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Let’s go back to where we were at.  We are in the middle of our discussion of coherent 
states of the oscillator. I have already mailed you problem set 3 which had large number 
of questions on coherent states and the like. So let me continue in this tenure a little bit. 
We will come back to coherent states as we go along, in particular the significance of 
coherent states. Student – using the Dirac’s operator method, where we decomposed 2nd 
order into 1st order differential equations, can we judge how any of these equations be 
broken down in that method? Professor – It’s a good question again. If I look at problems 
of a particle moving in a potential and for the moment let me look at particle moving in 1 
dimension in a potential, then the time independent Schrodinger equation is the 
following.  
 
(Refer Slide Time: 00:02:09 min) 
 

 
 

- h cross squared over 2 m d 2 over dx 2 phin (x), for the moment assuming that there is a 
quantum number n which labels the eigenstates of this problem + V(x)  phin (x) = En phin 
(x). And the question asked is if we can solve this for the case when x = 1/2 m omega 
squared x squared. That is the harmonic oscillator and essentially, what the operator 
method did was to break this down. so if you recall this Hamiltonian was  1 over 2 m p 
squared + 1 half m omega squared q squared and then I defined operators a and a dagger.  
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I defined a as = x + ip over square root of 2 in suitable units. x in units of h cross over m 
omega to the power 1/2 and p in units of 1 over square root of h cross m omega, then a 
became this and a dagger was x - ip over root 2 and this Hamiltonian went over into 1 
half into h cross omega a dagger a +  ½ . What this did was, the a dagger is x - ip and p in 
the position basis is - i d over dx. So this was like x - d over dx and this was x + d over dx 
and you multiplied those 2 together and you ended up with this (Refer Slide Time: 4:06) 
operator d 2 over dx to + x squared. so essentially the purpose of this exercise was to take 
this operator d 2 over dx 2 - 2 m over h cross squared 1/2 m omega squared x squared 
which acted on phin to give you En and factor this into 2 first order differential operators. 
This is what was done. And the question is for other forms of V (x) are it possible to do 
this or not. This is not always possible to do. So you can’t always write this as a product 
of 2 operators. For certain kinds of V (x), you can do this. This method is called the 
Born-Infeld method or the factorization method or the method of intertwining operators.  
 
There is a very extensive literature on this and people have carried out very extensive 
studies on precisely when you can do this and it has been systematized and it’s been 
related to something called super symmetric quantum mechanics which again is specific 
to these kinds of potential problems and has other implications elsewhere.  So there is a 
field of study which has actually worked out in the cases where you can solve it by this 
factorization method. The harmonic oscillators are the most notable examples of all. 
What is this special thing about the harmonic oscillator which nothing else has? Equal 
space, of course. I will show you that an infinite number of potentials for which you have 
equal spacing. They are called isospectral oscillators because they have exactly the same 
spectrum as the harmonic oscillator and you can systematically construct things and the 
harmonic oscillator is simplest of the lot. 
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Now we looked at coherent states as superpositions of the eigenstates of the number 
operator a dragger a, you can construct all kinds of super positions but the important 
thing is to find out is it an eigenstate of some operator or not. And we found the operator 
a even though it is not Hermitian as a set of normalizable eigen states. a dagger in 
contrast doesn’t have this. Now it is a simple matter to actually write down the matrix 
representation of a a dagger x and p. So let’s do that quickly. 
 
(Refer Slide Time: 00:06:29 min) 
 

 
 

In the harmonic oscillator problem, all we need to do is to notice is that a on n = square 
root n on n - 1 and a dagger on n is square root n + 1 on n +1, for n = 0,1,2, etc. because, 
the moment you have this, then you can write down the arbitrary matrix element here. So 
lets use l a n = a l n by definition. This is the matrix element because I am going to write 
these operators as matrices in a bases of these number operator states. So by definition 
this is the matrix element. and this gives you square root of n l with n – 1 which is square 
root of n, a kronecker delta of l, n - 1 because these are orthonormal. Therefore what is the 
matrix representation of a? You have 0 0, 0 1, 0 2, 0 3, 1 0, 1 1 etc. so we start by 
labeling with 0 here. So what is the 0 0 element? l is 0 and n is 0 and that is not possible 
as you can see l must be = n - 1 or = l + 1. So the 1st element is 0 but the 2nd element 
exists and n is 1 in this case, so this is equal to square root of 1 and then 0 all the way 
with infinite number of them. and then you get a 0 here (Refer Slide Time: 08:27) and a 0 
here and you get a square root of 2, 0 etc. so the matrix a is an upper triangular matrix in 
which you have 0’s on the principle diagonal and then everywhere else you have the 
square roots of the natural numbers. That is the matrix representation of a. and a dagger is 
just the Hermitian conjugate of it. It’s easy to verify that the commutator of a with a 
dagger is indeed equal to the unit matrix, the infinite dimensional unit matrix. [a, a 
dagger] is I which is just ones on the principle diagonal everywhere. 
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It should be obvious to you that you cannot represent a and a dagger by finite 
dimensional matrices. The reason is i just take the trace of both sides and the trace of the 
left hand side is 0 by definition, because trace ab = trace ba, even if a and b don’t 
commute with each other. But if you have a finite number there, then of course you have 
a contradiction right away. For infinite dimension matrices, these things don’t generally 
work if these are unbounded operators. These operators are not bounded because x and p 
are not bounded operators. Their eigenvalues go all the way up to infinity. you could also 
write down x and p because x is just a + a dragger over root 2 or something like that and 
therefore it will have a root 1 here, root 1 here, root 2 here, root 2 here, etc. and similarly 
for p, so while in the position basis, the operator x just means multiply by x and the 
operator p means differentiate with respective to x in the Fock basis. The operator x is a 
certain infinite dimension matrix and a dagger is its conjugate matrix and similarly x and 
p.    
 
Now having said this, let’s go back a little bit back track and talk about the uncertainty 
principle itself. We know that there is an uncertainty principle involved here because x 
with p, the commutator is ih cross that implies that delta x delta p must be greater than 
equal to 1/2 h cross. We would like to see what is the general uncertainty principle is for 
2 operators a and b. so i start by saying the 2 physical operators a and b reference to a 
certaitn system are compatible with each other if they commute with each other. There 
are several ways of asking what the implication of this is. So let me write that down. 
 
(Refer Slide Time: 00:11:22 min) 
 

 
 

A and B are compatible if any one of the following things is true. Commutator of A with 
B is 0 or they have a common basis set. There is a common basis set of eigen vectors that 
you can find in the Hilbert space such that these are eigen states of A as well as B 
simultaneously. Or if the following is true, you measure A and you get a certain number 
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which is one of the eigen values of A and you immediately measure B, you get one of the 
eigenvalues of B and you measure A once again in principle immediately before anything 
can happen and if you get the original number back, then it means that the state is 
unchanged at all and therefore A and B are compatible with each other. This is entirely 
equivalent to saying that A and B commute with each other. so its a measurement 
sequence A followed by B followed by A, if this leads to one of the eigen values of A, 
let’s call it an, this will lead to the one of the eigen values of b, let’s call it bl. and you 
measure this once again and you get back an, then a and b are said to be compatible with 
each other. Now of course, once you have a quantum mechanical system, the trick is to 
find all the operators which are compatible with each other, the maximal set of mutually 
compatible operators and they would have a common eigen basis. Generally, you would 
include the Hamiltonian in this set simply because that governs the time evolution of the 
system and as you see, the eigen states of the Hamiltonian are stationary states and they 
particularly play an important role in quantum mechanics.  
 
Therefore in any maximal set of mutually commuting observables or compatible 
observables, you would always include the Hamiltonian. Other than that, the choice can 
be non-unique. It very often depends on what your physical system is especially when we 
look at an example like angular momentum; you would use the Hamiltonian, the total 
angular momentum and any one component of the angular momentum because they don’t 
mutually commute with each other.  so let’s suppose you have a quantum system in 
which you have 2 operators, A and B which need not be compatible with each other, 
could be but need not be compatible with each other. Then we can say something about 
the uncertainty in A and B. I am going to assume that A and B are self adjoints so that 
they are real eigen values. 
 
(Refer Slide Time: 00:14:40 min) 
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It can be shown that in any state of the system, delta A delta B, which is the standard 
deviation in A in the state concerned and for B similarly, is greater than equal to 1 half 
the modulus of the expectation value of the commutator of A with B in that state. So this 
is the generalized uncertainty principle. We will establish it in a minute. How do we 
establish this? We will simplify a matters a little bit. What is meant by delta A? This 
stands for A squared - A average whole squared in the state concerned which is the same 
as saying it is the expectation value of A - A average squared. This of course we know 
with the variance is the mean square - the square of the mean but it is also the mean value 
of the square of the deviation from the mean. so for simplicity, lets remove this A average 
and B average and subtract those 2 and lets call this something else. Let’s call A - A 
equal to A prime, say and similarly for B. What is the expectation value of the 
commutator of A with B here? It is the same as the expectation value of the commuator 
of A prime with B prime because A prime and B prime are just A and B with some 
number subtracted. These are C numbers, classical numbers not operators because this is 
an expectation value.  
 
In general, it is a real number. so It plays no role in the commutation and you could just 
as well write this but that is equal to in whatever state your in, it is equal to psi A prime B 
prime psi - psi B prime A prime psi, assuming the state is normalized otherwise I carry 
that in the denominator all the time. Let’s assume this state is normalized to unity. But A 
is Hermiatian and A prime is Hermiatian and so is B prime. Therefore this is just the 
inner product. Let me revert to the inner product notations. It’s A prime psi with B prime 
psi - B prime psi A prime psi. So you make this a bra vector and that a ket vector and 
these (Refer Slide Time: 18:00) are Hermitian. That is why I have written B here rather 
then B dagger. But what is this (Refer Slide Time: 18:06) number it is a complex 
conjugate of this (Refer Slide Time: 18:08) number. When I take the 2 in a bra and a ket, 
when I do a complex conjugation, it just changes the order in which the inner product 
appears. 
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So expectation value of A B is equal to 2 i, imaginary part of the expectation value of this 
quantity (Refer Slide Time: 18:37) because this is some complex number and that - it 
complex conjugate is 2 i times the imaginary part. As the key step is this. This (Refer 
Slide Time: 18:56) is equal to A prime psi B prime psi star. Therefore, if I take modulus i 
goes away. And then it becomes twice modulus of quantity. But that (Refer Slide Time: 
19:20) is less than or equal to twice the magnitude of A prime psi B prime psi. This is 
because the magnitude of the imaginary part is certainly less than or equal to the modulus 
of the complex number itself. therefore half expectation value of A B is less than equal to 
the magnitude of the inner product of this (Refer Slide Time: 19:53) quantity. This is 
some ket vector that is some other ket vector and you are saying this is the magnitude of 
the scalar product. Now what does the Cauchy inequality tell you? It says if you have any 
2 vectors of this (Refer Slide Time: 20:22) kind, the magnitude of this is less than equal 
to the norm of chi the norm of phi. This is the Cauchy inequality. There is another way of 
saying that a dot b in 3 dimensional space is ab cos theta. therefore magnitude of a dot b 
is less than equal to magnitude of a magnitude of b therefore this then less than equal to 
(A prime psi, A prime psi) to the power half ,(B prime psi B prime psi) to the power half 
but what is this equal to?  This (Refer Slide Time: 21:54) is equal psi A prime A prime 
psi. And you want that to the power a half. Similarly, this (Refer Slide Time: 22: 10) is 
equal to psi B prime B prime psi to the power half. But A prime is A - A average. And 
when you square it and take expectation values, you get precisely delta A whole squared. 
So that establishes this (Refer Slide Time: 22:36).  
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This here (Refer Slide Time: 22:45) by definition is delta A whole square. it is A - A 
average whole squared, expectation value. so it is precisely this (Refer Slide Time: 23:00) 
quantity which is delta A whole squared and you take square root you get delta A. so 
delta A is the standard deviation, delta A squared is the variance. So this proves this 
generalized uncertainty principle. It is certainly the most general one but sometimes, you 
can actually do a little better because what we did was to replace this (Refer Slide Time: 
23:46) by this. So you could actually put in how much less it is and so on and get a more 
general expression. There is another origin of the uncertainty principle called the 
Schrodinger Robertson way of writing the uncertainty principle which adds another term 
to this but this is true in all cases. As we have seen, there are cases like the ground state 
of the harmonic oscillator or every coherent state where the uncertainty principle is 
saturated, in the sense that you do get the minimum uncertainty. Now this (Refer Slide 
Time: 24:24) is the very useful form of result. We are going use this result here but notice 
even if A and B don’t commute with each other, so that you have an uncertainty in a and 
an uncertainty in B which is non-zero.  
 
I mean the commutator is not identically 0. It’s conceivable that there exist a particular 
state in which this expectation value vanishes. And then in that particular state, the 
uncertainty product does go down to 0, even if A and B don’t commute with each other. 
But if A and B commute with each other, this is identically 0. And then there is nothing 
here on the right hand side. It just says you can put a common eigen basis. You can 
measure A and B simultaneously with arbitrary precision. Otherwise you have this 
uncertainty principle and you can’t get away with it.What happens in some cases is that 
the commutator of A with B becomes just a multiple of the unit operator and then you get 
a pure number times a unit operator on right hand side.  
 
(Refer Slide Time: 00:25:27 min) 
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So for instance, the most common case is A is x, B is p, then [A, B] = [x,p] = ih cross 
times the unit operator. And then the matter becomes very simple. This goes away and 
then you get delta x delta p greater than equal to h cross over 2 because the expectation 
value of the unit operator is 1 in every state. But this is not always the case. When you 
have angular momentum for instance, then commutator of 1 component, say the x 
component of the y component will give you the z component. And then what appears on 
the right hand side is expectation value to z component. That is the most general form. 
Now having said all this, now I want to go to the following. We would like to ask now 
that we have solved the Schrödinger equation in a few cases, we have some feel for what 
the state vectors look like in position basis. They are represented for bound states by 
square integrable functions and so on. The question is, is there a way of making contact 
with classical Hamiltonian mechanics where you had physical observables which obeyed 
the Hamiltonians equations of motion? Is there a way of looking at quantum mechanics in 
that frame work? The answer is yes and this leads us to two ways of looking at quantum 
mechanics which are equivalent. So let me do that now. 
 
(Refer Slide Time: 00:27:01 min) 
 

 
 

These are called the Schrodinger and Heisenberg pictures or representations, but I like to 
use word picture because it is more graphic. What we did so far was the Schrödinger 
picture. So we started by same that a quantum mechanical system is described at any 
instant of time by a state vector in some Hilbert space. So we assume the existence of a 
state vector which was explicitly time dependent and the time dependents was specified 
by the Schrödinger equation. So we had this input and we had ih cross d over dt psi (t) = 
the Hamiltonian times psi (t). what this meant was that if you specify the state of the 
system for me somehow at t = 0 or some instant t 0, I specify what the state is at every 
later instant of time and the later state is a unitary transformation acting on the earlier 
state. so the formal solution to this, in the case when H was explicitly time dependent, we 
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showed this but then even and more general cases this is still true, this is equal to some 
unitary operator which takes you to time t from t 0 acting on psi (t 0). It’s unitary because 
the norm was preserved. so the fact that psi (t) psi (t) norm which is the square of the 
norm at time t = psi (0) psi (0), this implies that the operator is unitary in between and in 
the case when the Hamiltonian was explicitly time independent, this U actually turned out 
to be e to the - i over h cross t times H. this was a Hermitian operator and e to the i times 
Hermitian operator is unitary operator. So we were guaranteed that U U dagger is U 
dagger U is equal to the identity operator.  
 
So the picture is, you have a state vector which describes everything you know about the 
system and the state vector is undergoing in the Hilbert space, a unitary evolution. This is 
going from 1 state to another by a continuous set of infinitesimal transformations which 
build up to unitary transformation. Now as you pointed out, the norm is preserved which 
is like saying the magnitude of this vector is preserved. The picture one has in mind is 
that this vector, if you look at in ordinary 3 dimensional space and you ask when the 
norm of a vector is changing, you would say it is moving on the surface of a sphere. If 
you put the origin at the tail of this vector, then this vector is meandering around on the 
surface of a sphere so that its length doesn’t change. So it’s something like that except we 
got to be a little careful. If I multiply this state vector by a complex number of unit 
modulus, I still don’t change this state vector. Remember this meandering is happening in 
Hilbert space.  
 
(Refer Slide Time: 00:30:54 min) 
 

 
 

So in Hilbert space, if I have a state vector psi and I have a state vector e to the i alpha on 
psi, where alpha is the real number, these have exactly the same norm because a bra is e 
to the - i alpha and that cancels out. So multiplying by a complex number of unit modulus 
doesn’t change the norm of a vector in the vector space. So all those vectors are 
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equivalent. It is as if in ordinary 3 dimensional space; imagine that all vectors along a 
given direction have all been projected to just the unit vector. And you go to another 
direction that is a different unit vector. But everything has been projected down to this 
unit vector. In ordinary 3 dimensional space, if I say that multiplying a vector by a real 
constant doesn’t change its direction.  
 
(Refer Slide Time: 00:31:50 min) 
 

 
 

So it’s as if i start by saying if you have a vector here (Refer Slide Time: 31:54), all 
vectors in this direction is equivalent to just this vector (Refer Slide Time: 32:00). They 
have all been projected on to this. This (Refer Slide Time: 32:06) direction is another 
story. Then you have a unit vector here and these are different from each other. They are 
related to each other by a rotation in the Hilbert space or a unitary transformation. This is 
called the ray representation because is Hilbert space is a projective space. What is 
physically important is not the state vector itself but the entire set of state vectors which 
differ from each other by just multiple of complex number of unit modulus. They all 
correspond to the same state physically. They all correspond to the same state. So it’s 
exactly like saying I am looking at this space of ordinary 3 dimensional vectors but I will 
agree to say that everything along this direction is equivalent to this (Refer Slide Time: 
32:58) unit vector.  
 
They differ from each other only by some normalization constant. So it’s like a projective 
space. This has deep implications. We will see some them later on. But for the movement 
I want it to appreciate the fact that it is as if this vector is rotating on the surface of the 
sphere expect it is happening in infinite dimensional space and this U is not a rotation but 
a unitary transformation. A unitary transformation which preserves a norm is the 
counterpart in quantum mechanics in Hamiltonian mechanics what you call a canonical 
transformation because that preserves phase space volume. The Poisson brackets 
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structure was preserved and in fact time evolution under the Hamiltonians equations of 
motion was nothing but the gradual unfolding of a sequence of infinitesimal canonical 
transformations.  
 
(Refer Slide Time: 00:33:59 min) 
 

 
 

We saw classically that if you had at time t = 0, {q 0, p 0}= 1 and qt was the solution of 
Hamilton’s equation for a given Hamiltonian with initial condition prescribed so that this 
is the function of q 0, p 0 and time, then we know that {qt , pt}=1 was still true. And this 
leads to the fact that volume elements in phase space were preserved. So the point in 
phase space occurred like that of an incompressible fluid in real space. That was the 
significance of these infinitesimal canonical transformations. So in the same way, just as 
classical Hamiltonian dynamics evolution is the gradual unfolding of a sequence of 
infinitesimal canonical transformations. In exactly the same way quantum evolution is the 
gradual unfolding of a sequence of infinitesimal unitary transformations on the state 
vector. So that was our picture. 
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(Refer Slide Time: 00:35:10 min) 
 

 
 

Now what about observables? Well, any observable A had an expectation value which 
was given by psi (t) A psi (t). So this observable itself could be position, momentum, 
angular momentum, etc and because you took expectation value with respect to a state 
that depended on time, the observable acquires a time dependent. I have assumed that the 
denominator remains 1 at all times. but if I rewrite this (Refer Slide Time: 35:53), and if i 
use this formula here (Refer Slide Time: 35:56) on this side, then this becomes psi(0) e to 
the power i Ht over h cross A e to the - i Ht over h cross psi(0), by definition this was 
equal to that( Refer Slide Time: 36:25). Please notice that there was a - here and therefore 
when i take the bra vector it becomes a + (Refer Slide Time: from 36:32 to 36:34) and 
that is very crucial. Now Heisenberg comes along and says that you have another way of 
looking at the whole thing. Suppose, I say that the operator itself has time evolution, just 
like a classical dynamical variable like position or momentum has an equation of motion, 
I say the operator itself has time dependence and the state vector doesn’t have time 
dependence. So forgetting the fact that this t here came from this term here (Refer Slide 
Time: 37:14 to 37:23) and this thing came from this state vector here, suppose this is the 
same as writing some phi and then an operator A which has t dependence, and then a phi, 
I could as well do this. I start by saying my state doesn’t change at all in any quantum 
mechanical system, the operators change in such a way that if you give me the operator at 
t = 0, which was my original operator, then the operator at time t is given by this formula 
(Refer Slide Time: 37:57).  
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No physics is changed because finally all the information we get is via expectation 
values. This is the Heisenberg way of looking at it. So let me now formalize this. the idea 
is to say if I now start putting subscripts just to tell you what Schrodinger and Heisenberg 
are, Schrödinger’s idea was to say that a system is described by a state vector and let me 
say psis for Schrödinger, the operator A is now in the Schrödinger picture As and there is 
no explicit time dependence. 
 
(Refer Slide Time: 00:39:02 min) 
 

 
 

So you have psi s (t) A s psi s( t) that was equal to (Refer Slide Time: 39:15 to 39:30) and 
that we insist is equal to, by definition a state vector which has no time dependence, what 
so ever. So psi H AH psiH, there is no time dependence.  I insist these 2 are equivalent 
completely and it must be true for every observable and whatever state vector you start 
with.  
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So these 2 are completely consistent with each other provided we define psiH = psiS at t= 
0 or at some fiducial instant of time. it could be some t0 once and for all i decide, so this 
state vector is moving around and at some instant of time, we know the Heisenberg state 
vector. Then in the Heisenberg picture, it is the operators that move around and evolve 
but the state vector remains where it is. moreover A H( t) is by definition equal to e to the 
iH S t over h cross A S e to the - iH S over h cross. Therefore, not surprisingly A H at time 
0 by definition is equal to AS. Please notice in the Heisenberg picture, the state vectors 
have no time dependence, the operators do in the Schrödinger picture. The operators have 
no time dependence for physical quantities which don’t explicitly depend on time but the 
state vector does carry all the time dependence. Therefore, i can write this immediately as 
equal to e to the i H S t over h cross A H at time 0 e to the - i H S t over h cross.  
 
This is still good not enough for me because i would like to know what is the Heisenberg 
operator at time t. i shouldn’t to go back to the Schrödinger picture at all. But I could do 
the same thing for the Hamiltonian itself and would ask what is H Heisenberg at time t. 
what is the Hamiltonian operator itself at time t?  i put that back in here (Refer Slide 
Time: 43:06) and I get e to the i H S t over h cross HS e to the - i HS t over h cross by 
definition by definition. But this commutes with itself. Every operator commutes with the 
function of itself. Therefore this is identically equal to HS.  
 
The Hamiltonian itself is an autonomous Hamiltonian. It doesn’t change in either picture. 
It is common to both. so I can forget about the subscript as far as the Hamiltonian is 
concerned and just call it H. therefore, going back here (Refer Slide Time: 44:29), I have 
this definition of the Heisenberg picture operator at any time t = e to the i Ht over h cross 
A H (0) e to the - iH t over h cross by definition. This is my definition of the Heisenberg 
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picture operator. It says, unlike the state vector, where these (Refer Slide Time: 45:10) 2 
terms were connected by unitary transformation, because this is a unitary transformation, 
psi H = psiS at 0. Psi S at time any time t is a unitary transformation U acting on psi H. in 
the case of the operator, we have an e to the - on the right, e to the + on the left or U and 
U dagger on this side. Now, having written this, the next step is to write down the 
differential equation. So what we doing is to work backwards to find the Heisenberg 
equation of motion. We could have started with that but we will see what happens. So 
what is the d AH over dt? 
 
 (Refer Slide Time: 00:45:58 min) 
 

 
 

The only time dependence is coming from here and here (Refer Slide Time: 46:06). So 
what is that equal to? Student – The Heisenberg H is the same as the Schrödinger H. But 
we know that the Schrödinger H is independent of time where as the Heisenberg’s H is 
dependant. Professor- in the case of H alone, it is no longer dependent on time. That is 
the whole point. The Hamiltonian is a very special operator and for autonomous systems, 
whichever picture you’re in, it doesn’t acquire any time dependence because it commutes 
with itself.  
 
So the Hamiltonian is a link between the 2 pictures. That is the fulcrum. So you have this 
relation and all we have to do is to differentiate it. We haven’t put in explicit time 
dependence. i should put in H (t) and then of course, this is not the solution. There is a 
unitary operator here that is a separate formalism. I am going to claim it goes though 
there too but what we are doing here is to work backwards to see what the differential 
equation is. And then I will establish that it is true in general.  
 
So what is dA H over dt? Well, you got to be very careful because this operator may not 
commute with the Hamiltonian and that is the whole point. Otherwise this just goes 
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through and you have no difficulty at all. Any operator which commutes with the 
Hamiltonian this thing goes across there (Refer Slide Time: 47:42) and cancels and then 
the Heisenberg and the Schrödinger picture operators are exactly the same. So what 
happens if I differentiate? I have to be very careful. Differentiating with respect to t 
produces iH over h cross, I can put that either here or there (Refer Slide Time: 48:00) but 
i can’t put it across that. So I must write this as equal to i over h cross H and then this 
entire bracket (Refer Slide Time: 48:17) which is A H (t) itself. And then when I 
differentiate this term here, I get an iH over h cross with the – sign. I can put it here but I 
can’t bring it here and i can also put it on that side (Refer Slide Time: 48:40). You end up 
with – AH (t) H and what is that quantity?  It is the commutator. So let me write it as dAH 
over dt is [AH (t), H] over ih cross. What we have there is a solution to this equation. 
Since these are operator equations, you have a linear operator here acting on this. So this 
is a super operator acting on A. it says take AH– HA and that is the right hand side here. 
That is equal to dA over dt as an operator, dependent on a parameter t. and the question 
what’s the solution to such an equation solution. 
 
 The solution is this (Refer Slide Time: 49: 57). You have this factor on the left and that 
factor on the with the specified initial condition. After all the solution is unique only if 
you specify the initial condition. So for that initial condition, for this equation with that 
initial condition, that is the unique solution. But what does this remind you of classically? 
if A was the function of all the q’s and p’s, d A over dt is equal to the Poisson bracket of 
A with the Hamiltonian and indeed all that has happened in quantum mechanics is that 
the Poisson bracket has been replaced by the commutator divided by ih cross which is 
what we said right in the beginning. That is the way you go from classical to quantum 
physics.  
 
This (Refer Slide Time: 51:19) is the Heisenberg equation of motion for any physical 
operator. It replaces the Schrödinger equation because there is no time evolution of the 
state. So you got a fixed psi H not t dependent. And the operators are time dependent. In 
the Schrödinger picture, state vector is time dependent but the operators are time 
independent. And this little derivation we gave here (Refer Slide Time: 52:078) is not 
really a derivation. it actually ensured that you could find the expectation value of an 
operator in either picture and you got exactly the same answer.  
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(Refer Slide Time: 00:52:20 min) 
 

 
 

So therefore I can now go ahead and write, any A is either = psi S(t) A S psiS(t) which is 
the same as psi H A H (t )psi H. so you put the blame for the time dependence either on the 
state vector or on the operator itself. that is like saying when an average value changes 
either I say that the average changes because the probability distribution changes and the 
variable itself is not explicitly time dependent or I say, no the distribution is fixed once 
and for all, but the variable has got dynamical evolution and they lead to exactly the same 
answer. So this consistency condition here takes you form one picture to another and the 
Heisenberg and Schrödinger pictures are said to be unitarily equivalent to each other 
because they are connected to each other by a unitary transformation. And which one you 
use it depends.  
 
Obviously when you have 2 ways of doing something, you have a great advantage. You 
can do it either this way or that depending on what is easier under the conditions that you 
are interested in. it will turn out that in real problems, you use something in between the 2 
called the interaction picture or the intermediate picture. And the reason is that, if you 
have a Hamiltonian which you can’t fully solve but you can solve most of it and there is a 
small perturbation, then you get into Heisenberg picture in which the evolution due to the 
portion you know is taken care of. its just like if you have a problem of 2 fellows sitting 
on a turn table and a throwing a ball between themselves or there is a particle moving in a 
rotating frame of reference, the obvious thing to do is go to that coordinate system in 
which this turn table is at rest.  
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So you go to the core rotating frame of reference, you get rid of that extra evolution 
which you already know and then look at the dynamical revolution of whatever you are 
interested in. so this is the strategy used in quantum mechanics to go to the Heisenberg 
picture to remove the portion of time evolution which is known to you already. It is the 
exact analog of looking at dynamics which is occurring in a rotating frame of reference. 
There is yet another way of saying this and I leave that you as an exercise to do this and 
that is the following.  
 
(Refer Slide Time: 00:55:11 min) 

 
 

After all, if I have an expectation value A of an operator, I would write this in the 
schrodinger picture as psi(t) A psi(t) and you don’t even have normalize it, so divided by 
psi(t) psi(t). And then i could ask what is dA over dt? So what is the meaning of dA over 
dt where A is an operator? It doesn’t have any meaning. What you can do however is to 
say i find A, that is dependent on time. So let me compute d over dt of A which you can 
do because as time dependents all over there (Refer Slide Time: 56:06) and you can write 
down what d over dt is and insist that this be identically equal to expectation value of dA 
over dt. In other words, insist that the meaning of the time derivative of an operator is 
that its expectation value be identically equal to the time derivative of the expectation 
value of the operator.  
 
Clearly, this is the Schrödinger picture and that is the Heisenberg picture. If you equate 
these 2 quantities, you get exactly what I said without writing the solution down. because 
what would you do,  you would take dA over dt and this is equal to d over dt psi(t), this is 
some bra vector which acts on A psi(t) + if the bottom is normalized, then the other term 
is psi(t) A d over dt psi(t), assuming this is normalized to 1. Then what you do for this 
(Refer Slide Time: 57:23)? You are in the Schrödinger picture. So use the Schrödinger 
equation. This (Refer Slide Time: 57:42) is equal to H psi (t) over ih cross. Therefore this 
thing here (Refer Slide Time: 57:45) is - bra psi with H, Hermitian divided by ih cross. 
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And when you put the two together, you get precisely the statement that this is the 
expectation value of the commutator of A with H divided by ih cross. That is the 
Heisenberg equation of motion. What I did earlier was to write the solution down 
explicitly and I differentiate this exponent and so on. But there I don’t write that down at 
all. i just differentiate and use the Schrödinger equation which is true even if the 
Hamiltonian is explicitly time dependent. And you get exactly the same result. So 
actually this result is true even if the Hamiltonian is time dependent but if there is explicit 
time dependence in A itself, what do you think will happen? Suppose there is explicit 
time dependence on A even in the Schrödinger picture, I don’t want to look at position; I 
want to look at this square of the position multiplied by the cube of the time. What will 
happen? This (Refer Slide Time: 59:28) will be have t dependence. That’s a partial 
derivative of A with respect to t. there is one more term. So what would happen to this 
(Refer Slide Time: 59:36)? 
 
(Refer Slide Time: 00:59:42 min) 
 

 
 

It is just the partial derivative because imagine if this A has t dependence, then there is a 
third a third term in this (Refer Slide Time: 59:55) equation and when you differentiate, 
you have a psi (t) psi (t) with delta A over delta t in between. Suppose i want the position 
of a particle that is my A. Let’s look at a case. 
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(Refer Slide Time: 1:00:10 min) 
 

 
 

Lets look at A equal to= x squared t + pt cubed. That is the physical operator. x and p are 
operators but t is not. When delta A over delta t in the Heisenberg picture = x squared + 3 
p t squared. This can happen in ordinary Hamiltonian mechanics also because there is an 
extra term.  
 
(Refer Slide Time: 1:00:51 min) 
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Whenever you write dA over dt is Poisson bracket of A with H remember, if this A had 
an explicit dependence, then remember there was a delta A over delta t term. So it’s 
exactly the same thing. So the take home lesson is that in general in the Heisenberg 
picture this (Refer Slide Time: 01:01:16) is the equation whenever you have a no an 
autonomous Hamiltonian, this is the equation of motion. But this remains true even when 
you have time dependents. Then this would be H Heisenberg at time t because there is no 
guarantee that the Hamiltonian commute with itself at different instance of time and it 
doesn’t have to. So that is the most general way of writing this equation down. 
 
(Refer Slide Time: 1:01:51 min) 
 

 
 

It replaces the Schrödinger equation. Very often it’s convenient to use this because once 
you use an operator method, then it is convenient to use every thing algebraically. 
Because eventually, you just trying to find expectation values for physical quantities and 
then it may be more convenient to use this. What I need to do is to show you what 
happens if you got H t dependence here (Refer Slide Time: 01:02:30), explicitly non 
autonomous. What happens to this (Refer Slide Time: 01:02:34) unitary operator? It is no 
longer this exponent. It’s a little more complicated formula but this we will do 
subsequently. So we should stop here today. Thank you!  
 
  


