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Let us resume our formal study of quantum mechanics by first asking if there are any 
questions and that will give us a starting point. Last time we disused the uncertainty 
principle a little bit. We tried to point out that quantum mechanics has, by its very nature 
a certain degree of uncertainty in our ability to completely understand or completely 
specify numerical values for physical observables.   
 
Now of course we must quantify this and let me say that only part of the statement is 
right where we often tend to say that quantum mechanics is all about probabilities and 
that it’s indeterminate and it’s uncertain. The rules for calculating probabilities are 
completely known. They are deterministic. There is nothing uncertain about that. But the 
fact is quantum mechanics does say that associated with physical measurable quantities; 
we have a certain intrinsic statistical nature which means that, you can only talk in terms 
of probability distributions and all the other things associated with probability 
distributions like average values, mean square values, standard deviations and so on. So 
in that sense, it differs from classical Hamiltonian mechanics for instance, where we 
could specify the state of a system by a very precise point and phase space. The idea of a 
point in phase space is lost once you go to quantum mechanics and that’s the way things 
are. Now the frame work in which you discuss a quantum mechanism is mathematical in 
its most elementary form.  
 
It’s more elementary than what you need for Hamiltonian mechanics. We need to have 
fairly sophisticated concepts such as Poisson brackets, symplectic structure and so on. In 
quantum mechanics, this is replaced by a very linear kind of a structure where the states 
of systems are specified not by points in some phase space but by an element of a linear 
vector space. This element is called the state of a system and it’s an abstract concept. The 
idea is that there exists something called the state of a system which happens to be a 
member of a linear vector space. This state of the system potentially can give you all the 
information you can find about the system. Just as in classical mechanics, once I tell you 
that the system has n degrees of freedom, you associate with it a 2n dimensional phase 
space, you find the generalized coordinates of momenta. A point in that phase space tells 
you the state of the system specifying all the q’s and p’s .you have to throw that out in 
quantum mechanics.  
 
Now the experiments which led us to this kind of description, over the years grew and in 
the early days, the interpretation of quantum mechanics posed a very severe problem. The 
formulation of quantum mechanics itself posed a fairly deep problem but eventually 
things got ironed out and by 1926 or so, the pre-formalism was replaced.  
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Since that time, many layers have been added to it. But the original foundational 
formalism, that was initiated in a very remarkable short time in the early 1920’s still 
remains in place.  
 
(Refer Slide Time: 00:06:22 min) 
 

 
 
So let me start by saying that a quantum mechanical system is described or specified by a 
state vector. I use the word vector because it’s an element of a linear vector space and a 
kind of symbols we would use for it changes from different books and authors. But now 
there are standard symbols for these states. The one that I am going to use is called Dirac 
notation and I will say lot about Dirac notation as we go along. It is denoted by 
something like that (Refer Slide Time: 00:06:22).  
 
I will use Greek letters for these state vectors and I am going to put these mysterious 
angular brackets here just to tell you that it is an element of a liner vector space. Now 
whenever I say linear vector space, you imagine a three dimensional Euclidean space, for 
example. The three dimensional Euclidean space is a linear vector space. Therefore all 
the properties that we are going to talk about for state vectors can be imagined by 
thinking about ordinary three dimensional vectors and using vector algebra to add them. 
Now this state vector is a function of time. Let me write psi of t with a capital psi. I will 
use capital for the moment. 
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(Refer Slide Time: 00:07:13) 
 

 
 
We will see why I use a capital letter because I want to use a small psi for something else. 
In order to find out what happens to the state as time goes along, we have to prescribe a 
rule of evolution just as in classical physics we prescribed Hamilton’s equations of 
motion. In exactly the same way, I am going to prescribe a rule for this psi of t and 
afterwards we will come back and simultaneously we will interpret what the psi of t and 
how it gives you information on various quantities and so on. But first a little bit of a 
digression on linear vector spaces.  
 
(Refer Slide Time: 00:08:07 min)  
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This is essential because I will assume that you know about linear vector spaces. So let 
me go through a small mathematical digression on linear vector spaces. Essentially if you 
know about matrices you already know all the mathematics you need. So let me reassure 
you that there is not much left and all you need to know is how to handle matrices and 
that too square matrix. Now let me formally define a linear vector space. I will leave out 
a few things here and there but we will fill them in as we go along. So this contains a set 
of elements which we called vectors and I need a notation for these elements. Let’s call 
this notation as psi, phi, chi etc. I use Greek letters for these vectors. These are called ket 
vectors for a reason which I’ll explain subsequently. What I use is a funny angle or 
bracket for it; just like tensor notation in ordinary you can calculate where we have the 
summation convention and the index notation.  
 
So it helps you do calculation very easily once you use this notation. In fact half the battle 
is won if you express things in the right notation. And this is exactly what the Dirac 
notation does. So it contains a set of elements among which you define certain 
operations. The fundamental one is that of addition. So you say that you add two vectors. 
Linear vector space V contains a set of elements. So it says that if psi and phi are 
elements of V, then psi + phi is also an element of V. So you add two vectors and you get 
another vector which also belongs to the same space. Moreover this addition is 
associative, in the sense that you could add the vectors in any order you like. It is also 
true that this addition is commutative. You can add them in either order.  
 
Importantly, the liner vector space is set of elements or vectors defined in a certain field 
and this field is a field of scalars. So you simultaneously introduce a set of numbers or 
scalars which belong to a field. We don’t want to get into what a field is right now. The 
real numbers and complex numbers form a field. Those quantities are denoted by a, b, c 
etc. these are elements of some field. That field is generally the field of real numbers R or 
the field of complex numbers C such that a (psi) is also an element of V. so you define 
multiplication by a scalar and it still gives you a vector. Just like in an ordinary three 
dimension space, I have a position vector r, twice r or thrice r exactly remains the same. 
This has all the obvious properties namely, a times b (psi) is the say as (ab) times psi.  
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(Refer Slide Time: 00:13:34 min) 
 

 
  
We are not going to worry at the moment about not commutative fields. So we are going 
to assume its real or complex which is R or C. So that means that ab is same as ba.  
 
(Refer Slide Time: 00:14:29 min)  
 

 
 

Then the further properties are a times (psi + phi) = a (psi) + a (phi). So all the obvious 
properties, that you know about multiplying ordinary three dimensional vectors by real 
numbers are listed one after the other. There exists in this space a special vector called a 
null vector.  
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(Refer Slide Time: 00:15:00 min) 
 

 
 
We are going to use this for something else but right now when we are taking about what 
a null vector is, let me just write it as ket 0. The reason I am hesitant to write it in this 
form is obvious. As you already know, when we solve some problems in quantum 
mechanics, we will be looking at various states and one of them is called the ground state.  
It could correspond to the lowest energy for this system and occasional I will use this 
symbol 0 inside the ket for the ground state but that’s not the null vector. This null vector 
is such that any vector phi + the null vector is still equal to phi.  
 
(Refer Slide Time: 00:16:18 min)  
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Among scalars, there are two special scalars. There is a scalar where one times phi is of 
course phi itself and zero times phi is a null vector. A null vector is a vector where all of 
whose components are zero. The position vector at the orgin for example, is a null vector 
in three dimensional spaces. So since 0 times any vector phi is a null vector sometimes, 
what one does is, forgets about writing the null vector. One forgets about writing it as ket 
0 and just uses ordinary 0 for the null vector because of this relationship. So you might as 
well just use ordinary 0 for the null vector but you shouldn’t get confused because if I 
add two vectors, I still get a vector.  
 
On the other hand, if I write (vector phi + vector psi) =0, what I mean on the right hand 
side is a null vector and not the scalar zero. But there should be no confusion because it is 
obvious from this fact that I could as well just call this zero. So these are all the 
properties that you need and since a runs over all reals for example, you can add the idea 
of multiplying vector by -1 and then get - the vector.  
 
Now this set of properties defines a linear vector space and there are many examples of 
linear vector spaces all around.  They have nothing to do with ordinary vectors and three 
dimensional spaces. These are abstract properties. For instance, the set of real numbers 
itself is a linear vector space. It is clear that these scalars would be the real numbers 
themselves and the vector would also be the real numbers. When you add two real 
numbers, you get another real number and you have a null vector which is this number 0 
itself.  
 
(Refer Slide Time: 00:18:32 min) 
 

 
 
R is a linear vector space. I will call this LVS. The set of real number itself is a liner 
vector space. R2, points on a plane is a linear vector space so Rn is also a linear vector 
space. In other words, the set of x1, x2, x3 up to xn such that I define addition by saying 
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if you add two vectors with components x1, x2, x3 up to xn and y1, y2, up to yn, then the 
result vector is x1 + y1, x2 + y2 and so on. You add component wise. That itself forms a 
liner vector space. These are real linear vector spaces. When I go over to complex vector 
spaces, I would permit multiplication by complex numbers, for instance. Those are other 
properties that are used. They would form a complex linear vector space. These are the 
only two kinds of linear vector spaces we are going to look at.  
 
There are other instances which are not so trivial. For instance, the set of all n by m 
matrices forms a linear vector space because when you add matrices, you get another 
matrix. When you add things to a null matrix, nothing happens to it. You multiply the 
matrices by scalar numbers; real or complex, you are still in that n by m matrix space. So 
the set of n by m matrices is a linear vector space. 
 
(Refer Slide Time: 00:20:14 min)   
 

 
  
There are other even more non-trivial examples of linear vector spaces. For instance, the 
set of solutions of the equation d squared x over dt squared + omega squared x =0. The 
set of solutions of this equation form a linear vector space because it’s a linear equation. 
There are primitive solutions to this. 
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(Refer Slide Time: 00:20:27 min) 
  

 
   
The solutions are e to the i omega t, e to -i omega t. they are the linearly independent 
solutions to this equation. You can form linear combinations of them and they still 
continue to be solutions. A very popular linear combination of this is called the cosine of 
omega t. Another is called the sin of omega t. but any a sin omega t + b cos omega t is 
also a solution and it satisfies all those axioms. So you see linear vector spaces can be 
quite general. The elements could be numbers, vectors in the ordinary space, vectors in n 
dimension Euclidean space, set of matrices and set of solutions of some differential 
equation and so on. So the concept is very general and extremely useful. So far, we have 
not introduced the idea of a distance between two vectors. We haven’t introduced idea of 
the product of two vectors like a dot product. Those are all add-ons which come later but 
a linear vector doesn’t need any of those. A very popular a way of representing ah 
elements of Rn is to write them in the form x1, x2 and to xn in ordered n- tuple of real 
numbers.  
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(Refer Slide Time: 00:22:37 min) 
 

 
  
Now to perform manipulations with this, it’s useful to represent this quantity in the 
following way. Write it as a column vector. That’s one more way of representing an 
element of Rn. Now since you already know matrices, the moment you have a column 
vector, one is tempted to form a row vector and then multiply it on the left hand side to 
form a scalar. So the idea of the scalar product of two vectors emerges once you start 
putting this extra structure in. But it’s not such a straight forward matter. So let’s see how 
to go about that. Notice in particular I said we have not talked at all about the product of 
two vectors or the distance.  
 
Just as Rn is a linear vector space, it’s just the set of n-tuples of real numbers. We haven’t 
said here is one element, there is another element and what’s the distance between them. 
We haven’t defined this quantity of distance. Once you put a matrix, then this Rn 
becomes Euclidean space here. So the first thing we want to do is to try so see whether 
we could introduce the concept of scalar product among these vectors. To do that, you 
need to recognize the following.  
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(Refer Slide Time: 00:24:44 min) 
 

 
 

Let me for the moment drop this ket vector notation and write phi, psi, etc as it is, as the 
elements of the linear vector space for simplicity. Then I would like to associate with 
each vector a scalar. So I chose a particular special member of this linear vector space, 
let’s say phi. 
 
Let’s take a special element phi and associate with each of the vectors in this space, a 
scalar which I denote by (phi, psi). This is equal to some scalar which depends on that 
special element phi and it is dependent on what’s out there. I associate a scalar but I don’t 
tell you at the moment how I associate a scalar. We will come to that. For every element 
of this vector space, I have chosen a special element phi and when I do something with 
that element and phi, I get a scalar number with a certain number of properties.  The 
properties are that (phi, a psi) is the same as a times (phi, psi). (Phi, psi plus chi) equal to 
(phi, psi) plus (phi, chi).  
 
So it says when you are doing this associating, if you take the sum of two vectors and you 
find the associated scalar, you might as well find the associated scalar for each of the 
members of the sum and add them up.  By postulate, I say that this is equal to that (Refer 
Slide Time: 26:49) and similarly if you multiply this psi by some scalar number, you 
might as well have found this scalar and then multiplied it outside. So the moment you 
put in these properties, then for every element here you can find such a scalar. The set of 
these scalars over all the phi’s here in the space form a linear vector space. The scalar 
here is not a function of psi, in the sense of f(x) or something. It depends on psi and the 
reference element phi. Now one can show that with these postulates, this set of quantities 
form a linear vector space itself. Well a function I want to reserve for things where I can 
differentiate integrate you know continuity and so on I don’t want to use this is instead 
depends on this I have set of discrete elements So it’s clear that it’s discrete set of 
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elements and not a continuous function. We will define function more carefully later on. 
And it’s a linear function. The whole idea is linearity because of this prosperity. It’s a 
linear function. It doesn’t depend on some squaring this or cubing this or taking logs or 
anything. And these forms themselves from a linear vector space and now you could say 
why I should choose S phi. I choose another element and I compute the set of S chi and 
so on. I choose all these chi’s and all these put together form a linear vector space called 
the dual of the linear vector space. 
 
(Refer Time Slide: 29:38) 
 

 
 
So the set of linear functions is an LVS and it’s called the dual of the linear vector space.  
In other words given a linear vector space, there is a natural mathematical way in which I 
can associate another linear vector space. So linear vector spaces come in pairs the 
structures these axioms are seen to it that there come in pairs of this kind.  
 
[Conversation between Student and Professor – Not audible ((00:30:00 min))] ya that ya 
because my do it but still its still a linear vector space pardon me no the real numbers 
themselves form the linear vector space as you know the complex numbers form a linear 
vector space pardon me [Conversation between Student and Professor – Not audible 
((00:30:20 min))] perfect psi but there are all isomorphic so this thing this set forms a 
linear vector space by itself [Conversation between Student and Professor – Not audible 
((00:30:30 min))] Professor - I haven’t told you the rule at all. I am just saying if you can 
associate with each psi a scalar by this specified rule, then that forms a linear vector 
space. As far as the existence of this dual is concerned, we don’t need to know what the 
actual rule they have to satisfy is. Student- How do you reconstruct V? 
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Professor- A very good question! Can I reconstruct V from this dual? We will answer 
this. We will see by looking at examples. So it’s a collection we always talk about let me 
write down what this is for Rn and then immediately you will see what this quantity is. 
There is unique dual to ever linear vector space I am not proving all these theorems. My 
idea is to show you the operational method by what I going to do Rn for instances. So 
these are theorems which exist.  
 
Now the question is what the use of this is. There is a natural way to associate a scalar 
with a vector. as you know in ordinary three dimensional vector spaces,  if  you’re given 
vectors  like a, b, c etc and asked to construct a scalar from these vector, you do 
something called the dot product. So this quantity here (Refer Slide Time: 33:39) is the 
dot product. So we are heading towards a dot product of two vectors by associating a 
scalar with a pair of vectors. So it’s a bilinear operation. We are taking 2 vectors and 
doing something to it to get a scalar. Now since S chi, etc themselves form a linear vector 
space, it is convenient to say that this vector space here (Refer Time Slide: 34:14) which 
consists of a set of elements here is represented by writing this writing this psi in this 
form. This is an element of V and by saying that this phi here on the left hand side in this 
bracket, let me write it in this form and say that this is also a different kind of vector 
which lives in a dual space. 
 
(Refer Slide Time: 34:46) 
 

 
  
In other words, I have a set of scalars and now I am saying for every for every number 
which is in this space (Refer Slide Time: 35:03) they are created by taking the original 
ket vectors elements of V, doing something to that using this reference element phi. So 
this set of numbers I now write in a given notation instead of this kind of bracket and I 
say this is an element of dual space and are called bra vectors. These are called ket 
vectors (Refer Slide Time: 36:10). 
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(Refer Slide Time: 36:10) 
 

 
 

This is the notation used in physics. So what you have done is to take the set of linear 
functions here and replace them by an element of a dual space phi and then you say this 
quantity here stands for the linear function or the scalar. So that dual vectors are going to 
be written in a different form from the ket vectors from V, so that I know that these 
belongs to V. This involves phi they can involve many other vectors all those vectors all 
these guys I now say a represented by this phi here um with chi phi for every element 
every element in the original vector space there is an corresponding element in the dual 
vector space here such that I take one element from the dual space I take one element 
from the original space and I form a bilinear combination to give me a scale which 
satisfies these properties.  
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(Refer Slide Time: 00:38:04 min) 
 

 
 

I write x1, x2, x3… xn are elements of Rn. if I construct the corresponding row vector in 
this form, then I say all the vectors are elements of the dual to Rn. Then there is a natural 
way to produce a scalar which satisfies these properties which is matrix multiplication 
with the bra vector on the left and ket vector on the right or the row vector on the left the 
column vector on the right.  
 
(Refer Slide Time: 00:39:00 min)  
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So it’s immediately clear that x1, x2, x3… xn with say y1 to yn gives a scalar. its x1 
y1+x2y2+ etc up to xnyn. It’s intuitively clear that the dimension of the dual space must be 
the same as the dimension of the original space. Since I have said that it’s in one to one 
correspondence, for every element in the original vector space, there is a corresponding 
element in the dual vector space. And the way to remember it is to say that one of them is 
represented by column vectors the other by row vectors.  
 
I could have changed this notation. I could have said the original space is represented by 
row vectors and the other by column vectors. It would make multiplication a nuisance. 
You have to be careful how you multiply. Since I multiply row by column and that’s the 
rule by matrices. So we will use this convention. The further complication which looks a 
little confusing is that this space here is exactly the same as the original space itself. It so 
happens that Rn is the same as its dual. Still we will like to distinguish between the space 
and its dual and therefore I will represent one of them by column vectors by and the other 
by row vectors.  
 
In fact there is an exact theorem which says every n dimensional linear vector space is 
isomorphic to n dimensional Euclidean space. In other words you can think of every n 
dimensional vector space in terms of column vectors and the corresponding row vectors. 
Its only when you go to infinite dimensional spaces that you run into some technique 
which are non trivial but all finite dimensional spaces look exactly the same. You cannot 
define the multiplication of two vectors belonging to the same vector space. So every 
time you take a dot product of two vectors in ordinary three dimensional Euclidean 
spaces you are really taking one element from the dual space one element from the 
original vector space and taking the dot product. As you can see you cannot multiply two 
column vectors and get a scalar. To get a scalar you need to have a row on the left and 
column on the right. It’s just that in ordinary three dimension space these two are the 
same spaces.  
 
So one doesn’t realize that one is doing this but if you have to write it out in terms of 
column vectors and row vectors, its quite clear that you form a scalar or take a dot b. The 
way you write a dot b is a1b1+ a2b2 +a3 b3. If you represent a and b by column vectors, the 
a on the left hand side it has to be a row vector.   
 
So the scalar product between these vectors is only defined by taking one element from V 
tilda and one element from V. It will become particularly important when you look at 
infinite dimension spaces then you have to very careful that you just that. You can define 
the product of a vector with itself but it’s a map to something else.  
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(Refer Slide Time: 00:45:04 min) 
 

 
 
You can define a V direct product with V. So I would take a given vector and I take 
another vector from the same space and this would be mapped from the original vector 
space. That’s a different space all together. Its dimensionality is higher. If each of this is 
n dimensional, then the dimensionality of the other space is n squared.  
 
if you take ordinary Cartesian vectors with components like a,b,c etc and I write 
components, the set of numbers ai bj is precisely this(Refer Slide Time: 46:20). It’s an 
element of V cross V because if I take a1, a2, a3 and I consider this set of numbers, ai bj 
have nine possibilities. So immediately you see that this quantity ai bj is not an element 
of the original R3.its an element of (R3 cross R3). It’s a nine dimensional space. I write it 
like a vector b vector without dot or a cross. They are called Cartesian products or tensor 
products. But we are taking about finding a scalar from these vectors and for a scalar, you 
take an element of the dual, you take an element of the original space and you multiply. 
Now the moment I do this, I also have the possibility of defining the inner product.  
 
 
 
 
 
 
 
 
 
 



 18 

(Refer Slide Time: 00:47:27 min)  
 

 
 
It has the properties we wrote down for S. the moment I do this, I can define the inner 
product of a vector with itself. Let us the take the inner product of psi with itself. What 
would this be in order in three dimensional euclidean space or n dimensional euclidean 
space?  
 
(Refer Slide Time: 00:48:20 min) 
 

 
 
If psi is represented by x1, x2, up to xn, then this quantity here is equal to summations I 
equal to 1 to n, Xi squared. This corresponds to the length of this vector. So if I say it’s a 
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vector in n dimensional space with component x1 to xn then sum of the squares of the 
element is the square of the length of this vector and because it is a sum of real number of 
positive quantities, it would be zeros if and only if the vector is a null vector. So this is 
equal to 0 if and only if psi is the null vector.  We would like to preserve this property but 
then we said that these vectors are completely general quanties and could in fact be 
multiplied by complex numbers. Then this is no longer true. How would you preserve 
that? I define the element in the dual space by taking the complex conjugate.  
 
(Refer Slide Time: 00:49:55 min) 
 

 
 

So if these(Refer Slide Time: 49:55) are not elements of Rn but are elements of a general 
n dimensional vector space, to avoid confusion let me use some other symbol for it. Let’s 
call it alpha1 to alpha n. If this corresponds to psi, this psi should really be alpha1*, alpha2 
* to alpha n *. Now they are in good shape because this corresponds to mod phi the whole 
squared. And you are guaranteed that it is zero if and only if each of the alphas is zero. so 
we begin to see our first generalization that if you are looking at complex vector space 
and you have an n dimensional space, the elements are in a column vector in the dual 
space which are the bra vectors or the complex conjugate transposes. So this is the reason 
why in matrix analysis complex conjugation is not a very natural operation. Complex 
conjugate transposes is a natural operation and it’s called the Hermitian conjugate when 
you take complex conjugate transpose.  
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(Refer Slide Time: 51:50) 
 

 
 
This relation is still true but it also implies that if you have a vector a on psi and this is 
equal to psi prime say, then for the corresponding psi prime, you have to take each 
element of psi, write it as a column vector, multiply by a and take complex conjugate 
transpose. So it is immediately clear that is equal to a star on psi. So any scalar you 
multiply, if its multiplying an element of the dual space, you start with an original vector 
multiplied by a scalar.  
 
You have a new vector. If you first want to find its adjoint in the dual space, then take the 
adjoint of the original vector and multiply by the complex conjugate of the number of the 
scalar and this will satisfy all those associative properties and so on. The moment of you 
have this, you can now start defining the distance between two vectors because you have 
the idea of a scalar product. Notice that this rule also implies that if I take the complex 
conjugate of this scalar phi with psi, this is equal to psi phi. So scalar products in general 
don’t have to be real. It could be complex numbers but the inner product of phi with psi is 
not the same as the inner product of psi with phi because there is a complex conjugation 
involved here. 
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(Refer Slide Time: 00:52:47 min) 
 

 
 

So that’s missing in real vector spaces and that’s why you write a dot b = b dot a. that’s 
not true in general. a dot b is b* dot a. but in a real vector space, we are multiplying only 
real numbers. So this complex conjugation doesn’t make a difference. Now I would like 
to define the norm of a vector and I denote it like this (Refer Slide Time: 54:26). This is 
by definition, half the positive square root of this positive number psi with psi. This is a 
non negative number and it’s equal to 0 if and only if psi is a null vector. 
 
(Refer Slide Time: 00:54:04 min) 
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Now we are going through things which are exactly the same as what happens in ordinary 
three dimensional Euclidean space and those concepts should remain when you 
generalize this system. Therefore one would like to have a statement like psi + phi which 
is the norm of the length of the sum of the two vectors. This obeys a triangle inequality. 
We know in ordinary three dimension space, the sum of two sides of a triangle is greater 
than the third always unless a triangle collapses. So this quantity is lesser than or equal to 
psi plus phi.  
 
(Refer Slide Time: 00:56:30 min) 
 

 
 
You also know another thing that if you took ordinary vectors a vector I dotted it with b, 
in the usual real vector space this quantity is a b cos theta by definition. Theta is the angle 
between them and the magnitude of cos theta is between minus 1 and plus 1. It’s equal to 
plus 1 if the angle is 0 and minus 1 if the angle is pi. That’s the extent to which it can 
vary. Therefore it follows that the norm of the magnitude of a dot b is less then or equal 
to the magnitude of a times magnitude of b. that’s just a statement that the cosine has a 
valve between minus 1 and minus 1. Now that’s generalized to this and the statement is 
that phi with psi mod square is less then equal to the norm of phi with phi psi with psi. 
Since this is a complex number in general, we need mod squared. This has a name and is 
called the Cauchy-Schwarz Inequality. We use it very extensively to establish the 
uncertainty principle. At the mathematical level it follows from the Cauchy Schwarz 
inequality. Now you could ask when is this inequality an equality. This is only when a 
and b are in the same direction or antiparallel. In other words when, they are collinear. 
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(Refer Slide Time: 00:58:12 min) 
 

 
 

The same thing is true here and what does it mean to say two vectors are collinear. It 
means one of them is a scalar multiple of the other. The direction is the same. In exactly 
the same way, this thing becomes an equality if and only if phi for instance, the ket vector 
phi is in the same direction as the ket vector psi. In other words, its just psi multiplied by 
a number. What does it mean by linearly dependent? Psi itself is said to be made up of 
adding several vectors. Every vector can be decomposed to other vectors. So phi is 
linearly dependent on psi. Then the Cauchy Schwarz inequality becomes an equality. 
Otherwise it remains strictly less than this quantity.  We will see how powerful this 
statement is. Just to give an example from a way out from this whole thing.  You take the 
gas in this room. it obeys a Maxwellian distribution of velocities and you can compute 
the average speed. So lets compute for instance, the average speed and let’s called it v. if 
I compute this quantity v, this depends on the square root of temperature. Its some root kt 
over m where m is a molecular mass, k is Boltzmann constant multiplied by some 
number.  
 
You could also ask what about 1 over v. what about the average value of the reciprocal of 
this velocity the of the speed? It’s clear that 1 over the average is not the same as the 
average of 1 over the speed and in this case, it is strictly greater than 1. This can be 
shown very trivially by using the Cauchy-Schwarz inequality. It’s a one line proof and 
we will do that at some stage. So just to show you this inequality which starts off very 
innocuously with just the scalar product of two vectors in ordinary space as profound 
implication its part of a much deeper fact. You can generalize this to a set of n vectors at 
a time and arbitrary n number. That brings us to the concept of linear dependence which 
will then bring us to the concept of basis set in this vectors space, expansions basis sets, 
orthogonalization so on. We will talk about that next time. Thank you!  


