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In the previous class, you recall we had discovered that the eigenvalues of the 
operator J squared are of the form J (J +1) h cross squared, where J = 0, 1/2, 1, 
3/2, etc.  
  
(Refer Slide Time: 00:01:52 min)  
 

 
 

Those were the allowed values for J squared. Similarly, for any component J3, the 
eigenvalues were h cross m, where m = - J, - (J -1),… (j -1),j. There are (2j +1) 
values. This is where we had got to, yesterday. the way we constructed these 
states was to point out that J squared could also be written in the form h cross 
squared  Na + Nb over 2 (Na + Nb / 2 +1), where Na and Nb are the number 
operators for 2 independent simple harmonic oscillators which can therefore take 
on the values 0,1, 2, 3, etc. and the relations we had were j = na + nb over 2 where 
these are the eigenvalues of these number operators and m = the eigenvalue of j3 
apart from h cross, this was na - nb over 2. This immediately implies that na is j + 
m and nb is j – m. It is obvious that you have quantization of the eigenvalues of j 
squared and of j3 and that the values of m are bounded by those of j and run in 
integer steps from - j to + j. this is the origin of the (2j +1) kind of degeneracy 
which you are familiar with in other contexts. Now the question is what are the 
states corresponding to these eigenvalues. 
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Of course you could construct these states very easily by starting with the 
harmonic oscillator states. The harmonic oscillator, in the space of the harmonic 
oscillator number operator states, remember for a single harmonic oscillator, we 
had abstract ket vectors of this kind (Refer Slide Time: 03:47) such that a dagger 
a acting on this n gave you n times n. these were the normalizable states in that 
Hilbert space. 
 
(Refer Slide Time: 00:03:47 min)  
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Now we have 2 oscillators and therefore one should really write these state 
vectors as |na , nb> to show that they are really 2 independent oscillators. And 
you must have eigenvalues specified for each one of these terms. So i will just 
simply use this notation |na, nb> to write this abstract state vector corresponding 
to these number operators states. The state we are interested in are angular 
momentum states labeled by a particular j and the particular m and the notation 
used for it is |j, m>. this a is j squared acting on it and this gives you h cross 
squared j(j +1) and j3 acting on it gives you m h cross times the same state. This 
of course same as na = j + m and nb = j – m. they are really the same state. It’s just 
that either i could work in terms j and m or i could work in terms of na and nb and 
in the angular momentum problem, obviously j and m are the relevant variables. I 
will use the same notations for both of them. Now of course you could start with a 
state na = 0, nb = 0; that’s the ground state. And if you want to construct a state 
which has |na, nb>, then the way to do this is to take this state and operate on it 
with b dagger to the power nb, a dagger to the power na and the normalizations are 
root na factorial root nb factorial. And if you recall, this was in fact the state |na, 
nb>. 
  
(Refer Slide Time: 00:06:05 min)  
 

 
 

For a single oscillator, i recall to you that if you took this (Refer Slide Time: 
06:07) and you did a dagger to the power n and you normalized it, you got |n>. 
this (Refer Slide Time: 06:22) is actually 2 ket vectors, so the question is what do 
i mean by this? What i mean is direct product of these 2 Hilbert spaces. So the 
idea is the following. It’s a good question. The idea is there exist for the oscillator 
a, a Hilbert space Ha which has states in it. And this has states which are labeled 
by na= 0, 1,2, 3, etc. that forms a Hilbert space by itself. For the other oscillator, 
there’s another Hilbert space Hb and this is spanned by nb. These form a basis in 
this Hilbert space. So they span the space, they are linearly independent and so 
on.  
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Similarly for the other oscillator in its Hilbert space of states, this forms the basis 
here (Refer Slide Time: 07:22). Operators a, a dagger and so on act on states in na 
and operators b, b dagger etcact on states in nb. What i have in mind here is the 
direct product of these 2 states. So i have Ha, this is called the direct sum. It gives 
H with Hb. this is the Hilbert space H which form which says take one member 
from na and one member from nb and form a state here and that will span na direct 
product nb. so just for argument, if these are all infinite dimensional spaces but if 
this had 10 states possible and that has 15 states possible, the direct product space 
has got a 150 states possible; one from here and one from there. And then all the a 
operators act on the terms from Ha and b operators act on the terms from Hb. Now 
for this direct product state, i have used this (Refer Slide Time: 08:38) short hand 
notation. So all the a’s would act on whatever is sitting here and the b’s would act 
on whatever sitting here (Refer Slide Time: 08:40 to 08:45).  
 
(Refer Slide Time: 00:01:52 min)  
 

 
 

This is the same as saying take a dagger to the power na acting on the state 0 in in 
the space a, let me denote it as in this fashion and take the direct product of this 
with b dagger to the power nb acting on the vacuum or the ground state in that 
space and that state is what i have call |na, nb>. And that’s this (Refer Slide Time: 
09:26) apart from the normalization factors. The word direct product is also 
sometimes called the tensor product or the Cartesian product. It’s a very straight 
forward concept. These are completely independent of each other. So the total 
number of states is just the product of these 2 states. Just like the plane is the 
direct product of r and r. every point on the plane is labeled actually by 2 
coordinates (x,y).  
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So x is an element of the real, y is the element of the real and these ordered pairs 
are elements of R 2 but that is just R cross R. it’s like saying take any point on it 
and at every point, you associate another line with it so that you can have 
coordinate in that direction. Then you go to the next point and then you associate 
a line with it and so on. You have the plane by doing this. So the plane is just 
Cartesian product of R cross R. it’s in the same sense that i have used this 
notation here. So i know that if i operate in this fashion on this state, i end up with 
|na, nb>. So the question is how do i find j , m? j, m is found by taking the vacuum 
state the |na = 0, nb = 0> and you act on it in na times but this na is j + m. so you 
really acting a dagger to the power j + m and then b dagger to the j – m over 
square root of (j + m)! (j – m)!. So if this is a state normalized to unity, you are 
guaranteed this state is also normalized to unity because you have taken those 
square roots in the denominator.  
 
So in the space of angular momentum states |j , m>, what’s the orthonormality 
relation? It’s clear these states are all mutually orthogonal. Different na’s are 
orthogonal to each other and different nb’s are orthogonal to each other. So it is 
obvious that< j, m| j prime, m prime> must be delta j j prime delta m m prime. 
That’s the orthonomality relation in this space. Now you fix the little j and i say i 
have a system for which the total angular momentum quantum number is 
specified. Then what’s the dimensionality of the space? It’s only m that runs from 
- j to +j. what’s the dimensionality of that space? It’s 2 j +1 and therefore you can 
represent everything by matrices. so in a space in which you have a fixed little j, 
the angular momentum states are labeled by just the m values and it’s a 2 j +1 
dimensional space and therefore finite dimensional. Once its finite dimensional, i 
know how to write the basis and i know how to write the natural basis in this 
space. I use finite 2 j +1 dimensional matrices to represent spin angular 
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momentum operators. So we will do that very shortly but first let’s ask, what’s the 
effect of various operators acting on this |j, m> states?  
 
(Refer Slide Time: 00:13:50 min)  
 

 
 

For a given j, it could be 0 then which case everything is trivial but it could be 
half1 3 1/2and so on. And for a given j what is the effect of taking this state |j , 
m> acting on it with the following operator j +?  What would it do, is the 
question. Recall that j + = j1 + i j 2. And now we ask what does it do when it acts 
on |j, m>? little j is fixed once and for all but little m runs for - j to + j. so you 
have 2 j +1 of these states and i ask what happened if j1 + i j 2 act on that state.  
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The way to answer is to say that this term here (Refer Slide Time: 14:50) is 
exactly the same as saying take a dagger b; that’s what j + is in the harmonic 
oscillator basis, and act on the state j that’s <na + nb over 2, na - nb over 2> and I 
take this and act on that state and what would be the result? What happens when 
you take a dagger b? so you are given an na and you are given nb, so in the 
harmonic oscillator basis, this term na was j + m and nb is j – m. in the harmonic 
oscillator basis these are the values of na nb for given j and m and you are asking 
what happens if i apply a dagger b on that. now go back and recall that in the 
oscillator language, a dagger acting on a state n gave you square root of n +1| n 
+1>. It raised the state and a acting on n lowered it. It was root n |n -1>. So all we 
have to do is to use that. This gives you square root of (j + m +1) (j – m). That’s 
what nb is  
 
And the resulting state is na +1. And what happens here (Refer Slide Time: 16:57) 
? This nb -1 in the oscillator basis. This is the value of the first oscillator’s number 
operator and this is the value of the second oscillator’s number operator. So in the 
j m basis what does that give you? That becomes square root of (j – m) (j + m +1) 
times j, m. this is why we have called it j + because it raises for a given little j. it 
raises the value of j z or j 3 eigenvalue by unity. So now we are ready to write 
down what these states look like. For a given j, you have 2 j +1 states.  
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I am just representing them. These are not energy levels. These are just different 
states that i am representing. So this is m = - j and it goes on from –j to +j. this is 
the highest level and this is the lower state. And what this j + does when it acts on 
the state is to move it up here with this normalization factor. And similarly j - on 
|j, m> gives you what? 
 
(Refer Slide Time: 00:19:16 min)  
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Not surprisingly it would give you (j +m) (j - m +1) multiplied by j, m -1. It 
would lower by 1. Now just as in the harmonic oscillator case, we had a ground 
state such that a acting on |0> was 0.  You couldn’t go below that but you could 
raise it up all the way to infinity. Here you don’t have that freedom. The number 
of states is bounded from below and from above. What would happen if you took 
the raising operator and acted on m = j? You should get 0 because it can’t go up 
anymore but this corresponds to m = j. so you must have j + on |j, j> must be = 0 
and that is true if i put m = j. it can’t raise it up anymore. Similarly if i took j - and 
act along the lowest state it can’t go any further and if j = - and this (Refer Slide 
Time: 20:39) is gone to 0 anyway. 
 
So j - on |j, - j> = 0 and these 2 states (Refer Slide Time: 20:54) are called the 
stretched cases because you can’t go beyond that. The lowering operator acting on 
the lowest state is going to be 0 and the raising operator acting on the highest state 
is also going to be 0. That’s just something interesting about these operators. 
Therefore in this space, the operator j + must be represented by such a matrix that 
if you raise it to the power 2 j +1, you should get 0. So as an operator statement 
you must have j + to the (2 j +1) must be 0. You can raise it up to power 2 j but 
you can’t go beyond that. And that must be true for - 2 because you start on top in 
such a case. You know there exists no state in the system on which j + to the 2 j 
+1 can produce anything other than 0. Therefore it must be represented by the null 
matrix. So we will keep these in mind that these operators have useful properties. 
What do you call an operator or a matrix which when raised to a certain power 
gives you null matrix? It’s called nilpotent where beyond a certain power; it’s just 
gone to 0. So these (Refer Slide Time: 22:47) would be nilpotent matrices. Are j + 
and – Hermitian? No, of course not. They are adjoints of each other. They are 
Hermitian conjugates of each other; j + dagger = j - and so on. j1 and j2 are 
Hermitian. These terms themselves are but not those operators. So now we have 
enough machinery.  
 
We can very well we could write down for example, what is this state in terms of 
this state? So i could regard this lowest state as some kind of ground state and i 
could go on applying and find out what it is. It is j+ raised to the power 2 j apart 
from this (Refer Slide Time: 23:33) normalization factor. So this square root here 
plays the role of the square root of n and square root of n +1 which we had for the 
harmonic oscillator.   
 
Now we got to start applying it to some system or the other. The first thing we 
should do is to see what happens in the case of orbital angular momentum. what’s 
the extra input which says that orbital angular momentum quantum number, the 
corresponding j which is denoted by l in that case, can only take values 0,1, 2, 3, 
and not ½, 3/2, etc. that has to do that requirement that the wave function be 
single valued. On the other hand that’s not an absolute requirement. There are 
many instances where that may not be the case at all and then you have the so 
called 1/2integer representation of the rotation group. Before i do that, i would 
like to point out one very interesting fact. And that is, these 3 quantities j1, j2, j3 
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are really matrices for a fixed little j. they are 2 j +1 dimensional matrices but yet i 
call them j1, j2, j3 and act as if they are vectors. So this is a bit of a strange thing 
that i have these 3 matrices but i am calling the collection of 3 matrices the 
components of a vector. How is that justified? Why is that so? i started off by  
looking at l x l y lz and they are generalized to the commutation relations. And now 
we are ending up with these terms who act as matrices but i want to assert that j1 j  
2 j 3 transform like the components of a vector under physical rotations of the 
coordinate system. Let’s see this is true or not.  
  
So remember that in a vector space, you have the concept of multiplication by a 
scalar and there exists a null vector which when added to anything gives you 
nothing else. it gives you the same vector as before. So because of that property, 0 
times any vector gives you the null vector. I use the same 0 on both sides for the 
null vector but this is not the null vector in the space. And this is some vector 
which has got some finite norm. So in exactly the same sense, j + acting on this 
(Refer Slide Time: 27:23) gives you actually. There is nothing else in the state. It 
annihilates this state. And similarly j - annihilates the ground state. So now why 
did i call these vectors? The answer lies in the following. If i make a physical 
rotation of a coordinate system, i should check if j1, j2, j3 really transform like the 
components of a vector or not. In other words, we should have the following. 
Pretend for a minute that you are looking at an ordinary vector of some kind. It 
has got components v1, v 2, v3 or something like that. 
  
(Refer Slide Time: 00:028:02 min)  
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Then in a coordinate system in which i choose the x axis here, the y axis there and 
the z axis there (Refer Slide Time: 28:10). This is a vector v with components v1 
v 2 v 3.  
 
(Refer Slide Time: 00:29:51 min)  
 

 
 

Then if i make a rotation of the coordinate axis, say about gamma in the x y plane 
for example, then is it not true that v1 prime will be v1 cos gamma + v2 sin 
gamma, v 2 prime = - V1 sin gamma + v 2 cos gamma and v 3 prime = v 3 
because anything along the z axis is not effected by rotation in the x y plane. So 
this is my definition of a vector.  
 
A quantity v made up of an order tripped v1, v2, v3 is a vector under rotations if 
and only if, under a rotation, each of these new components is a homogeneous 
linear combination of the old component with determinant +1. That’s my 
definition of a vector. So if this is true for j1 j 2 and j 3, then it is clear that under 
the rotation of the coordinate axis, j1 j 2 j 3 must go to j1 prime j 2 prime j 3 
prime which act exactly in the same way and what manner of this is irrelevant to 
me. If these are matrix valued, so be it. But it would still transform like a vector 
under rotations. They could be operators. I still don’t care after all you are 
familiar with a such a thing.  
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The gradient operator; that’s a differential operator but the fact is it is got 3 
differential operators. They form a combination which transforms like a vector 
under rotations. So the fact that these are not numbers or functions is irrelevant 
completely. So now we have to test if this is really true for the j’s. The j is 
themselves generate rotations but they themselves transform like a vector under 
rotations. Now let see how the magic comes about. So consider for example 
consider what happens to an operator under a transformation. A state vector 
would just undergo a transformation U for example, but an operator would 
undergo that transmission U operator U inverse so that expectation values are 
unchanged.  
 
(Refer Slide Time: 00:31:04 min)  
 

 
 

So let’s consider this e to the power lambda A B to the power e to the - lambda A. 
so now in the earlier problem sets, i had given this identity and asked you to 
establish what this identity is and what this expansion is. if A and B don’t 
commute, then this in general is B + lambda times [A, B] + lambda squared over 
2 factorial, lambda cubed over 3 factorial [A,[ A,[ A,B]]]+… So let’s ask what 
happens if i rotate about the z axis through an angle gamma. Then that’s 
equivalent to saying what’s e to the i gamma j3 acting on say, j1 e to the - i gamma 
j3? This should be my j1 prime.  
 
And the question is what does this reduce to. Similarly e to the i gamma j 3 j 2 e 
to the - i gamma j 3 = j 2 prime  and we ask what it is on the right hand side. And 
finally with j 3. but j 3 prime is obviously = j 3 because it commutes with itself 
and therefore this goes right across and gives you j 3 prime as j 3. One has to 
therefore find out what these 2 quantities are. Now j 3 and j1 don’t commute with 
each other. And that’s what happens here. A and B don’t commute with other. 
Similarly j 3 and j 2. One has to therefore apply this formula in which the operator 
A is j 3 and the operator B is j1. The commutator of j 3 j1 is j 2. So what’s going 
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happened when you apply this formula, not surprisingly it’s going to be this term 
which is j1 A with B and that is going to be j 3 with j1 or that proportional to j 2 
apart from some - i h cross and so on. This is j 2 and that’s commuted with A 
which is j 3 and that gives you j1 once again. so this is again j1 and this is going 
to give j2 once again and so on. So it’s immediately clear that this quantity j1 
prime is a liner combination of j1 and j 2 (Refer Slide Time: 33:53 to 34:23). And 
that’s what we expect for a rotation. And in fact with the suitable i h crosses and 
these factorial and so on it would be precisely sines and cosines on both sides. So 
verify that this (Refer Slide Time: 34:45) is indeed j1 cos gamma + j 2 sin 
gamma.  
 
Student - Why does this (Refer Slide Time: 35:00) combination represent a 
rotation? Professor - If i have a transformation under which a system is invariant, 
then physical quantities don’t change under this transformation. 
  
(Refer Slide Time: 00:35:15 min)  
 

 
 

It implies that something like psi A psi must remain invariant under a 
transformation. Suppose the transformation acts on the states themselves, so psi 
goes to U psi but U is an unitary operator. then this (Refer Slide Time: 35:39) 
term, if i take the passive view point and say the states change or the distribution 
changes, then this would be = psi U dagger A U psi. But i could also take the 
active view point and say that it’s the operator that changes and the state don’t 
change. In which case, A goes to A prime where A prime is precisely this (Refer 
Slide Time: 36:11), but since U is unitary, its U inverse A U and that’s exactly 
what i used here. So i have tacitly taken the active view point and said that the 
observable changes. And they would change in this root. So this is the way 
rotations are represented and this thing here is in fact proved now that these j’s 
transform like the components of a vector. They themselves generate 
transformations. They generate rotations but what it acts on depends on the object 
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you are looking at always. How do i represent a rotation about some axis in 3 
dimensional space? If i want act on points in 3 dimensional space, what would i 
do? Now it depends on how you represent these points? If you choose to represent 
them by a column vector with the x1 x 2 x 3 components, then the rotation is 
represented by a 3 by 3 orthogonal matrix with determinant +1. on the another 
hand, i choose to represent it by some other means like a vector with an arrow or 
something like that, then a rotation is represented by something else altogether.  
 
(Refer Slide Time: 00:37:50 min)  
 

 
 

The actual rotation is e to power I, the rotation generator j and then n j dot n theta. 
This is my general representation of a rotation of the coordinates system. J 
generates rotations and if i am 3 dimensional space and it’s the coordinates 
system in 3 dimensional space that’s rotated, this set of 3 operators, the angular 
momentum generators they transform themselves like the component of a vector  
And that is dotted with the direction about which i make the rotation and theta is 
the amount by which i rotate. So the representation of the abstract operator of 
rotation about an axis n, through an angle theta is represented by this unitary 
operator (Refer Slide Time: 38:55). J is Hermitian and theta is a real number. 
Therefore this is a unitary operator (Refer Slide Time: 39:03). How you represent 
this is dependent on what you act on. if i act on physical points in space and take 
R to R prime, then the representation i need for that j is 3 by 3 matrices such that 
you end up with the orthogonal matrix. After you exponentiate this i, j dot 
whatever it is, you end up with an orthogonal matrix and that will act on your 
physical points. On the other hand, a rotation of the coordinates system induces a 
change in the states system. Suppose i am describing a quantum mechanical 
particle and its state is given by ket vector psi, and now i suddenly change the 
coordinate system, that would show up in the action from this psi gets taken to 
some other vector in general. This depends on the dimensionality of psi and how i 
write the representation of whatever acts on it. What i can say is that this operator 
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would acts on it (Refer Slide Time: 40:20). And i need a unitary representation of 
this rotation of the same dimensionality as the dimensionality of the Hilbert space 
so that it acts on it and gives you another vector possibly. So, depending on what 
abstract transformation acts on, the representation of the transformation differs 
but it’s the same physical transformation always. We will see that in a 3 
dimensional space, there’s is another interesting way of writing ordinary vectors 
in 3 dimensional space. It need not be written as column vector x y z. you could 
write it in some other way. And we are going to do that very shortly. And then 
you have a very deep connection between rotations and the unitary group as U 2. 
And that’s important to understand because we want to understand what are 
fermions, bosons and so on. So any physical transformation of the coordinate 
system, say you go from a right handed to left handed or you rotate it or you 
translate or something like that would be represented by an abstract operator of 
some kind. the actual representation of this unitary operator would depend on the 
object you are going to act on.  
 
(Refer Slide Time: 00:42:57 min)  
 

 
 

But i want you to appreciate this point right away that if you start with in some 
frame with r and t and it goes to some r prime t prime, this transformation induces 
transformations in the states of a quantum mechanical system in general. And the 
way these states transform depends on the way this transformation is represented 
in the Hilbert space of states. So this is why representation become completely 
crucial.   
 
So now let me do the following. We are going to do several representations of the 
rotation group. One of them for the orbital angular momentum acting on physical 
wave functions as a function of (r, theta, phi) for example. We will have to see 
what happens there. The other thing we are going to do is to look at a given value 
of little j and ask what do rotations look like in this space, how do they transform, 
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how do they act and so on. Let me do the second problem first because it’s a little 
easier. it doesn’t involve differential operators. So let’s look at the simplest case 
and ask what do the angular momentum operators look like. Because, once we 
have an explicit representation, then things will become much easier to visualize. 
So let’s look at the case j = ½. 
 
(Refer Slide Time: 00:44:31 min)  
 

 
 

It’s a very important crucial case. The most trivial value of j is 0. of course there 
is nothing to represent. Everything is one dimensional representation because 2 j 
+1 is just 1 in that case and you get nothing. Under rotations, scalars becomes 
scalars nothing happens but let’s look at j = ½. so we are looking at a system 
whose total angular momentum squared has the only possible value h cross 
squared 1/2times 1/2+1. This is the famous spin ½ problem. It turns out that 
particles like the electron, proton and the neutron for instance have a property 
called intrinsic angular momentum.  
 
Even in the rest frame of the particle, there is an angular momentum. It’s clear 
this is not classical because all the anglular momentum you are used to thinking 
about is about some axis or a point and there is a physical rotation. But that’s not 
true because for point particle like the electron, you still have associated an 
angular momentum and intrinsic angular momentum even in a frame in which the 
linear momentum of the electrons is 0. Therefore this is beyond classical concepts 
but it’s like the charge or the mass of the electron. This property is an intrinsic 
property. There is an angular momentum and experiments have shown us that the 
value of this angular momentum quantum number corresponds to little j = ½. 
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So we will take for that granted and see what its consequences are. So everything 
should be represented by 2 by 2 matrices. this implies that J squared, in this case 
is h cross squared 1/2into 1/2+1 and j3 has eigenvalues +/- h cross over 2 because 
it must run from - j to + j in steps of 1. 
  
No, unfortunately it doesn’t because first of all, to best of our knowledge this 
electron doesn’t have a structure. Things like the proton and the neutron do have a 
structure. They are made up of quarks inside. However the origin of the spin is in 
relativistic quantum field theory. It’s not a non-relativistic concept and it’s not a 
classical concept at all. Every elementary particle turns out to have an intrinsic 
property called spin just like it has a rest mass. These are properties dictated by 
the requirement of Lorentz invariance; namely the invariance of the laws of 
physic under Lorentz transformations.  
 
No mechanical model is possible of these concepts at all. So it has nothing to do 
with the spin of a physical rotation about some axis of an extended object. Now a 
photon also has a spin but since the photon has 0 rest mass, the idea of spin, the 
origin and the meaning of spin for 0 rest mass is slightly different from what it is 
for particles with non-zero rest mass. I will talk about that also. But it yes it does 
have an intrinsic angular momentum. The spin quantum number for a photon is 
denoted by s without a vector instead of little j. that happens to be1 for a photon. 
And for an electron, proton and a neutron, it happens to be ½.  
 
(Refer Slide Time: 00:49:01 min)  
 

 
 

So let me even write that down. S =1 for the electron, photon, gamma etc. there 
are other massive particles which have got spin 1.There are many of them in the 
elementary particle zoo. There are particles called W + or -, there is a particle 
called Z0 and so on. all these particles have got spin 1. Particles with spin 0 are   
pi 0, pi + ,pi -, k 0, k +, k- and so on. These elementary particles have all got spin 0. 
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Actually we know now that these are not elementary particles. In the sense, they 
made up of quarks themselves. But the electron is an elementary particle. So is the 
neutrino, the photon the W +/ -, the z 0. All the particles with non-zero rest mass 
are broken up into quarks and leptons. And then there are other particles which 
generally have spin 1 like the photon, the W, Z gluan's and so on. So this is the so 
called standard model of particle physics. I will come back and talk about this a 
afterwards. But right now i want to emphasize that this spin of an elementary 
particle is no way associated with any mechanical motion.  
 
In fact for particles of non-zero rest mass and when they have non-zero spin 
quantum number, they have an intrinsic angular momentum even in the rest frame 
when p is 0. So it cannot be of the form r cross p but this operator transforms like 
an angular momentum and it’s called the intrinsic angular momentum. So now the 
question is how do we represent things in this space? now it is clear that the j 
squared operator itself must commute with j1, j2, j3 in this space because j squared 
commutes with j1, j2, j3 for any fixed value of j. so what can it be?  
 
(Refer Slide Time: 00:51:42 min)  
 

 
 

It turns out that j squared is = this is the  3 quarters h cross squared and it must be 
the unit matrix because that’s the only thing that commutes with everything else. 
The space is 2 by 2 matrices. All operators are represented by 2 by 2 matrices in 
this space. And the all states in this space are linear combinations of the j, m 
states.  So the set of these (Refer Slide Time: 52:25) j, m states is a set of these 
possibilities and this is just = {|½, 1/2 > and |1/2, - ½>}. That’s all that’s possible.  
j 3 is either + 1/2h cross or - 1/2h cross. Since little j is also fixed1 uses a little 
short hand for this. I also write this as spin up and spin down. Very picturesque 
but it doesn’t have anything to do with things spinning. so in case you have heard 
that the electron has spin + ½ and it’s spinning counter clock wise and - ½ and it’s 
spinning clock wise, please put that out of your mind because you only have to 
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look at it from below in order to revert whatever you said earlier. So that’s total 
nonsense.  
 
For convenience, these states i call up and down in this fashion. this comes from 
the fact that1 is used to electrons which have this property and when you apply a 
magnetic field, then the magnetic movement points either along the directions of 
the magnetic field are opposite to it. It has 2 possible eigenvalues which you 
would like to call + and - or up and down. So I will frequently use this notation. 
This is for m = + 1/2h cross, this is a m = + 1/2and this is for m = - ½. How do 
you represent these 2 states? So we would like to have j3 acting on up must be = h 
cross by 2 on the same state. It’s an eigenstate, after all that’s the meaning of this 
statement and J 3 acting on down is - h cross over 2.  
 
And these 2 states must be orthogonal to each other. This scalar product must be 0 
because j m bra ket j prime m prime is delta j prime delta m prime. Now we are 
working in the subspace in which little j is ½. So it’s only m that you are worried 
about therefore up with down must be 0.  So my question is how are you going to 
guess what ji, j2 and j3 are?  Well the answer is very obvious. All we have to do 
is to write a representation for these. This operator is already diagonal (Refer 
Slide Time: 55:40). It has 2 eigenstate. i want 2 linearly independent eigenstates 
in a 2 by 2 space. What do you call them in the x y plane?  i call them unit vector 
long x direction unit vector long the y direction. Or if i want it as column vectors i 
would write 1 0 or 0 1. 
  
(Refer Slide Time: 00:56:07 min)  
 

 
 

So the up state is represented by 1 0.  The left hand side is in some abstract 
Hilbert space the right hand side is in the actual representation as 2 by 2 matrices. 
The states are represented by column vector which has 2 elements. And similarly 
this (refer Slide Time: 56:37) is the natural basis in this space. So what’s j 3 in 
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this space? It’s h cross over 2. That’s for sure. those are the eigenvalues and when 
it acts on the up; 1 0 it must give you + 1/2h cross and when acts on the other1 it 
must give you - 1/2h cross. So what does j 3 become?  It’s it going to be1 0 0 -1. 
These are the 2 eigenvalues. And it’s clear that j 3 commutes with j squared 
because of the unit operator. by making it a unit operator, we have ensure that 
everything else all the other operator which are j1 j 2 j 3 and the linear 
combinations and so on function of a they all commute with j squared.  
 
(Refer Slide Time: 00:57:37 min)  
 

 
 

There is a theorem in mathematics called Schur's Lemma says that if you fix little 
j and work in that 2 j +1 dimensional subspace, then any operator which 
commutes with all the operators in that space must be some multiple of the unit 
matrix. It can’t be anything else. By the way the j1 j 2 j 3 angular momentum 
operators form what’s call a Lie algebra. In this case the Lie algebra of the 
rotation group. And the operator j squared which was a function of j1 j 2 j 3 
commuted with all the generators. Any operator in a Lie algebra which commutes 
with all the generators of that Lie algebra is called a Casimir operator. So this 
operator J squared is a Casimir operator for the rotation group for this algebra. 
The number of Casimir operators is called the rank of the algebra. The number of 
Casimir operators for the angular momentum lie algebra is just 1. So you are 
guaranteed that there is nothing else.  
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In this case there isn’t a complicated function of j1 j 2 j 3 which commutes with 
the rest. Can J1 and J 2 also be diagonal matrices if j 3 is given? 2 diagonal 
matrices will commute with each other. So it’s clear immediately that J1 and J 2 
are not diagonal matrices in this representation only J 3 is there. Of course, we 
could have changed the representation so that any particular component of j is 
diagonal and everything else is not. We have chosen j 3 already and that’s it. This 
matrix called it’s a third Pauli matrix. Since Pauli matrices have fantastic 
properties, we will be able to do this whole thing completely. 
  


