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I am still to write the problem set which I will do today and send it you by email about 
Harmonics oscillator and all the eigenfunctions. I’ll start with a couple of quick points 
which I had left out last time.  
 
(Refer Slide Time: 00:01:20 min)  
 

 
 

The wave functions themselves phi n (x) for the oscillator are of the form a normalization 
constant multiplied by e to the - x squared over 2 and this was measured in units of m 
omega or h cross. So 2 h cross and then m omega x squared. So Gaussian function of this 
kind and then Hn (x) root of m omega by 2 h cross which is a dimensionless quantity and 
these Hn’s are the Hermite polynomials. 
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(Refer Slide Time: 00:02:11 min)  
 

 
 

Hn (x) equal to polynomial of order n H 0 (x) is 1 and H 1(x) is 2 x and then the even ones 
are all even functions of every power of x and the odd Hn’s have only odd powers of x 
and these functions here from a complete set of mutually orthogonal functions and it’s a 
family of orthogonal polynomials. So you have a relation of the form integral - infinity to 
infinity, dx in the weight factor is x e to the - x squared. so that’s a converse multiplied 
by Hn (x) Hn (x) equal to something times delta nm. i don’t recall the exact factor here but 
this is the orthonormality relation between Hn’s. there is also a generating function for 
this Hn. orthogonal polynomials, linear vector spaces, Legendre polynomial, Laguerre 
polynomials, etc. well, these are all like unit vectors in function space if you like and the 
weight factor here is this quantity Gaussian for the Hermite polynomials. You could have 
any range or weight factor here and similar orthonormality relations, and the Legendre 
functions polynomials run from - 1 to 1. You have integral Pl (x) P m (x) is delta lm and so 
on apart from some constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

(Refer Slide Time: 00:04:24 min)  
 

 
 

Now this thing here (Refer Slide Time: 04:20) is given by a Rodrigues formula as are all 
these orthogonal polynomials. so Hn (x) = e to the - x squared - d over dx to the power n e 
to the x squared. So you differentiate e to the x squared n times - 1 to n times that and 
then multiplied by e to the - x squared to get rid of the overall e to the x squared factor 
and you get a polynomial and they are Hermite polynomials. then there is a generating 
function and that relation says e to the power 2 t x - t squared where you could expand in 
powers of t because this is an entire function and you have only non negative powers of t. 
if you expand this exponential out and you collect powers of t together but remember 
there is a t here as well as a t squared there (Refer Slide Time: 05:10), so the coefficients 
would be some functions of x. and these coefficients are precisely the Hermite 
polynomials 0 to infinity Hn (x) over n factorial t to the power n. so this is a generating 
function this function here generates a power series in t whose coefficients are just the 
Hermite polynomials divided by n factorial. It’s a very useful relation. And then there are 
these usual recursion relations and so on and so forth. The Hermite polynomials are the 
regular solutions of the following second order differential equation. 
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(Refer Slide Time: 00:05:55 min)  
 

 
 

d 2 Hn over dx 2 - 2 x d Hn over dx + 2 n Hn =0. so they satisfy this second order 
differential equation. There are 2 solutions and they are linearly independent ones. One of 
them would have singularities and other one is polynomial like in the Legendre case. So I 
presume you are a little familiar with the theory of second order differential equations. So 
you can solve these equations by the power series method or by the Frobenius method 
and then the regular solution that you get is the Hn. of course, there is also a singular 
solution but that’s not the one that occurs physically in the harmonic oscillator problem.  
 
So this is a very useful piece of information to know. You can use all the properties of Hn 
in order to write down what the properties of the Eigen functions are. recall also that the 
energy Eigen values corresponding to these Eigen functions were these (Refer Slide 
Time: 07:04) things and n = 0, 1, 2, etc. so this finishes the harmonic oscillator 
everything you need to know is now known because you can take an arbitrary state of the 
system of the oscillator and you can expand it uniquely in terms of these Eigen functions 
of the Hamiltonian.  
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(Refer Slide Time: 00:07:24 min)  
 

 
 

Now recall that the Hamilton for this problem was p squared over 2 m + 1 half m omega 
squared x squared where x and p are operators; the position momentum operators. apart 
from these coefficients its quadratic in x and its quadratic in p. so there is a complete 
symmetry between the position space wave functions and the momentum space wave 
functions in this case because what appears here is completely symmetric in x and p.  
 
(Refer Slide Time: 00:07:58 min)  
 

 
 

So if you were to write this out in the position basis namely; acting on wave functions 
phin(x) in the position basis, then this is - h cross squared over 2 m d 2 over d x 2 + ½ m 
omega squared x squared in the position basis. 
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In the momentum basis, if you are acting on wave functions in momentum space, then p 
remains as it is. so this is p squared over 2 m, just multiplication, but x is replaced by + i 
h cross d over dp and when you square it, it becomes – 1/2 m omega squared h cross 
squared d 2 over dp 2. so you see apart from these constants which can be scaled away, 
you have an operator which is essentially x squared - d 2 over dx 2 in the position basis 
and the same operator in the momentum basis is p squared - d 2 over dp 2. so it shouldn’t 
be surprising that the solutions you get for the momentum space wave functions would 
also be Hermite polynomial times e to the - p squared over 2 in proper units and it will 
satisfy exactly the same equations in the case of the x basis.  
 
(Refer Slide Time: 00:09:25 min)  
 

 
 

So the a momentum space wave functions would be phi n tilde(p) for the same energy 
eigen values, these would be some suitable normalization constants multiplied by some 
Bn e to the power -, not m omega x squared over 2 x but p squared over 2 m omega h 
cross because that’s the dimensionless momentum, times Hn (p) over square root 2 m 
omega h cross. So even without calculation, you are absolutely guaranteed that this 
identifies what the wave functions would be and they look exactly the same in both bases.  
 
the ground state wave function in each case is very special. The ground state wave 
function corresponds to n=0 and apart from some constants, it’s e to the - x squared over 
2 H0 but H 0 is 1, so this goes away and you just get a Gaussian. So in the ground state of 
this harmonic oscillator, the wave function is a Gaussian both in x as well as in p. and 
that’s the reflection of a well known fact that the Fourier transform of a Gaussian is also a 
Gaussian function because we know these two bases are related by Fourier transform. 
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(Refer Slide Time: 00:10:54 min)  
 

 
 

so the ground state wave function  phi  0 (x) as a function of x is some kind of Gaussian 
and similarly, phi  0 tilde(p) as a function of p is also a Gaussian. so in the ground state, 
whether energy is half h cross omega, the wave function is extended and runs all the way 
from - infinity to infinity. Recall that the potential itself was just this (Refer Slide Time: 
11:30), this is V (x) and the wave function itself is this (Refer Slide Time: 11:35). so even 
though classically, at energy 1/2 h cross Omega the particle can only run between 2 finite 
points quantum mechanically it can be found anywhere on the x axis from - infinity to 
infinity with ever decreasing probability and dies on extremely fast as you go out. But it’s 
a nonzero probability that the particle in the ground state is actually in the region outside 
the classically allowed region. Now we generated all the higher order terms by the 
operator method. We generated the solutions in x and all higher order solutions. We 
would like to find out what the uncertainties in the position and the momentum are. Let’s 
see if you can calculate this.  
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(Refer Slide Time: 00:12:20 min)  
 

 
 

So what was need to calculate is delta x in the n’th state, so let me call it n, this by 
definition is x - x average in the n’th state always. So we would like to calculate the 
variance and then take the square root of this quantity. so this would be delta x and 
similarly delta p. and you shouldn’t be surprise that delta x and delta p would be exactly 
the same in both cases because each of the n’th wave function in the position basis is a 
Fourier transform of the wave function in the momentum basis. And they are exactly the 
same in functional form. So I expect a great symmetry between delta x and delta p in this 
case. So, in fact calculate just delta x and then i write down delta p by just changing units. 
x is measured in units of h cross over m omega square root and p is measured in units of 
square root of m omega h cross. So that’s all that you need but there is an easier way to 
do this and the way to do this is to ask this quantity here. We would like to calculate in 
the n’th basis. so let me just call this the ket vector corresponding to the n’th energy level 
En and let me first find out what is this quantity (Refer Slide Time: 13:50). A was 
essentially x + ip over square root of 2 x in appropriate units and a dagger was x – ip. So 
what’s a with n on both sides? 
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(Refer Slide Time: 00:14:04 min)  
 

 
 

If you recall a was = x square root m omega by 2 h cross + ip over root 2 m omega h 
cross and a dagger will be = x root m omega by 2 h cross – ip over 2 m omega h cross, 
where x and p were the position and momentum operators and if you recall the 
Hamiltonian was h cross omega a dagger a + ½.  And we know that in the n’th eigen 
state, a dagger a acting on it is just n on n. this was the number operator acting on the ket 
n and we also found out what a acting on n does. a acting on n gives you square root of n 
times n – 1. It lowers and a dagger acting on n takes you up. Notice this factor is not n – 
1, its n. so when n is 0, a acting on the vacuum on a ground state just annihilates a 
vacuum. It gives you 0. And then, there are no levels below that.  So given that, what’s 
the diagonal element? Well these levels n are all orthonormal. The moment a acts on n, it 
lowers you to n - 1 and then n – 1, overlap with n is 0 because they are perpendicular to 
each other in the Hilbert space. So this straight away gives you 0 immediately and what is 
this? (Refer Slide Time: 16:24)? Well of course its Hermitian conjugate would also be 
zero that’s the number complex number so its complex conjugate is also zero 
immediately.  
 
So if you represent a and a dagger as matrices which you can, you need a infinite 
dimensional matrix in each case because n goes all the way to infinity. It starts at zero 
and the label goes all the way to infinity. So you can represent the position and 
momentum operators as infinite dimensional matrices. So what looks like a d over dx 
operator acting on function space, the same operator in the energy basis looks like an 
infinite dimension matrix. So these are abstract operators and they wear many clothes at 
different times. So you shouldn’t be surprised that what looks like a derivative here; d 
over dx, really ends up looking like you know another basis which is just multiplication 
by p and then yet another basis. It’s really an infinite dimensional matrix. Now this tells 
you that neither a nor a dagger is a diagonal matrix because all diagonal elements are 0. 
So a + a dagger and a - a dagger which would be essentially x and p also don’t have 
diagonal elements at all. They only have off diagonal elements and now we can compute 



 10 

these uncertainties. So for the moment, let me set m= 1, h cross =1 and omega = 1. I can 
always do this. I choose a scale of mass such that m = 1, I choose a scale of time such 
that omega = 1 and then I choose a scale of length such that h cross = 1. I will put them 
back later on by dimensionless arguments. 
  
(Refer Slide Time: 00:18:12 min)  
 

 
 

So a is x + ip over root 2 and a dagger = x - ip over root 2. M, omega and h cross are 
equal to 1.  We will restore those units later on. So what’s x equal to? If i add these two, x 
is a + a over root 2 and p = a - a dagger over i root 2. They have to be Hermitian x and p. 
so a and a dagger are not Hermitian. a and a dagger are not Harmitian operators but x and 
p are physical operators. They are Hermitian. They must have real eigenvalues. So I am 
in business.  
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(Refer Slide Time: 00:19:14 min)  
  

 
 

What’s n x n?  That is zero straight away and n p n is zero. That’s sort of obvious because 
you have this oscillator classically going back and forth. Therefore its mean position is at 
the centre of oscillation. it should be zero. And it’s not going anywhere. It’s simply 
bouncing back and forth in the potential. So the mean momentum is also zero but the 
squares are not zero. we need to compute that and you can either do this painfully by 
doing it on the basis on messing around by differentiating Hermite polynomials or you 
can read neatly by finding out what’s n x squared n?  
  
(Refer Slide Time: 00:19:59 min)  
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This is equal to n x squared, all you we have to do is square that, a + a dagger squared 
over 2 acting on n and that’s equal to ½  n and what are these terms inside? So we will 
get an a squared + a dagger + a dagger a + a dagger squared. That’s very important to 
remember. since a and a dagger don’t commute, you have to keep both terms + a dagger 
squared on n but a squared when it hits n is going to lower to n – 1 and to n – 2. And 
that’s orthogonal to this. The first and the last terms don’t contribute. We want only the 
diagonal elements. This is equal to half and now the matter is exceedingly simple. a 
dagger a acting on n is just n. it comes out but what’s a dagger? We use the commutation 
relation.  So a dagger equal to 1 + a dagger a. so this gives you n + n + 1. That’s 2 n + 1 
over ½. That’s equal to n + ½. So you right away have these answers for what the mean 
square value of the position is in the n’th normalized eigen state. If you restore all the 
other dimensional factors, then you get n + 1/2 times h cross over m omega. It’s got to 
have dimensions of length squared. 
  
(Refer Slide Time: 00:22:14 min)  
 

 
 

Similarly, n p squared n but that’s equal to the same because the i squared and the minus 
cancel out with each other. So you see how symmetric it is and what’s the ground state 
answer? In the ground state, so we have this very interesting answer which says the 
following. 
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(Refer Slide Time: 00:23:08 min)  
 

 
 

If I plot delta x here versus delta p, these are standard deviations. So they can’t be 
negative. I am going to do this for each of the states delta p delta x. 
  
(Refer Slide Time: 00:23:27 min)  
 

 
 

Delta x delta p in the n’th state = n + 1/2 h cross. Now delta in the ground state is exactly 
h cross over 2 but the uncertainty principle between x and p says this is the least value 
could ever have. So the ground state of the harmonic oscillator is a minimum uncertainty 
state. Actually if we plot delta x delta p = h cross over 2. That’s a rectangular hyperbola 
in this fashion. So delta p over m omega h cross and delta x over root h cross by m 
omega. Let me measure it in these units. Then the ground states, its right here (Refer 
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Slide Time: 25: 13) at the value (1/ root 2, 1/ root 2) at the mid. That’s the nearest point 
on this rectangular hyperbola from origin and is symmetric. And what do the excited 
states do? They are just n + ½. so this becomes 3 ½, 5 ½, etc. they also sit on these 
hyperbolas. This (Refer Slide Time: 25: 45) is the first excited state. We are guaranteed 
by the uncertainty principle that no matter what state of the harmonic oscillator you look 
at, you cannot come down below the curve or outside this curve.  
 
Every point on this corresponds to delta x delta p exactly equal to h cross over 2 and you 
can’t go below that. However, it’s possible that there are states of this oscillator which 
you don’t know to construct so easily at the moment but you could be here (Refer Slide 
Time: 26:16). You are below the 1 over root 2, the ground state uncertainty in the 
momentum but you are much bigger than that in the position. So this is possible and in 
quantum optics, this kind of state has been realized and they are called squeeze states 
because what you are doing is squeezing the uncertainty in one of the variables down to 
practically zero but you are in the expense of increasing the uncertainty in the other 
variable. So it’s possible to have those states.  
 
We will see that there is actually an infinite number of states of the harmonic oscillator 
all of which are sitting here (Refer Slide Time: 26:46), not just the ground state. We don’t 
have infinite number of states all of which would sit on that and you will see how to 
generate these states. In a nut shell, after all, once I have a harmonic oscillator, I can 
move its center of oscillation to any point. i can shift the potential and nothing would 
happen. Those states also sit right in that point and we will see where they come in and 
they are called coherent states. We will talk about that next but you see the operator way 
of doing this is much faster. So you can compute anything extremely fast once you know 
how to use this number operator basis. This number operator states are also called Fock 
states after Vladimir Fock who first derived these in Russia long ago. he solved a large 
number of problems and the number operator states he introduced are called Fock states 
in his honor and this space itself is called Fock space. I will explain what Fock space 
means a little later. One of the most important things you have to note about the harmonic 
oscillator is that the energy levels are equally spaced. Therefore when you quantize, the 
fields and look at actual fields, including the electromagnetic field, it turns out that the 
quanta, every time you add one more quantum of the field, you are adding the rest 
energy. Therefore you are adding the constant amount of energy if the quantum is at rest. 
 
Therefore the harmonic oscillator plays a fundamental role in quantum field theory and 
the space in which those states exist are called Fock space. We will comeback to this but 
now I would like to ask the following question.  We found the uncertainty in the position 
and the momentum for the ground state, what about eigenstates of a and a dagger 
themselves? They are not Hermitian but after all, they are related to x and p which are 
physical operators. So the question is can I find Eigen states of these operators. So let’s 
try to do this. 
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(Refer Slide Time: 00:29:14 min)  
 

 
 

The first thing you must understand is that these are not Hermitian operators. So I don’t 
expect the eigenvalues to be real. It may be complex. it doesn’t matter after all if l over x 
+ ip where x and p are physical and have real eigen values, the number x + ip is complex 
in general. So i can live with that but the question is can I find eigen functions or not? 
Now a dagger = x – ip. Let’s use the units in which m, omega and h crosses are equal to 
1. we put them back later on. And in the position basis, this is the same as saying 1 over 
root 2 (x - d over dx). And I said h cross equal to 1. So if this quantity has an eigen state 
and let’s call it some chi (x) in the position basis, then the idea is a dagger on chi(x) 
should be equal to lambda on chi(x). if such a chi(x) exist, lambda could be complex in 
general. so it says that you must have x - d over dx on chi(x) = lambda on chi(x). That’s 
not a hard differential equation to solve. It’s a first order differential equation that can be 
trivially solved. We now find the solution and now see if you can normalize this or not. 
So I leave that to you as an exercise to find out but again we can do this problem also in 
the operator basis. So let’s see if that works in the operator notation. 
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(Refer Slide Time: 00:32:01 min)  
 

 
 

So I have a dagger on chi = lambda on chi. that’s the statement here that i have made 
except i am working in the energy basis. i can always expand this chi as summation n = 0 
to infinity, some coefficients cn times n. you know you can expand it in this form 
uniquely. Every state in the square integral normalizable states can be expanded uniquely 
in the form which forms the number operator basis. So what does this do? Because this 
implies chi = c 0 0 + c 1 1 + c 2 2 + … etc. Now what is a dagger on this? It’s a square root 
of n + 1 times n + 1. So square root n here is 0. so this becomes c 0 square root of 1 and 1 
+ c 1 square root of 2 on 2 + …. This is all the way to infinity but this must be equal to 
lambda times chi. so it must be equal to lambda c 0 1 0 + lambda c 1 n 1 + lambda c 2 on 2 
+…  etc. therefore each coefficient must be equal on both sides. There is no other choice 
because you require 2 vectors.  
 
Therefore they must be equal component by component. There is no zero here. So the 
conclusion is c 0 must be 0. So that gets killed and so on down the line.  What is that 
telling you? There are no eigen functions. But I can solve this equation. i can find the 
solution which is not trivial. You are telling me that chi(x) must be zero there. Chi must 
be the null vector but that’s not true. This can be solved. They will not be normalizable. 
They won’t be in the space of square integrable states. So that’s the crucial point. 
Remember that this expansion here has given you all the states in the space of 
normalizable states. And there are no normalizable eigen states of a dagger. There are 
eigen states in this space but they are not normalizable. so they will not be the total 
probability and will not be conserved. Now we do the same thing with a and let’s ask the 
same thing. So a is x + ip. 
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(Refer Slide Time: 00:36:06 min)  
 

 
 

Can we have a on some eigen state, alpha is alpha on alpha. Alpha is some complex 
number. i play the same game as before and now i have x upon i have a 1 over root 2 x 
and this is an i and this is - i from there. So this is x + d over dx acting on this wave 
function. Let’s call it alpha(x) for want of a better name, is equal to alpha times alpha(x). 
This alpha(x) is nothing but in the position basis, the representative of this state alpha. 
you can solve this equation and you can ask if they are normalizable eigen functions in 
this case because it is a + sign here. So it will immediately turn out that you get things 
which are normalizable because this is e to the - x squared sitting up there immediately.  
 
(Refer Slide Time: 00:37:16 min)  
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So we put alpha a on alpha to get alpha on alpha. I put alpha equal to these coefficients 
equal to c 0 etc and I put a on this alpha and now we are in business because this is + 
alpha here and that gives 0. It annihilates it and pushes it down but then acts on one and 
brings you down to zero and it acts on 2 and brings you down to 1. So you can match the 
series since this series is not bounded from upper side, you can equate these 2 series 
because this spectrum is bounded from below. a dagger doesn’t have an eigen state. Had 
this spectrum and bounded above but not from below then you would have had eigen 
states of a a dagger and not of a.  
 
You must have something unbounded on one side or the other, then the magic works. so 
this quantity here gives you c 1 acting on 1 that is root 1 times 0+ c 2 root 2 on 1 + c 3 root 
3 on 2 + etc.   
 
(Refer Slide Time: 00:38:55 min)  
 

 
 

So we start of by saying  c 1 = alpha over root 1 c 0, c 2 will be, you equate this term with 
this (Refer Slide Time: 39:08) quantity, that’s equal to alpha over root 2 on c 1 which is 
equal to alpha square over root 1 acting on c 0 and so on. And the n’th coefficient is alpha 
to be n over square root of n factorial on c 0. So this fixes all the coefficients and in fact, 
it tells you that this is perfectly reasonable. 
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(Refer Slide Time: 00:39:51 min)  
 

 
 

This is equal to a summation from n = 0 to infinity, there is a coefficient c0 that comes out 
and then there is an alpha to the n acting on n over square root of n factorial. So we have 
a state. What are the allowed values of alpha? It can be any complex number. So it has a 
double continuous infinity of eigenvalues. All numbers in the complex plane are 
eigenvalues of the annihilation operator a. and they have corresponding normalizable 
eigen states. Let’s normalize them.  
 
(Refer Slide Time: 00:40:44 min)  
 

 
 

So alpha alpha = 1. i am going to impose that. so that gives you mod c 0 squared and then 
i have an alpha to the n on n and the other one would be alpha star to the m with root m 
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factorial. But when you have an n and an m, you have a delta nm. so this whole thing 
becomes summation n=0 to infinity mod alpha to the power 2 n, that’s alpha star to the 
power n over n factorial. But what’s this (Refer Slide Time: 41:21) series? It is e to the 
power mod alpha squared. Therefore that tells you that c 0 = e to the – 1/2 mod alpha 
squared. i take the square root of it and I have set the phase of c 0 to be 0. The overall 
phase of wave function doesn’t matter.  
 
(Refer Slide Time: 00:41:53 min)  
 

 
 

Therefore, we have a very important statement which says a has normalizable eigenstates. 
This is a little surprising, non Hermitian operator has normalizable eigenstates and these 
eigenstates are labeled by a complex number, alpha. And this alpha, the eigenstate is e to 
the – 1/2 mod alpha squared summation n=0 to infinity, alpha to the n over square root of 
n factorial on n. what does alpha= 0 correspond to? If we put 0 here (Refer Slide Time: 
43:06), you get the ground state because a on 0 is 0 actually and you do get that because I 
put alpha= 0, only the n=0 term contributes.  
 
All other n equal to zero alpha to be n is 1 so everything else goes away and you get the 
vacuum and this becomes unity. So these states which are eigen states of a, one state 
coincides with an eigen state of a dagger a and not surprisingly that’s the state such that a 
on that state gives you 0. So alpha = 0 is the vacuum. It is a number operator state 0 but 
all other complex alphas are different states all together. You also know what is this 
(Refer Slide Time: 44:00) equal to in terms of a ground state? I keep raising this (Refer 
Slide Time: 44:05). So I act a dagger on the ground state which gives you a state 1 with 
the 1 over square root of 1 here and then i act once again on it, a dagger squared, and 
that’s again going to give you a 2 here but it’s going to give you a square root of 1 times 
square root of 2 here and so on. So it is clear that you can also write this n as a dagger to 
the power n over square root of n factorial acting on the ground state. You can also write 
it in that form. 
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(Refer Slide Time: 00:44:53 min)  
 

 
 

So this implies that this eigen state alpha can be written as e to the – 1/2 mod alpha 
squared summation n = 0 to infinity alpha a dagger to the power n over n factorial acting 
on this ground state; acting on the vacuum. But now you can do the summation formally. 
It’s again an exponential series. So this is equal to e to the – 1/2 mod alpha squared e to 
the power alpha a dagger acting on the ground state. It’s a very compact form of writing 
the eigen state of a. these eigen states are called coherent states. They play a fundamental 
role in quantum optics. When you apply this to the electromagnetic field and you 
quantize it, the coherent states play a fundamental role. In fact, if you take ideal single 
mode laser light with a given polarization, this is in fact the state of the radiation field is a 
coherent state. This has mathematically identical properties. You don’t have a position 
and a momentum there for the photon or anything like that. This is quantizing the 
electromagnetic field itself and then you end up with a state which has exactly the 
properties of a coherent state of this kind.  
 
It’s not an accident that the exponential of this operator acts here of this operator a. 
because, notice that i said a and a dagger form a Lie algebra. A dagger in the unit 
operator that commentator of a with the unit operator 0. A dagger with that is 0 and a 
with a dagger is 1, the unit operator itself. They form a Lie algebra. This is called the 
Heisenberg algebra and from this Lie algebra, you can form a group by exponentiating 
just as we did in the case of rotations. So you exponentiate the generators with parameters 
and you end up with the group elements. So that’s exactly what these quantities are and 
when it acts on this 0, you get each of the coherent states. In fact, you can even get rid of 
this (Refer Slide Time: 47:30). You can show it’s essentially e to the power alpha star a 
with the - sign + alpha a dagger acting on 0. So with a little reduction i will give this is an 
exercise. You can write this as alpha a dagger - alpha star a acting on 0. It is this (Refer 
Slide Time: 47:55) operator, please remember that if a and a dagger don’t commute, then 
e to the a dagger + a is not equal to the product of the individuals terms. So this can be 
reduced to that form and then you end up with this operator acting on 0 on the ground 
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state which gives you the coherent states. Physically what does coherent state mean? 
What does the wave function look like and what are normalization conditions and so on?  
Well we normalize these states to 1. Remember that’s how we found this factor here 
(Refer Slide Time: 48:25) but you could ask would you expect them to be orthonormal. 
The question is the following. In the space of the harmonic oscillator, all normalizable 
states could be expanded uniquely in terms of number operator states. They form an 
orthonormal basis. So there is no question that we can expand. 
  
(Refer Slide Time: 00:48:58 min)  
 

 
 

Everything in terms of this number operator which incidentally is a dagger a + ½, that is 
just 1/2 times unit operator multiplied by h cross omega. Essentially in terms of the eigen 
states of a dagger a. a dagger a acting on n was n times the same state and n runs from 0, 
1, 2, 3, etc. so all states in this space could be expanded in this form. So every 
normalizable state psi could be written in the form cn n, n = 0 to infinity. Since this is a 
unique expansion, specification of this state is the same as specifying that infinite set of 
numbers c 0, c 1, c 2 etc. these are the components. So if you give me an infinite number 
of coefficients, i give you the state uniquely. In the case of alpha, alpha is a doubly 
continuous variable, both the real and imaginary parts.  
 
So you would expect that alpha also forms the basis and they are normalized. the question 
is, if you have a different alpha, is the inner product of this alpha with this beta equal to 
zero or not, if the alpha is not beta what could you expect? Then I would say this is 
orthonormalized. This is what we would like to find out. Which would you expect? What 
would your intuitive expectation be? You seem to have many more doubly infinite 
number of labels, both the real and imaginary parts of alpha. So if you can uniquely 
expand the state in terms of this doubly infinite labels, how come it suddenly get 
compressed to just the nonnegative integers? So it doesn’t look right. So let’s compute 
this overlap. 
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(Refer Slide Time: 00:51:15 min)  
 

 
 

Let’s do beta with alpha = summation over n summation over m and this state alpha was 
= alpha to the n over root n factorial, there was an n on right side and there is a beta star 
to the m over root m factorial. you shouldn’t forget beta with alpha equal to e to the – 1/2 
mod beta squared + mod alpha squared those who are the 2 normalization factors for the 
state and i took the blob data so you got a put a beta star here over m over this and then 
there was an m n but this is delta nm, that’s orthonormal. So therefore the summation 
collapse is to a single sum and you get moderate + square + mod beta squared and then 
you get alpha beta star to the power n over n factorial. This is what you get. if alpha= 
beta, you get a 1 of course because you want alpha with alpha to be 1, you we normalize 
it.  
 
But this number has a modulus less than unity but it’s not zero. This is the complex 
number here but you can take its phase and its real part and so on and take out modulus 
times e to the power whatever it is and you can compute what the modulus of this 
quantity is. So calculate mod beta alpha. Mob alpha beta squared will turn out to be 
proportional to e to the - alpha - beta whole squared times some number. So in the 
complex plane of these eigen values, mod alpha - beta is the distance between those 2 
points. Now the 2 points coincide then of course you get unity as normalization but in the 
difference you get some number less than 1, e to the - some positive number. 
 
 
 
 
 
 
 
 
 



 24 

(Refer Slide Time: 00:54:04 min)  
 

 
 

So it is not zero in general. Its exponential doesn’t vanish. So this is not an orthonormal 
set of states. What to do you expect regarding completeness? Once again it’s not a 
complete set of states but it’s over complete. It is actually doing much more than that. 
And this is another thing.  I am gone a leave it as an exercise. 
  
(Refer Slide Time: 00:54:46 min)  
 

 
 

You can show that integral and now you have to sum overall possible alphas and alpha is 
a complex number so you have to integrate over the real part of alpha and the imaginary 
part from - infinity to infinity. so that’s over the entire complex planar, let me call it d 2 
alpha to show it’s a 2 dimensional integral. Alpha alpha over pi = the identity operator.  
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Again I’m leaving that you as an exercise to show. It’s slightly harder in this case but this 
should be fairly straight forward and I will indicate how to do that in the problem sector. 
These states are said to be over complete. So the set alpha is an over complete set. But 
now comes a key question. What does the wave function look like for alpha? Again I will 
go back to the definition. 
 
(Refer Slide Time: 00:56:10 min)  
 

 
 

I have alpha = summation n = 0 to infinity, alpha to the n over root n factorial on n and i 
would like to look at it in the position basis. This is the wave function in the position 
basis corresponding to this coherent state alpha. So this is what i call alpha(x) labeled by 
this x. the wave function must be some square integrable function and that would be 
equal to this (Refer Slide Time: 56:42) but what’s x with the n? This is our famous phi n 
(x). This is phi n (x) but that = apart from some normalization constant, summation n = 0 
to infinity, alpha to the n over root n factorial and then this normalization constant An 
multiplied by e to the - x squared over 2 in those units that we chose, Hn(x). Now you are 
stuck with this. You have to do this summation but you are saved by the fact that this An 
has a 1 over square root n factorial and that will kill this (Refer Slide Time: 57:42) and 
then the rest would be an exponential which you can actually sum.  
 
So I am going to leave this to you as an exercise to do. And what could you expect once 
you sum it? You get an exponential which involves this (Refer Slide Time: 57:55), 
remember the expression we have for the generating function. That’s where it comes in 
use and it will turn out this is a displaced Gaussian. So it’s not e to the x squared but it’s e 
to the x - alpha1 squared where alpha1 is a real part of alpha multiplied by some phase 
factor. Similarly the momentum space eigenfunction would be e to the p - alpha 2 but 
alpha 2 is the imaginary part of alpha. so all that’s happening by applying this operator e 
to the alpha a dagger - alpha star a on 0 is that the center of oscillation which was 0 for 
the ground state and for all other states as well and the momentum eigen value was also 0 
that gets shifted.   
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(Refer Slide Time: 00:58:54 min)  
 

 
 

So classically what it means is that in the x-p phase plane, the original oscillator 
corresponded to an oscillation like this (Refer Slide Time: 59:02). Once you apply this 
operator, the phase trajectory is somewhere else at this point shifted by alpha1 on this side 
and alpha 2 on that side. It’s just a displaced oscillator. So you would expect nothing new 
has happened by doing this. So in fact you can start with now a state alpha, treat that like 
the vacuum and apply a dagger on it or the equivalent of the dagger and create another set 
of excited states everywhere. So all these statements are deep implications in quantum 
optics and I will explain a few of them as we go along. let me stop here today and next 
time we will discover some more properties of this and what I should like to do is to give 
you some insight into what does this (Refer Slide Time: 59:49) quantity do. It’s a unitary 
operator and it’s called the displacement operator for a few reasons. We will study a few 
properties of these. This will also help us understand the algebra a little better. So we will 
stop here. Thank you! 


