically what has been 
done to the oscillator? You put a constant electric field or just a spring which goes up and 
down and you add gravity to it, so it has moved the center of oscillation. So the potential 
is no longer like this (Refer Slide Time: 38:57) but this potential has gone over to 
something like this (Refer Slide Time: 39:01).  
 
All that’s happened is you shifted the oscillator. So would you expect the energy levels to 
be changed? You wouldn’t expect the spacing to be changed but certainly there has in 
added constant. So you should complete squares in this case.  You end up with some x 
prime - some constant. So all you have done is to shift this some other position and got a 
potential like this (Refer Slide Time: 39:57). So you can change the energy levels by 
adding an overall constant. So this problem is trivially solvable. It is just a linear 
perturbation on a quadratic Hamiltonian and it is trivially solvable in this case. What 
value should lambda take in order that the ground state energy be exactly 0? Well, you 
can fix this and you know what this (Refer Slide Time: 40:44) quantity is. You know how 
much you are going to add. That depends on lambda and that must be exactly equal to 
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half h cross omega in this problem half. So once you fix that, then the ground state 
energy is exactly at 0. so that is a trivial problem. 
 
The next one was the problem of a free particle in a constant field of force. So the 
potential was - fx and I worked this problem out explicitly in class. The solutions in the 
position basis are airy functions but the solutions can be written in terms of the 
momentum basis. The equation is easy to solve because the Fourier transform has things 
like e to the power of a p cubed term and the p term. And the normalization is energy 
normalization. So that was for problem set 3. And then in set 4, there were problems on 
the harmonic oscillator eigen functions themselves.  
 
One of the points i wanted to point out was the following. The differential equation 
satisfied by the position space wave functions in the harmonic oscillator and that satisfied 
by the momentum space wave functions are exactly the same in suitable units. Therefore 
the solutions are exactly the same in functional form.  
 
(Refer Slide Time: 00: 42:16 min) 
 

 
 

The solutions in x if you put in the appropriate constants and so on, then the solutions in 
x are of the form phi n (x) which is some normalization constant, e to the - x squared over 
2 and then Hn(x). in the momentum basis, phin (p) tilde for the same eigen state would go 
like some An e to the - p squared over 2m Hn (p). So the functional forms are exactly the 
same. On the other hand, I know that the momentum space wave function is a Fourier 
transform of the position space wave function. 
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(Refer Slide Time: 00: 43:13 min) 
 

 
 

So I know also that phi n tilde (p) = Fourier transform of phi n tilde, and this is equal to 
integral dx e to the ipx over root 2pi setting h cross = 1 times phi n (x). so i could regard 
this as an integral operator with kernel e to the ipx acting on a function in L 2 to produce 
another function in L 2 because this 2 is square integrable. This is normalized to 1, mod 
phi n (p) whole squared dp is 1 and so is mod phi n (x).  We know that the Fourier 
transform of an L 2 function is also L 2. In this case, we got something better. It says phi 
n(p) has the same functional form as phi n (x). So this is like an eigen value equation and 
apart from an overall multiplicative constant whose modulus is 1, this and that are exactly 
the same. This is some other function; modulus of A n is modulus A n prime.  
 
So apart from that, these 2 are exactly the same function. So it says that these functions 
are something special. They could also be regarded as eigenfunctions of the Fourier 
transform operator because you take the function and you have to do a Fourier transform 
on it. You get another function in the same space and is again in L 2 but that function has 
the same form as the original function. Therefore this is an eigen function of the Fourier 
transform operator. And the eigenvalue must have unit modulus. So in general, the 
eigenvalue is with some complex number of unit modulus.  
 
Student -now what about the 4ier transform of Gaussian? Professor - It gives you exactly 
the Gaussian and in fact, if you work with the ground state H 0 is 1, you would discover 
that it is equal to itself in functional form. So the eigenvalue is 1 in this case. So the 
ground state in fact has eigen value + 1. So the ground state wave function of a harmonic 
oscillator is also an eigen function of the Fourier transform operator and has eigen value 
+ 1. What about the excited states? Well, the first excited state you will discover in 
functional form that phi 1 tilde(p) is i times phi 1 of x which implies that it is an eigen 
function of the Fourier transform operator with eigen value + i. the next excited state 
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would have - 1 as eigen value the third excited state has eigen value - I and the forth 1 
comes back to + 1 and this is because the forth power of the 4ier transform operator 
acting on functions in L 2 is the identity operator. 
 
(Refer Slide Time: 00: 47:03 min) 
 

 
 

So F to the power 4 f = f itself. You can verify this. In fact you can verify that f squared 
acting on f (f squared f) of x = f (- x). In other words, the square of the Fourier transform 
operator is a parity operator. so you take a function of x, you do the Fourier transform of 
the Fourier transform; not the inverse, once again Fourier transform of the Fourier 
transform and you get a f (- x). That is easy to verify. Therefore you do it 4 times you get 
back the original function. this immediately suggest that the Fourier transform operator 
itself has eigen values equal to the 4th roots of unity; 1, i, - 1 and –i. and the harmonic 
oscillator energy eigenfunctions are also Fourier transform operator eigenfunctions such 
that the ground state has eigenvalue + 1. The first excited state i, second excited state – i, 
third excite - 1 third excited state - i and 4th one back to 1 and that keeps going. So this is 
an extremely interesting property of these functions.  
 
So they are not arbitrary functions as you can see. It is the symmetry between x and p that 
gives you some profound inside into what’s happening with regard to the Fourier 
transform operator itself. Well, the obvious question to ask is if these functions of the 
eigenfunctions of the Fourier transform operator, then the Fourier transform operator is 
like the square root of the parity operator. The parity operator is the like the square root 
of the unit operator, then what about the square root of the Fourier transform operator? 
Would the harmonic oscillator eigenfunctions also be eigenfunctions of this operator with 
eigenvalues at the 8th roots of unity on the unit circle and so on? Then you can ask for 
the square root of that operator the 16th roots of unity and so on. I leave you to verify 
whether this is true or not.  
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It is an interesting exercise in mathematical physics and you have to verify this is true or 
not and it has implications in other areas of mathematics but we won’t go into that. But 
up to the level of the Fourier transform operator, I have given here what the expected 
answers are, so please check that out. Then, last questions I have to do with reflex and 
transmission. These are things I have already done in class. I have just written them down 
systematically here. So, that you have the exact formulas with the correct notation and so 
on. And finally the last question is an extension of the uncertainty principle.  
 
(Refer Slide Time: 00:50:27 min) 
 

 
 

I already mention that delta a delta b, if you had 2 arbitrary operators then delta A 
squared delta B whole squared is greater than equal to 1/4th the expectation value of the 
commutator of A with B squared. this was the generalized uncertainty principle I 
mentioned, where A commutator B is some - i C or whatever, where C is the Hermitian 
operator but you can also ask what is the exact relation and it turns out to be greater than 
equal to this commutator squared + a similar expectation value squared of the anti-
commutator. And since that is again a non negative quantity, you play it safe by saying 
this is certainly bigger than this. So there is an extra term in here. It is actually bigger 
than this + another term here which could to be 0 under circumstances. And that is the 
actual best result that you can get. That is the generalization of the uncertainty principle. 
It is an extension of the uncertainty principle. I believe it is called the Schrodinger 
Robertson uncertainty principle. i can’t swear to that right now because i don’t remember 
for sure but that extra term is sometimes used also and plays a role. So that should take 
care of these problem sets. Please go through this completely and make sure you solve all 
of them and if there is any problem, just let me know. So let me stop here. Thank you!  


