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So let’s continue with our study of charged particle in a magnetic field. There are a few 
comments i want to make about the system and then we will come back to this a little 
later after we talk about spin. So we will talk about realistic experiments which involve 
quantum mechanical particles in an external electromagnetic field. 
  
(Refer Slide Time: 00:01:30 min)  
 

 
 

If you recall, there are just a couple of points I wanted to complete. if you recall, the 
Hamiltonian of a charged particle in an external magnetic field was written in the form p 
- eA whole squared over 2 m + there could be a scalar potential as well as a function of r 
and t. so that’s the general Hamiltonian for a charged particle of charge e in an external 
electromagnetic field induced by the scalar potential phi of r and t and the vector 
potential A (r, t).  if you wrote the Schrodinger equation down for this in the position 
representation, then the equation H psi ( r, t) = ih cross delta psi  (r, t)over delta t becomes 
in this case, when you have a scalar and vector potential present, remember that p is 
essentially represented by - ih cross the gradient. So this equation becomes = - ih cross 
del - eA dotted with - ih cross del - eA over 2 m on psi (r, t) + e phi(r, t) psi (r, t). 
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That’s the general Schrodinger equation. And we looked at the case when there was no 
scalar potential, when you had a vector potential which was time independent and 
moreover, represented a constant uniform magnetic field. so that case was reduced to the 
harmonic oscillator case and we saw that you had Landau levels as the energy levels but 
this is the general time dependent Schrodinger equation and the point to note is that this 
del operator in general would also act on that (Refer Slide Time: 03:40) A because it sits 
to the left it and they would be terms which come about because this A changes form 
point to point. This is automatically implied always. So you have to be careful when you 
write a thing like this (Refer Slide Time: 03:50).  
 
This stands for the dot product of this with itself and so on. So that’s the time dependent 
Schrodinger equation and i am not about to solve it because it’s a mess and you need to 
know exactly what these potentials are. in general, this is a hard problem to solve but a 
much easier one would be to ask if we can work in the Heisenberg picture. Could we 
simply write down the equations of motion for a physical quantity such as the position of 
the particle? So the simplest thing one would write down is what happens to i th 
component, dxi over dt, where xi is the i th component of the position of the particle. This 
quantity, if you recall this operator in the Heisenberg picture is 1 over ih cross [xi, H] in 
the Heisenberg picture and this commutator is easy to find because it’s the commutator of 
xi with pj - eAj whole squared. 
  
And then of course, since this is position and that’s position dependent, this term 
commutes with that and it doesn’t contribute to anything at all. so it’s easy to see that this 
is 1over ih cross times twice this (Refer Slide Time: 05:14) term. so its pi – eAi. That’s 
the derivative of that quantity divided by m because the 2 cancels out when you 
differentiate. So it says the velocity of the i th component of the particle if you like is 
related this way.  
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But now you could ask what the acceleration is? Can we derive the Lorentz force 
equation and i leave that to you because now you have to write d 2 xi over dt 2 = 1over ih 
cross [dxi over dt, H]. and you got to be a little careful because it’s this quantity you have 
to now commute with, find the commutator with the Hamiltonian and in general this 
(Refer Slide Time: 06:03) is position dependent, there is a momentum sitting here (Refer 
Slide Time: 06:05) and therefore there would be contributions. And surprisingly it would 
involve derivatives of i and so on. I am going to leave this as an exercise. Finally the 
outcome should be something like the Lorentz force because that’s what the mass times 
acceleration is. you should get an equation which says d 2 r over dt 2 = m times E; i am 
not going to write this out but it’s the electric field which is related to the vector potential 
and phi; + the normal term would have been V cross B but remember this vector V or mV 
is p - eA and it doesn’t commute with a function of the position like B. so one has to 
worry about these commutators and the outcome is something which looks like (dr by dt 
cross B - B cross  dr over dt). 
 
These 2 quantities (Refer Slide Time: 07:20) don’t commute with each other. This is a 
function of r in general. What you need is this antisymmetrized product because this is 
Hermitian. Remember the cross product and the interchange of these 2 quantities. They 
are all operators. When you take the adjoint, this (Refer Slide Time: 07:36 to 07:46) term 
would come here and this term would go there although they are Hermitian. So to take 
care of that, you need this extra term here.  So this is the Lorentz force. It’s exactly what 
you have classically. Classically, of course you are commuting variables so V cross B is - 
B cross V and therefore these 2 add up and simply give you V cross B. but this is the 
correct generalization. 
  
(Refer Slide Time: 00:08:12 min)  
 

 
 

In exactly the same way as when you define the angular momentum, when I write the 
angular momentum in quantum mechanics, I write L = r cross p. I am going to talk about 
properties of the angular momentum. Now you could ask r and p don’t commute with 
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each other, so how come I wrote it as r cross p? Why shouldn’t i write it as - p cross r and 
r and p are different from each other? So the normal guess would be to say perhaps, this 
is the wrong definition and this is classical. Quantum mechanical would perhaps be (r 
cross p) – (p cross r) and then a factor 2 to take into account, the fact that this is equal to - 
of that classically. This is guaranteed to be Hermitian.  So one could ask why don’t i do 
this, but we don’t need to. Why is that?   
 
We don’t need to do that because different components of r and p commute with each 
other and in r cross p, you never have a product of the same component unlike r dot p 
where you would have xp x + y py + z pz. So this is not needed. This suffices and its 
Hermitian by itself. 
   
(Refer Slide Time: 00:09:37 min)  
 

 
 

On the other hand, if you look at the radial momentum pr, this is equal to the normal way 
of defining the radial momentum classically. It is to say it’s the component of the 
momentum along unit vector in the radial direction. This is the normal definition of the 
radial momentum and the angular momentum is the other component of the total 
momentum. Now the question, is this valid quantum mechanically or not? No, it’s not 
because we have no guarantee why should it be p dot r. why not r dot p or why not any 
combination of p dot r and r dot p? 
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Why not pr equal to some alpha times p dot r over r + 1- alpha times r over r dot p, where 
alpha is a number between 0 and 1? What should alpha be? What would be the criterion 
that you use for this? 
  
(Refer Slide Time: 00:10:57 min)  
 

 
 

Well, the first thing you need is this. We know that classically, the Poisson bracket of r 
with pr must be equal to 1 because a generalized coordinate with its conjugate 
momentum, the Poisson bracket by definition is 1. So this must go over quantum 
mechanically to [r, pr] = ih cross times the unit operator. That’s the rule to go from 
classical to quantum physics.   
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So you need that you need this commutation relation to be valid. So whatever that is we 
need to check that this is really true. What else do you have to impose on pr?  It’s a 
physical observable. Therefore it must be a Hermitian operator. p and r are Hermitian. All 
these (Refer Slide Time: 11:50) quantities are Hermitian operators and alpha is some real 
number. So when is this Hermitian? What happens if I take its Hermitian conjugate? This 
term comes here and this quantity goes there (Refer Slide Time: 12:00) and therefore 
when is it Hermitian? It is when alpha = half. 
  
(Refer Slide Time: 00:12:07 min)  
 

 
 

So pr = pr dagger implies alpha = ½. So that’s the correct definition of the radial 
momentum and then you are guaranteed indeed that it’s the Hermitian operator that 
satisfies the required commutation relation. so whenever you go from classical to 
quantum physics, you have to make sure that the commutation relations are respected, the 
physical quantity is respected so that you get real eigen values for that. Similarly in the 
definition of the Laplace–Runge–Lenz vector remember this was for the Coloumb 
problem, this vector was of the form p cross L and then there was a portion which was 
mkr over r or something. now again you have to make sure the p cross L is Hermitian and 
since p cross L doesn’t enjoy the status as r cross p and the commutaion relation of L 
with p is fairly complicated, you must write it as 1/2 p cross L - L cross p when you do 
the quantum version.  
 
We will talk about that later. Now that we have the Schrodinger equation and I also have 
the Lorentz force, let me make a couple of more comments on gauge transformations. 
You see this whole business works because we have said that no physical quantity should 
change when you make a gauge transformation of the electromagnetic potentials. In the 
quantum case, it employs that physical quantities like probabilities, mod psi squared and 
so on shouldn’t change when you go to a different gauge in the vector and scalar 
potentials. One has to ensure that and ask what’ the actual change when you go from one 
gauge to another? Let’s do this in the following way. Let’s ask what happens if i switch 
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on an electromagnetic field to the probability current and if you recall the probability 
current was the following.  
 
(Refer Slide Time: 00:14:15 min)  
 

 
 

Delta rho over delta t + del dot j = 0, where rho was equal to mod psi squared. That’s the 
probability density. And the corresponding proability current j was equal to h cross over 
2 mi (psi star grad psi - psi grad psi star). This was the definition of the probability 
current. This came straight from the Schrodinger equation. 
  
(Refer Slide Time: 00:14:56 min)  
 

 
 
 



 8 

You can also write this as equal to h cross over m, the imaginary part of psi star grad psi. 
Because its that number - its complex conjugate divided by 2 i. so that’s a compact way 
of writing the probability current. There is yet another way of doing this which is 
important in other applications of quantum mechanics and that’s the following. Observe 
that you can always write the wave function psi(r, t) not just as a real part + i times and 
imaginary part but as modulus times e to the power i times the argument. So one could 
write this in standard notation as square root of rho because that’s (Refer Slide Time: 
15:43) mod psi, this is the function of r and t, this is the probability density here. This is 
square root of rho e to the i S (r, t) over h cross which is the standard symbol for phase. 
This S has the connotation of the action.  
 
That’s the reason i use this word S and it comes from classical physics. This S has got a 
specific connotation and then in quantum physics, we can always write the phase in this 
form. Now what happens to psi star grad psi - psi grad psi star? so this implies that grad 
psi = the gradient of root of rho e root of power i S over h cross + square root of times i 
over h cross gradient of S times e to the power i S over h cross. I just differentiate this; 
take its gradient on both sides. So that immediately says j = h cross over 2 mi psi star 
times the gradient of psi. So let’s write gradient of psi star as well. So what does psi star 
grad psi become? so it says root rho grad root rho, if i multiply this (Refer Slide Time: 
18:04) by psi star, this phase factor cancels out + i over h cross rho grad S and that 
cancels - root rho grad root rho + i over h cross rho grad S.  
 
And this term cancels out (Refer Slide Time: 18:42). You get a 2 i that cancels the 2 i 
against this and this goes away here and the h cross cancels out obligingly. So that gives 
us our result. it says that this probability current that I wrote down could also be written 
in the form rho over m gradient of S. so there is a rho there is an m here and then grad S 
(Refer Slide Time: 19:14). So the physical significance of this phase of the wave function 
S is that its gradient gives you the probability current apart from this factor rho. So you 
see this is almost like the classical interpretation that you have. for a particle that’s 
moving, here is the charge density if you like and the current density would be the charge 
density multiplied by the velocity of the particle (Refer Slide Time: 19:35 to 19:40). And 
this grad S plays the role of this velocity. 
 
 It’s the probability current. So in this sense, there is a close analogy between classical 
physics and quantum mechanics but you must remember this is probability current and 
that’s probability current density here. Now the question is what happens if I put this in 
an electromagnetic field with a vector potential and a scalar potential. What happens to 
this probability current? Well, that’s not hard to answer but we can write the answer 
down. We could painfully sit down and compute this quantity. But you can actually write 
this answer down because all you need to know is what does the current do. 
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j = h cross over 2 mi (psi star grad psi - psi grad psi star). And now i only have to 
recognize the fact the p goes to p - eA in the presence of a an electromagnetic field. What 
i originally call p, i know call p – eA. 
 
(Refer Slide Time: 00:21:03 min)  
 

 
 

So this means - ih cross del goes to, in the position representation, is replaced in this 
fashion (Refer Slide Imte: 21:13). So let’s make this + everywhere and divide by ih cross. 
This is the replacement that you have (Refer Slide Time: 21:33). 
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(Refer Slide Time: 00:21:36 min)  
 

 
 

So this goes to h cross over 2 mi psi star del - ieA over h cross on psi - psi and is del - ieA 
over h cross on psi star. so this = j, the original current which was in the absence of the 
electromagnetic field and then you have  - h cross over 2 mi. then i am supposed to get 2 
ie over h cross A mod psi squared. So this 2 i cancels and the h cross cancels. So really 
this goes to j - A mod psi squared. This is what i am supposed to get. I need to take the 
gradient of psi star. So check this out from beginning. I made a sign mistake 
somewhere.So there is something which changes here (Refer Slide Time: 23:17) and that 
can be interpreted in terms what happens to gradient of S. 
  
(Refer Slide Time: 00:23:22 min)  
 

 



 11 

So to cut a long story short, mod psi square is just rho so gradient of S goes to gradient of 
S – eA. So this is the all that happens when you have an electromagnetic field. The 
gradient of this phase function S is shifted by the vector potential A. therefore you see the 
possibility that all sorts of quantum interference effects can happen. Interference happens 
when phases add or subtract in some strange fashion when they superpose. Now S is the 
phase of the wave function. So gradient of S changes by A, so S changes by a line 
integral of A dot dl. that leads to the possibility that, perhaps the phase of this wave 
function in an external electromagnetic field is path dependent because you have an 
integral of A dot dl which is going to appear there when i integrate that equation to find 
S. we will see how this comes about.  
 
This precisely what happens and therefore sometimes one says that one has a magnetic 
field, you have a non-integrable phase, in the sense that it is path dependent.  We will 
write this out explicitly and see how it works in the Bohm-Aharonov effect. What I want 
to do now is to back track and go back to angular momentum, work out the angular 
momentum algebra, the eigenfunctions and so on. So we study the quantum theory of 
angular momentum in some level and then come back and apply it to a charged particle 
like an electron sitting in an electromagnetic field. For that, we need to know the 
properties of angular momentum. So that’s what i am going to focus on. So let’s now 
switch to angular momentum. 
  
(Refer Slide Time: 00:25:32 min)  
 

 
 

Quantum mechanical angular momentum turns out to be somewhat different from 
classical angular momentum, but it takes off from there in exactly the same way that we 
are used to in classical mechanics of a single particle. If you recall, for a single particle 
the orbital angular momentum was simply defined as L = r cross p and i pointed out that 
quantum mechanically also this definition is still true with these being replaced by the 
corresponding operators. Now, for a moment let’s looks at it classically. We know that 
{xi, pj}= delta ij. This is the classical Poisson bracket between a coordinate and the 
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conjugate momentum.  When you apply it to a particle of this kind you can ask what are 
the commutation relations of the L’s among themselves. So this would imply that {Li, 
Lj}, i mean the x, y, z components = L 3 on the right hand side. So this turns out to be 
equal to epsilon ijk Lk, where epsilon is equal to + 1 if these 3 are even permutation of 1,2, 
3; - 1if it’s an odd permutation and 0 in other cases.  So that’s a compact way of writing 
all the 3 computation relations. Quantum mechanically, whatever be the angular 
momentum, it is defined by these commutation relations. 
  
(Refer Slide Time: 00:27:22 min)  
 

 
 

It’s defined by the relations J = (J1,J2, J3) are angular momentum operators satisfying the 
commutation relation [Ji, Jj] = ih cross epsilon ijk Jk. so any quantum mechanical angular 
momentum of any system whatsoever, is represented by 3 Hermitian operators; J1,J2, J3 
which satisfy this commutation relation. 
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(Refer Slide Time: 00:28:29 min)  
 

 
 

And of course you can see this has got physical dimensions of angular momentum. This 
is the square of an angular momentum here (Refer Slide Time: 28:26), so it matches on 
this side. This is called the angular momentum algebra. This is going to be my definition 
and all the properties of angular momentum are going to come out of this. Of course we 
know at the back of minds that these angular momentum operators would generate 
rotations of the coordinate system just as linear momentum operator generates 
translations of the coordinate system. And the Hamiltonian generates time translations. It 
takes you from one instant of time to the state at a later instant of time. 
   
So what can we say from here? Everything we derive is going to come from here. So 
now, i remove this scaffolding.  I am not interested in a single particle. It’s not of the 
form r cross p or anything like that. This is the definition and that is what one has to ask. 
This algebra is more complicated than the original algebra we started with, where we said 
x p = to ih cross times the unit operator. Because it was the unit operator, things became 
very simple. But now that’s not true. J1with J2 is ih cross J3 and cyclic permutations. 
Therefore this is a much more complicated algebra. It is also called the SO 3 algebra 
because it has to do with rotations in 3 dimensions. It is a Lie algebra, in the sense that if 
you recall what a Lie algebra is.  
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(Refer Slide Time: 00:30:14 min)  
 

 
 

If you have a set of elements and you define a bilinear operation among them, in this 
case, the commutator which is anti-symmetric and which satisfies the Jacobi identify, 
which is also true here by the way. You can see that [J1,[J2,J3]] + cyclic permutations is 
identically zero. so they forma a Lie algebra in this case. But our immediate purpose is to 
ask given this information, what can we say about the states angular momentum states of 
any system whatsoever. Remarkably this question can be answered just on the basis of 
this algebra and nothing more. What we need is a few observations. 
 
The first thing we need is the following: 
 
(Refer Slide Time: 00:30:54 min)  
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J squared, the square of the total angular momentum is by definition, J 1 squared + J 2 
squared + J 3 squared and we could ask, what’s the commutator of any of the components 
with J squared. And not surprisingly, as you know in classical mechanics, the square of 
the angular momentum, its Poisson bracket with any component is zero. They can be 
simultaneously written down and the same thing is true here. J squared will commute 
with each one of them and that’s not hard to show. Look at [J 1, J squared] for example. J 
1commutes with J 1 squared. So there is no problem and then you are left with [J1, J2 
squared] + [J1,J3 squared] in this fashion. 
  
(Refer Slide Time: 00:31:49 min)  
 

 
 

By our rule we must be careful about the orders of these things. It’s J 2 times [J1,J 2], i put 
one of these factors on the left and the next one i have put on the right. So its [J1,J2] J 2 in 
this fashion + similarly J3 [J1,J3] + [J1,J3] J3 in this fashion. That’s equal ih cross J2 J3 + ih 
cross J3 J2 in this fashion. And this is equal to - ih cross J 3 J 2 - ih cross J2 J3 and of course 
this is 0. Since I could have chosen any one of the components to start with, this thing 
goes true immediately. In fact it implies something more. It implies that any linear 
combination of J 1, J2 and J3 commutes with J squared since each of them commutes. 
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(Refer Slide Time: 00:33:32 min)  
 

 
 

So it immediately implies that J dot n with J squared is zero for any unit vector n. so the 
component of the angular momentum in any direction in space commutes with the square 
of the total angular momentum. Therefore you can simultaneously find common eigen 
states. I emphasize this in particular because one always uses some particular axis of 
quantization as its called, usually J 3 and you say, let’s find simultaneous eigen states of 
Jz and J squared. But there is nothing special about the z direction or any component. But 
no 2 components commute with each other. That’s immediately clear. 
  
(Refer Slide Time: 00:34:23 min)  
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Because [J dot n, J dot n prime] is not equal to zero if n is not equal to n. If these are 2 
different unit vectors, then these 2 don’t commute with each other. Only 1component any 
1component in any direction whatsoever and the square of the angular momentum 
commute with each other and therefore they form the maximal set of commuting 
operators in this problem. There maybe other physical operators connected with the 
system but if you restrict our attention to the angular momentum of the system, you could 
choose any component you like. So that’s the first lesson. What else can we say? Well, 
we would like to really find out what’s the spectrum of the system. What are the eigen 
values possible for J squared and J dot n?  
 
What possible eigen values can you have based on just the fact that you have these 
commutation relations? we must do exactly what we did for the harmonic oscillator 
where i started by writing the Hamiltonian as a dagger a + ½ and i said if a commutator a 
dagger is 1,it implies that a dagger a in the space of square integrable functions has eigen 
values 0, 1,2,3 and so on. i did this purely algebraically. So one has to do the same thing 
here (Refer Slide Time: 35:53). There are several ways of doing this. Let me show you 
one way of doing it. It’s a trick called Bosonization from the fact that everything can be 
made into Bosons. So, one can actually use the harmonic oscillator solution, which you 
already know in order to solve this problem. There are other ways of doing it but there 
are little more involved.  
 
The oscillator I can work everything out explicitly and we will see how simple it is. So 
let’s do the following. in the case of the harmonic oscillator we found that these operators 
a and a dagger were like ladder operators they raised you from 1state to another and 
brought you down from higher state to a lower state. So the question is can i find similar 
ladder operators here and the answer is yes, in fact you can. So lets do the following. 
 
(Refer Slide Time: 00:36:47 min)  
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Remember J1, J2, J3 are Hermitian. So let’s define a J + = J1+ iJ2. This is very reminiscent 
of writing a as x + ip. We wrote a dagger as x – ip. In exactly the same way let’s write J 
as J1+ iJ2 and J - as J1- iJ2. Then the commutator of J + with J - equal to [J1+ iJ2, J1- iJ2] and 
what does this work out to? Well, it’s equal to - i J1with J2 but that’s i times J3. So this is 
equal to - i ih cross J3. That’s J1with J2 and then this commutator here, that’s + i times - ih 
cross J3 and that’s equal to 2 h cross J3. 
  
(Refer Slide Time: 00:38:14 min)  
 

 
 

So this angular momentum algebra could also be written in the alternative way and that’s 
[J + , J –] = 2 h cross J3 and we need to know what’s J + with J 3 equal to. That’s J 1with J 
3 that’s - ih cross J2 + i times J2 with J3; that’s ih cross J1 = - h cross J1- ih cross J2 which 
is equal to - h cross J +. so we have [J+, J3] = - h cross J+. Similarly you could ask what’s J 
-? J -, J3 is equal to J1with J3, that’s - ih cross J2 - i times J2 with J3.  That’s equal to ih 
cross J1. That’s equal to h cross J1- ih cross J2.  
 
So this term gives me J - with J3 equal to h cross J -. So i can rewrite the algebra in terms 
of J +, J - and J3 and they look a little more complicated. The advantage is the i goes away 
and you have just these quantities here. Just another way of writing this whole thing. And 
this J+, J - will play the role of taking you from one angular momentum eigen state to the 
next. J + will raise it and J - will lower rate.  
 
So that’s why i have used + and - they play the role of a dagger and a. but of course this 
algebra is more complicated and it doesn’t its not a trivial algebra because if you take 
further commutators, it keeps going. for example if you try to exponentiate e to the  J 1+ 
iJ 2 for instance since J 1and J 2 don’t commute they have there commutators J 3 and that 
doesn’t commute with J 1and J 2 and so on, it will keeping going for ever. So it’s a very 
complicated if you exponentiate these operators it’s not trivial because of the structure. 
But because of this relatively simple algebra, its problem is solvable in the following way 
and is solved in the an ingenious way of doing it. 
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 (Refer Slide Time: 00:41:32 min)  
 

 
 

In this method, it’s perhaps due to Julian Schwinger and his idea was the following. 
Consider 2 different harmonic oscillators all together. One of them I call a and a dagger 
and the other i call b and b dagger. Consider that for a minute. So lets have [a, a dagger]= 
1, [b, b dagger]= 1 and a and b don’t talk to each other. It’s just 2 independent harmonic 
oscillators. So [a, b] =0 = [a, b dagger]. So any a operator with any b operator is a zero. It 
commutes in this fashion. They are two independent harmonic oscillators.  
 
(Refer Slide Time: 00:42:36 min)  
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Then if you put J + = a dagger b, notice J - is the Hermitian conjugate of J + because J 
1and J 2 themselves are Hermitian. So J - is J 1- iJ 2. So what does J - give you? What’s 
the Hermitian conjugate of this (Refer Slide Time: 43:11)? It is b dagger a but a and b 
commute with each. So this could be written as a b dagger. b dagger a is the same as a b 
dagger. What’s the commutator of J + with J - equal to? It’s the commutator of a dagger b 
with ab dagger. What does this give you? But one has to work this out carefully. 
Otherwise you will make a mistake. 
 
(Refer Slide Time: 00:43:56 min)  
 

 
 
 

So [J +, J -] = [a dagger b ,b a dagger] = a dagger [b , ab dagger] + [a dagger, ab 
dagger]b. Remember that b with a commutes. So there is no problem at all. So a dagger a 
[b, b dagger] and the other term is zero. Similarly a dagger with b dagger is zero. So this 
is just [a dagger, a] b dagger b. that’s equal to a dagger a - b dagger b because this (Refer 
Slide Tmie: 45:21) is – 1. b with b dagger is + 1,a with a dagger is + 1. So a dagger with 
a – 1 and that’s equal to twice J 3 here. 
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(Refer Slide Time: 00:45:38 min)  
 

 
 

So its clear and you can check out the rest of it that if i define J 1= a dagger b + ab dagger 
over 2, J 2 = a dagger b - ab dagger over 2 i. this (Refer Slide Time: 46:11) is guaranteed 
to be Hermitian because this term becomes ba dagger which is this term here and there is 
a - sign there. That is taken care of by the 2 i. so this Hermitian (Refer Slide Time: 46:11 
to 46:19). J 3 =a dagger a - b dagger b over 2. So with these 3 combinations you 
guaranteed that the angular momentum algebra is satisfied. This automatically implies 
that [Ji, Jj] = ih cross epsilon ijk Jk.  I put h cross equal to 1. i will fix it up. i will put it at 
the end and we need it. i set h cross equal to 1 in defining this. Otherwise you need to put 
h cross multiplying each of these terms.  
 
We choose a and b to be dimensionless in our problem. So there must be h cross 
everywhere. So in the angular momentum algebra, Ji, Jj is ih cross epsilon ijk Jk. so its nice 
that, you see in nature, we have the fundamental constant of nature; Planck’s constant 
which has got dimensions of angular momentum. So we have been provided with a 
quantum of angular momentum already if you like. So that’s why it appears everywhere. 
So my statement is that these 3 operators here satisfy the angular momentum algebra and 
therefore to study the angular momentum algebra, i may as well study the properties of 
a’s and b’s which i already know. Now lets work out what J squared is. We verified that J 
squared commutes with J1, J2 and J3.  
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(Refer Slide Time: 00:48:39 min)  
 

 
 

So it’s 4 over h cross squared (J1squared + J 2 squared + J 3 squared) and this is going to 
be painful. It’s a dagger b a dagger b + ab dagger ab dagger + a dagger b ab dagger + ab 
dagger a dagger b. i have to be careful about the orders here. This (Refer Slide Time: 
49:48) part doesn’t commute with that part. So we are extremely precautious in writing it 
out. And then the square of J2. So there is an i there. So this is - a dagger b a dagger b - ab 
dagger ab dagger. So you permit me to write twice this and twice this and cancel these 
terms out (Refer Slide Time: 50:30 to 50:37). And then you have the square of J3. We 
have an (a dagger a) squared + (b dagger b) squared – 2( a dagger a b dagger b), because 
a’s and b’s commute with each other. So i just write it in this fashion. Let’s call a dagger 
= Na, b dagger b= Nb.  
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(Refer Slide Time: 00:51:45 min)  
 

 
 

So this is Na squared + Nb squared - 2 Na Nb and these commute with each other, + 2 Na, 
but i have a bb dagger here. I know bb dagger - b dagger b is 1. so bb dagger is 1+ b 
dagger b or 1+ Nb. + 2(Na + 1) Nb. so this is equal to Na squared + Nb squared + 2(Na Nb) 
+ 2 Na + 2 Nb. so J squared is equal to h cross squared over four times this (Refer Slide 
Time: 53:24). and Na and Nb commute with each other. So this is h cross squared over 
four (Na + Nb) whole squared + 2(Na + Nb). 
  
(Refer Slide Time: 00:53:53 min)  
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Therefore, we have our result which says J squared = h cross squared over 2 (Na + Nb)  
(Na + Nb /2 + 1). That’s my final result. What are the eigen values of Na? We still have to 
find the states of the system. That’s a different story all together but and this is nothing to 
do with the harmonic oscillator. but purely at an algebraic level, the fact that these 
commutators have been handled properly, it says that solving the problem of finding the 
possible eigen values of J squared, physical system being anything, is exactly the same as 
solving the problem of 2 harmonic oscillators independent of each other which we have 
actually solved.  
 
(Refer Slide Time: 00:55:15 min)   
 

 
 

So the eigenvalues of Na are na = 0,1,2 …, whatever be the states, we will write the states 
down and then we will try to construct angular momentum states. Similarly the 
eigenvalues of Nb are nb = 0,1,2,…. So we know the eigenvalues of the total angular 
momentum, whatever be the system, states, the physical nature of the system or the 
angular momentum, we don’t care.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 

(Refer Slide Time: 00:56:07 min)  
 

 
 

Let na + nb = j, say. It’s a nonnegative number it’s a real number na and nb are 
nonnegative integers. So the eigen values of J squared are h cross squared j times (j + 1). 
So you see this famous formulary l( l + 1). So the angular momentum is appeared here 
but with a little twist. It’s even more general than we expected where j can only have the 
values 0, 1/2, 1, 3/2, 2, 5/2, and so on. So we see half integer appears naturally in almost 
a magical way. Orbital angular momentum is quantized and only integer values can 
appear. So there is some more input into it. Orbital angular momentum is a special kind 
of angular momentum but not the most general one possible. We need an additional input 
to rule out things like 1/2 and 3/2 and so on. But you know already that things like spin 
do have half integer values and this is where it comes from, at least mathematically. This 
is not a very transparent way of saying where this half comes from. It just came out by 
the algebra here. So the physical interpretation of it is still missing completely and we 
have to see why that happens. I will explain that in some detail because it’s very 
important.  
 
But this is our first result. it says the total angular momentum squared is quantized for 
any system as a consequence of the commutation relations and its only possible 
eigenvalues are h cross squared j(j + 1), where j is either a nonnegative integer or a half 
odd integer. These are the only possibilities. We worked in 3 dimensions, we can show 
that this is actually a little more general but we have used 3 dimensional commutation 
relations and so on and this is a consequence immediately. Now the question is, i have 
another operator along with j which must commute with it, what are its eigen values? 
What would be the answer? Well, in our representation, its clear i already chose 3 as the 
quantization axis and that operator, if you recall J3 = h cross times a dagger a - b dagger b 
over 2. But this is equal to h cross times na - nb over 2, in terms of eigen values.  
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And now, the question to ask is given a value of j, given na + nb over 2, what are the 
possible values of na - nb over 2? So it’s sort of clear and i will explain this tomorrow in 
detail. It’s clear that if you are given a value of na + nb over 2, you can form it from na 
and nb in many different ways. One of them would be to set this 0 and have this as large 
as possible. Then this would be the largest possible here. And the other would be to set 
this term 0 and have that as large as possible and then this would be as negative as you 
can get (Refer Slide Time: 10:00:15 to 10:00:30). It’s not hard to see that the allowed 
values here would run from - j to + j in steps of 1. This is how angular momentum gets 
quantized.  
 
So we will take it up from this point tomorrow morning and we still have to prove. And 
after that, we have the massive task of finding out what do j + and j – do, what do these 
states look like, how can we write a representation for the states and so on. And finally 
we have to comeback to orbital angular momentum and i ask what happened what 
happened to the 1/2’s, 3/2’s and so on. And last of all, what are these terms (Refer Slide 
Time: 10:01:07) and what do these represent. We will see that these terms are called 
spinner representations of the rotation group. They would correspond to particles with 
half integer spin.  
 


