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In one dimensional problems, there is an interesting theorem which essentially says that 
the ground state has no node, the first excited state as one node, the second excited state 
as 2 nodes and so on. So the question is why does the number of nodes increase as the 
energy increases and a very crude answer is the following.  
 
(Refer Slide Time: 00:01:25 min) 
 

 
 

Although one can make this formal, it’s called the ordering theorem, it’s because on the x 
axis, you would like to have a wave function that’s normalizable; that means it must go to 
zero at both ends. So it starts off with zero and then it must end at zero on this (Refer 
Slide Time: 01:41) side. In between whenever it goes up it has to come down. So if it 
goes up and comes down a repeated number of times, you can see the curvature keeps 
changing up and down. So the second derivative term contributes significantly and the 
larger the number of nodes, the more the contribution and therefore the larger the energy 
on the right hand side. 
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(Refer Slide Time: 00:02:10 min) 
 

 
 

So in a very rough sense, you would expect that the ground state of the system would be 
something where these gradient terms don’t contribute at all; something which goes up 
and has to come down. So the simplest way for it to do is in this (Refer Slide Time: 
02:18) fashion. Therefore there are no nodes at all. Every time there is a node it means 
there is a maximum and the curvature terms contribute more and more. So that’s a rough 
idea of why as the energy eigenvalue increases, the number of nodes in the wave function 
also increases. Now we can prove some fairly general theorems on what the wave 
functions look like in a one dimensional potential problem. I will make some statements 
and later on we will see how to substantiate this. 
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(Refer Slide Time: 00:02:58 min) 
 

 
 

If you have a potential V ( x ) which is perhaps something which goes to zero at the ends 
and then it goes up and comes down with a well and goes about in this fashion (Refer 
Slide Time: 03:15). In such a potential, one could ask what the Hamiltonians look like. 
First of all, if it’s a bound state, it must be normalizable. This means a wave function 
must vanish at the end sufficiently fast. Now clearly you could not have an energy level 
below the least value that the potential takes.  
 
(Refer Slide Time: 00:03:50 min) 
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That’s not very hard to establish because after all, the equation that you write down looks 
like p squared over 2 m operator + V (x) operator acting on phi of x or a state vector is E 
phi of x. where in the x spaces V (x) operator is just multiplication by V (x) and this 
stands for the second derivative if you like. Now that’s the eigenvalue equation that you 
have to solve. In general, the kinetic energy does not commute with the potential energy 
because x and p don’t commute with each other. 
 
Therefore this particle cannot have a definite value of its kinetic energy simultaneously or 
in the same state as the one in which it has a definite value of its potential energy. In 
general, the Eigenstates of the Hamiltonian are not Eigenstates of the kinetic energy or 
the potential energy separately. That’s crucial to remember. That’s completely different 
from classical physics where you can actually take the total energy and say how much 
kinetic and potential energy are. Although the Hamiltonian is the sum of the potential and 
kinetic energy terms, please remember in a stationary state of the system, the particle 
does not have a definite value of either its kinetic energy or its potential energy but only 
of the sum of the two. That is simply because x and p don’t commute with each other. 
However we can say that no matter what state you are in, this contribution can’t be 
negative even in the quantum mechanical case. 
 
(Refer Slide Time: 00:05:33 min) 
 

 
 

That is because in any arbitrary state psi, I take p squared psi; in any normalized state, 
this (Refer Slide Time: 05:40) is the expectation value of p squared by 2 m and you get 
the expectation value of the kinetic energy. But this is equal to the norm of the state that 
you obtain by doing this (Refer Slide Time: 05:57). This is because; remember that p is a 
Hermitian operator. Therefore you can write p squared as p dagger p and it’s just the 
scalar product of this state vector with its adjoint. Therefore, it’s a square of the norm of 
that state vector. And you know that norm square of the norm of a state vector cannot be 
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negative. It’s zero if and only if the state vector is the null vector in the vector space. So 
this proves that the expectation value of the kinetic energy is always positive. And it’s a 
trivial matter to prove that you cannot have an energy of this kind because this would 
imply that the expectation value of the kinetic energy is negative. The other classical idea 
you must get rid of is to ask when the particle is at a position, what’s its energy. Such a 
statement has no meaning at all because the position operator does not commute with the 
Hamiltonian and therefore the question of the particle having a definite energy when it is 
in a particular place doesn’t exist. The particle is actually local everywhere. There is a 
probability amplitude for the particle to be anywhere on the x axis. And all you can ask is 
what’s the probability if the particle in a certain energy Eigenstate lies between two 
points. but you must get out of this classical way of thinking which says that with the 
particle you can associate a trajectory so that at every instant of time, you can associate 
both the position and momentum with it nor should you think that the particle when it’s 
in an Eigenstate of the total Hamiltonian has so much kinetic energy and so much 
potential energy. That’s not true either nor should you think that the particle has so much 
energy and momentum when it’s at this point. Those ideas are classical and they are 
completely invalid in quantum mechanics. Once you appreciate that, then it becomes 
much easier to understand. So my point was that because the expectation value of the 
kinetic energy cannot be negative in any state of the system, simply because the kinetic 
energy is the square of a Hermitian operator, it’s of the form p dagger p if you like and its 
expectation value cannot be negative. It implies that there can be no energy levels lying 
below the least value of the potential.   
 
You could have an energy level here (Refer Slide Time: 08:43) at this value, but the wave 
function of the particle in general would not be confined to this region. It would in 
general be an extended wave function. There is a probability to find it outside; a finite 
probability, but that is a completely non-classical region. Classically, of course if you tell 
me this is the total energy of the particle, you would simply say it oscillates back and 
forth in this potential well between these amplitudes or turning points. That’s no longer 
true quantum mechanically. 
 
If I plot the wave function corresponding to this (Refer Slide Time: 09:20) energy value, 
it would be something localized like this in this fashion and dies off sufficiently rapidly 
and definitely with overwhelming probability it would be inside the well. But there is a 
finite nonzero probability for it to be outside its classical amplitude as well. Could you 
have an energy level of this (Refer Slide Time: 09:47) kind somewhere here?  Or could 
you have some Eigenstate like this (Refer Slide Time: 09:58)?  
 
The answer is it cannot be stationary states. Because what would happen if you had an 
energy value here is that there is a classical potential barrier in this (Refer Slide Time: 
10:16) region of finite width and finite height and there is a probability for the particle to 
tunnel through from here to there. If you start with an initial state here and wait long 
enough you would have a nonzero probability of finding the particle there. So there 
cannot be a strict bound state once you have a escape possible by tunneling. Exactly 
similarly you couldn’t have a particle localized at this (Refer Slide Time: 10:45) point.  
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If you start by putting the classical quantum in a small range about this point initially, as 
time goes along, this state would evolve under this Hamiltonian such that you end with a 
finite probability of finding it in this well. so it has tunneled through this (Refer Slide 
Time : 11:04) well and it would tunnel through here and then of course it can reach all the 
way up to infinity which means the wave function cannot be normalized anymore  and 
ditto on this (Refer Slide Time: 11:15) side.  
 
However its possible for instance, if I find an energy value here and if I start with the 
particle here, if this barrier is long and high enough and similarly on the other side, then 
the tunneling probability could be exceeding low and you might find the particle inside 
the well for a very long time but eventually it is bound to escape and such a state is called 
a metastable state. So you have metastable states but then eventually things would tunnel 
through. Tunneling is something we may not have time to get to, but it’s a quantum 
phenomenon. 
 
Had this barrier been infinite in height with a finite width, then there is no possibility of 
doing this. It then has to really overcome an infinite barrier. So the tunneling probability 
depends on the range, i.e. the width as well as the height of the barrier and it decreases 
exponentially in the height of the barrier. So if the height goes to infinity, the tunneling 
probability goes to zero. Suppose you had a delta function barrier, could it tunnel 
through? This would indeed because now even though the height goes to infinity, the 
width goes to zero and there is a tunneling probability across. But if the width is finite 
and the height is infinite, then it’s not possible for it to tunnel. 
 
Similarly, if the width is infinite, of course if this potential goes like that and asymptotes 
to that value on that side and the same value on this side, then an energy level here is 
definitely possible. There is nothing for you to tunnel through. It’s an infinitely wide 
barrier on this side. So those are the sort of rough guidelines which you must use, but I 
emphasize once again you have to get over the classical idea that the particle has a 
definite energy when it’s at a definite position. Now let’s do one more property of these 
wave functions and after that let’s solve the harmonic oscillator problem. And the 
property I had in mind was what happens if the potential has a certain symmetry, how is 
it reflected in the Eigenstates or the Eigenfunctions of the energy. 
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(Refer Slide Time: 00:13:49 min) 
 

 
 

So let’s look at a situation where you have a potential and I won’t specify it at the 
moment, V (x) which has some symmetric shape, say x squared or x power 4 or a 
combination of x squared and x power 4 which is completely symmetric in shape. What 
you are given is V (x) = V (- x). This is a symmetric function about the origin. Now what 
kind of energy eigenvalues would you expect? By what I have said earlier, you couldn’t 
possibly have any energy eigenvalue. There are no negative values below the least value 
of the potential which I take it to be at the origin. So if I take this as a zero level of 
energy, you can’t have negative energy levels in this problem. You could have positive 
energy values. You could have all sorts of energy levels here and in general, because the 
particle is confined, you would end up with a discrete spectrum. 
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(Refer Slide Time: 00:15:08 min) 
 

 
 

Suppose this potential well had asymptoted to some level, what kind of eigenvalues 
would you have? You would have a discrete spectrum here certainly, but then you could 
also have a continuous spectrum up there (Refer Slide Time: 15:28). Beyond that, it’s not 
bound anymore. Then the particle could have non-normalizable wave functions which 
would correspond to a free particle zipping from left to right. but as it zips across for 
instance if you shoot a particle from the left as it zips across it is really as if its entering a 
medium of different refractive index because out here you could say the potential is 
essentially zero or a constant and therefore it’s like a free particle But once it comes here, 
there is a certain potential and therefore the effective k squared changes and which means 
that the wave number changes, which means that the particle propagates as if it’s going 
through a different medium to the other side.  
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 (Refer Slide Time: 00:16:13 min) 
 

 
 

But let’s look at simple cases such as only bound states. So it goes off to infinity on both 
sides. One is guaranteed that all the Eigenfunctions of the Hamiltonian are in fact 
normalizable. They all correspond to bound states and you have a pure discrete spectrum. 
Now I add the condition that V (x) is V (- x).  
 
(Refer Slide Time: 00:16:37 min) 
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Well please remember that each Eigenfunction must obey this, - h cross over 2 m d 2 phi 
dx 2 + V (x) phi of x = E phi of x. and now let me make a change of variables. Let me 
make a transformation of variables from x to x prime. So let x prime = - x. so it proceeds 
in 2 steps. One has to be careful in this argument. Let’s see what happens to this equation. 
It becomes  - h squared h cross squared over 2 m d 2 phi of  - x prime because x is  - x 
prime, over dx prime 2 ; its a second derivative and therefore it doesn’t change sign + V 
of  - x prime phi of  - x prime is E phi of  - x prime. I have merely rewritten the same 
Schrodinger equation for the Eigenfunction phi of x and the eigenvalue E in different 
coordinates.  But V of - x prime is V (x) prime by symmetry. So here I can replace this by 
V (x) prime and I can drop the prime and you could call it anything. It’s exactly the same 
Schrodinger equation as before. So it says if phi of x is a solution of this equation 
corresponding to eigenvalue E, so is phi of - x. If the system is not degenerate, what does 
that imply? There is no degeneracy in one dimension. Therefore every eigenvalue must 
have a unique Eigenfunction. But now I just proved that phi of x is an Eigenfunction with 
eigenvalue E, so is phi of - x. therefore it implies that phi of - x must be linearly 
dependent on phi of x.  
 
(Refer Slide Time: 00:19:46 min) 
 

 
 

So this implies phi of - x = some constant times phi of x. There is no other alternative. 
That immediately implies that c squared is one. Because I can now go from - x back to x 
once again and therefore C is + or - 1. + implies phi of x is an even function and the - 
sign implies it’s an odd function. So this proves that if the potential has reflection 
symmetry or parity symmetry invariance, then the solutions have definite parity. So I am 
saying that if the potential is an even function, the wave function must be even or odd but 
it can’t be a mixed function. 
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So the Hamiltonian commutes with the parity operator and H P is zero. That’s the 
statement that we just made. The Hamiltonian commutes with the parity operator. This 
implies that the Eigenfunctions of the Hamiltonian are also Eigenfunctions of the parity 
operator. Every Eigenfunction of the Hamiltonian is either an even function or an odd 
function and therefore they can be classified into even and odd functions. 
 
(Refer Slide Time: 00:21:52 min)  
 

 
 

What would the ground state be? We can make a statement about the ground state 
immediately. Would that be even or odd? It would be even because the wave function has 
to be continuous and if it’s continuous and an odd function, then at x = zero it must be 
zero, which means it has a node. But the ground state doesn’t have nodes. So the only 
possibility is that the ground state is in an even function.  
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(Refer Slide Time: 00:22:48 min)  
 

 
 

So you would in general have an Eigenstate like that (Refer Slide Time: 22:53), an 
eigenvalue like that corresponding to an Eigenfunction like this would be the ground 
state. So if I call this level E 0, this would be phi 0 of x (Refer Slide Time: 23:01). In 
general, there will be some level E 1 here (Refer Slide Time: 23:06) and that would be an 
odd function.  That will have one node. And then a level E 2; it doesn’t have to be 
equally spaced and it would be an even function. It will perhaps do something like this 
(Refer Slide Time: 23:26) and that would have two nodes but an even function. So under 
fairly general considerations, simply by using the symmetry of the potential, one can 
come to a conclusion that the Eigenfunctions would be odd, even, odd, even, odd and so 
on.  
 
Now here is an instance where two operators commute with each other and we are 
finding a complete set of common Eigenstates. But all even functions are not 
Eigenfunctions of the Hamiltonian but all Eigenfunctions of the Hamiltonian are 
Eigenfunctions of the parity operator simultaneously. The class of Eigenfunctions of this 
operator is much greater than the class of Eigenfunctions of a subset of this (Refer Slide 
Time: 24:18). So having seen this, let’s see whether we can actually substantiate this by 
solving the Schrodinger equation in the simplest case. The simplest even potential which 
is smooth and so on which we can think of is x squared. We put that in and that’s the 
harmonic oscillator. But even before I do that, let’s look around this in one more 
direction and ask what kind of Eigenvalues I expect. It’s important to try to guess the 
answer. 
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(Refer Slide Time: 00:24:59 min)  
 

 
 

So we have this classical problem of a Hamiltonian which is p squared over 2 m + V (x), 
I am going to take V (x) to be just an even power of x say. So let me take this as some 
lambda; which is a constant, x to the power r and to make it more general let’s take this to 
be an even function. This can be any power r and let’s make this modulus. Of course, you 
immediately see that at the origin, it would have a cusp if r is = 1 for instance, but that’s 
not serious. What does the potential look like for r = 1? It will just be a thing like this 
(Refer Slide Time: 25:57). For r = 2, it will be a parabola. For r = 3, it would be steeper. 
Remember there are no singularities here. So it would be even flatter. How about r = 1/2? 
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(Refer Slide Time: 00:26:25 min)  
 

 
 

Well, we need to still do something like this (Refer Slide Time: 26:33). In all these 
potentials you would expect a set of bound states or discrete levels. What does the 
particle do classically? What would the phase trajectories be?  
  
(Refer Slide Time: 00:26:58 min)  
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Well, the phase trajectories of this particle if I plot x versus p; this is classical, they will 
be close curves but won’t be ellipses unless r = 2. So you have some kind of amplitude 
for a given energy and then the particle would execute something like this (Refer Slide 
Time: 27:28). If r = 2, it would be an ellipse. But if r = 4 for instance, then it will be a sort 
of a flat oval for and r = 1, there will be all kinds of curves. What we would like to do is 
to find out semi-classically, what’s integral pdx.  
 
(Refer Slide Time: 00:28:03 min)  
 

 
 

So when the particle is executing these trajectories, what’s integral pdx? And then we 
apply Bohr quantization. Integral pdx is the area of this curve. And how do we estimate it 
as a function of the energy? So classically what you would say is, for a given set of initial 
conditions you find the Hamiltonian H of xp, you say this is equal to E and this is given 
to you as the total energy of the system. And then it swings back and forth, exchanging 
kinetic and potential energy and we want to know what the area under the curve is. Now 
it’s clear that at these points, the potential energy is zero by construction and the energy 
is completely kinetic classically. The intercept is equal to square root of 2 m e because all 
the energy is kinetic energy. 
 
So this (Refer Slide Time: 29:12) intercept goes like E to the power half apart from the 
root 2 m e and what does this (Refer Slide Time: 29:15) intercept go like? Well, the 
energy is completely potential at this point and there is no kinetic energy. So it’s clear 
that this goes away and you get x to the power r which is E. therefore this amplitude goes 
like E to the power one over r. therefore what does the area go like? I would be just a 
product of the 2. I mean apart from numerical factors this area whatever it is bigger than 
this triangle and is smaller than the rectangle. And the area of the triangle is half base 
times height.  
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(Refer Slide Time: 00:30:10 min)  
 

 
 

So as far as the energy dependence is goes, this (Refer Slide Time: 30:09) thing here is 
proportional to e to the power half + 1 over r. It’s guaranteed that that’s true apart from 
numerical factors but this we are advised is n times Planck's constant. When you do Bohr 
quantization, it says these orbits are quantized in such a way that integral p dx is n times 
Planck’s constant. This says that En, the energy level to the power (r +2) over 2r goes like 
n En which is proportional to n to the power 2 r over (r + 2). So it says that at sufficiently 
large values of the quantum number n, when you expect the semi classical argument to be 
valid, the energy levels En must change with the quantum number n according to that 
law. We are not saying what’s going to happen in the ground state or the first excited 
state. That requires detail calculation but for sufficiently large n, this is going to be true. 
It becomes proportional to n.  
 
So I expect that in the simple harmonic oscillator problem, the energy levels sufficiently 
far away when n is much bigger than one, I expect the energy levels are going to be 
proportional to n itself and to the first power. What happens when r is = 1, 2/3, etc? It 
says it’s sub-linear and doesn’t increase as fast as n less than n to the first power. The 
energy levels do go up all the way to infinity but increases sub-linearly. This means if we 
took a ball, a potential which is constant; mod x is essentially a constant for a linear 
potential that’s like mgh.  
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(Refer Slide Time: 00:32:37 min) 
 

 
 

So for example, if you bounced the quantum ball up and down on the ground, then the 
potential hits the ground and it cannot go below that. but this is linear mgx, if this is x,and 
then the particle would bounce back and forth classically but quantum mechanically the 
energy levels in this potential here are guaranteed to increase like n to the power 2 thirds, 
n to power 2 thirds less then proportional to n. what happens when r is = 4; quadric 
potential? It increases faster than n. what’s the maximum it could increase up to?  It can 
only go up to 2 because as you increase the power, this potential gets flatter and flatter. 
 
(Refer Slide Time: 00:33:29 min) 
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So x is along the x direction and V (x) is along the y direction, you end up with potential 
with slope like this (Refer Slide Time: 33:37) which has very high power and then as r 
tends to infinity, it goes like n squared. That’s the worst it can do and what does the 
particle in a box do? It goes like n squared. Now, you see why the particle in a box went 
like n squared. It was like taking and putting it in the potential and then making the 
potential infinitely high. The slope becomes infinite and then it ended up with n squared. 
now you could say well, I have taken problems in which the power was x to the power r 
and I kept on increasing  r  such that finally it reached a vertical line, like a rigid box but 
more than a power, you could have an exponential. What would happen if the potential 
goes like e to the power x? We would like it to be symmetric. So let’s make it e to the 
power mod x or cosh x. 
 
(Refer Slide Time: 00:34:57 min) 
 

 
 

So what would be the energy levels like? So here is x and let’s make it (cos x - 1) by 
adding a constant so that the potential looks like this (Refer Slide Time: 35:08). This is 
the cosh function. It’s symmetric and cuts the axis at 1. It goes exponentially fast. So this 
curve here is e to the power x and e to - x in the other direction because e to - x is 
negligible here (Refer Slide Time: 35: 25) and e to the + x is negligible here. So it goes 
like this exponentially fast, faster than powers, what would the energy levels look like? 
They can’t go bigger the faster then n square they can’t increase with n and faster than n. 
squared because that’s already for an infinitely high wall. Rigid wall but at the same time 
it can’t be a power less than 2 because then that would be infinite. So let me let me write 
this out. 
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(Refer Slide Time: 00:36:06 min) 
 

 
 

En must increase slower then n squared as n increases but faster than n to the (2 – 
epsilon) for arbitrarily small epsilon. It can’t go like n to the power 1.999. That’s not 
allowed nor can it go like n squared. It must be slower than that. (Conversation between 
Student and Professor) Then what it would do? n squared by log ? Where did the log 
come from? n squared by log what? It can’t be a power less than 2. It can’t be 2. What 
would I do? He is suggesting n squared divided by log. Does n squared over log n sound 
reasonable to you? Why not log n? Does the idea of logarithm sound upsetting to you? It 
is a very good intuition. That’s exactly what it does. There is a logarithmic correction and 
that’s the one less weaker than the power. Let’s see what it does. Once again it involves a 
very simple calculation. 
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(Refer Slide Time: 00:38:20 min) 
 

 
 

Once again in x and p, these are some kind of ovals but this amplitude here (Refer Slide 
Time: 38:25) is E to the half because that’s the kinetic energy and look at what the 
potential energy would do? What about this p?  You see if you say this is equal the 
energy E and p is zero on this axis, then it says cosh x is like E. but cosh x is dominated 
by E to the x for large values on this side. So E to x is like E and x is like log E (Refer 
Slide Time: 38:52).  
 
(Refer Slide Time: 00:38:58 min) 
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Now the area inside the curve is E to the power half log E. that’s the product of p times x 
and this is n. you got to solve this equation and that’s not easy to solve because it’s a 
transcendental equation; there is both a power and a log but you solve it by iteration. To 
leading order, E doesn’t vary much. So to leading order, it’s clear that E goes like n 
squared. So you put that in here (Refer Slide Time: 39: 31) and then do an iteration. Or 
better still, take logs on both sides. so we get ½ log E + log E which is like log n. log log 
E is much smaller than ½ log E. so it immediately says log E to first approximation is like 
2 log n or E is like n squared. Substitute that in this (Refer Slide Time: 40:02). So it says 
E to the 1/2 log n squared is like n. but log n squared is just 2 log n. so E to the 1/2 is like 
n or En is like n squared over log n squared. So the guess was almost right. Although you 
can’t solve this problem, it’s a very difficult differential equation to solve with this cosh 
you can’t solve it explicitly. You still can estimate what’s going to happen to the energy 
levels for very large values of n. there is a logarithmic correction to the power law. 
 
Now let’s back to our simply harmonic oscillator problem. We have enough machinery 
now to ask if this is solvable exactly. We would like to explicitly solve it. There are many 
ways of doing this and it’s the most fundamental problem in quantum mechanics at this 
level for very deep reasons and it appears over and over again all the time. Because of 
this single property which we will now see explicitly, the energy levels are going to be 
equally spaced as you all know. And this is the reason why it makes an appearance once 
again in the quantum field theory. Because in a nutshell, when you take many particles 
you include relativity, the possibility of interactions etc and you put all these particles 
together. Then, when you want to describe a set of free particles or non-mutually 
interacting particles and you want to quantize it, every time you add one more quantum in 
the field, you are adding the rest energy of this particle of this quantum. Therefore 
addition of one more particle is addition of a constant amount of energy to the total 
energy. Therefore it’s natural that what appears in this problem is precisely the harmonic 
oscillator solution in the disguised form because this has exactly discrete energy levels 
which are equally spaced. I have to say right away that the harmonic oscillator is not the 
only potential which has equally spaced levels. There is an infinite family of potentials 
called isospectral oscillators, all of which have equally space levels but this is a first 
member of the lot in the simplest of them. Now our task is to solve the linear harmonic 
oscillator. 
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(Refer Slide Time: 00:42:44 min) 
 

 
 

The Hamiltonian operator is given by p squared over 2 m + 1/2 m omega squared x 
squared. And just as classically, we are given the fact that x and p obey Poisson bracket 
relations. Quantum mechanically you have the fact that x commutator p = ih cross times 
the unit operator. As a first thing, you got to realize that in the position basis, p is a 
differential operator; - ih cross d over dx. But that’s only in the position basis. The energy 
eigenvalues would be independent of what basis you choose to describe the problem. 
That’s just one way of describing the state vector in the position basis.  
 
So it’s like choosing a particular coordinate system to describe an abstract vector but the 
eigenvalues and the state vectors corresponding to these eigenvalues are independent of 
what basis you choose to solve the problem in. you could solve it in any basis and 
transform to whatever basis you like. And this is what Dirac did he found an operator 
method of solving these equations. now of course a operators suggest immediately there 
is an algebra matrices appears somewhere and so on but I would like to disabuse you 
immediately of the notion that you can do this with finite dimensional matrices because 
this commutation relation precludes the possibility of being able to represent this system 
in terms of a finite dimensional space. The Hilbert space is infinite dimensional. 
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(Refer Slide Time: 00:44:41 min) 
 

 
 

You cannot express these operators as finite dimensional matrices and that’s immediately 
true because the moment you write xp - px = ih cross times the unit operator or the unit 
matrix, if you write it as matrix representation and take trace on both sides; we know that 
trace ab = trace ba even if nb don’t commute as long as a and b are finite dimension 
matrices. So the left hand side would give your zero. If it is finite dimensional, the trace 
of the unit operator is just the dimensionality of the space. That’s finite and this is zero so 
this is a contradiction. It’s not possible to write x and p in terms of finite dimensional 
matrices. So this identity is no longer true and you can’t make such a representation. We 
will see that you need finite dimensional matrices if you choose to use a matrix 
representation. But if you use the differential operator representation, then there is no 
question of matrices anyway. We would like to solve for the eigenvalues and 
Eigenfunctions.  
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(Refer Slide Time: 00:45:56 min) 
 

 
 

If there is an eigenvalue E and an Eigenfunction phi of x, then this must be = - h cross 
square over 2 m d 2 over dx 2 phi of x + 1/2 m omega square x square phi of x is = E phi 
of x. when one tries to solve this, we know from the shape of the potential already that E 
must be some non-negative number. So we already know that E is a real number and a 
non-negative number because the potential has an absolute minimum at x = 0. And then 
the question is, does this equation have solutions? You need to put boundary conditions 
and what are the boundary conditions? You would like it to be a bound state you and 
should be normalizable.  
 
So the natural boundary conditions would be phi of x goes to 0 as x tends to + or - 
infinity. Both sides it must vanish, after that we would like to normalize this wave 
function. It’s some number if you find it to be 6 for instance. Then you redefine your phi 
as 1 over square root of 6 times the original phi in which case, you have normalized it to 
unity. So this is the strategy. What sort of differential equation is this (Refer Slide Time: 
47:30)? It’s an ordinary second order differential equation but there is a slight 
complication here this (Refer Slide Time: 47:38) coefficient is not a constant. 
 
It’s a function of x which means that you can’t solve it simply as a superposition of 2 
exponentials. The original trial method of trying exponential doesn’t work because the 
coefficients are not constantans. this is an example of what’s called Hermite's equation, n 
not quite directly but it can be transformed into that and then the solution appears as the 
product of an exponential factor; e to the  - x squared multiplied by some constant times a 
polynomial in x. these are called the Hermite polynomials. So you need to use a more 
sophisticated method to solve this equation. You need to use this method of series, the 
Frobenius method. 
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So we need to use that to solve this equation here. But what we will do is follow Dirac 
and solve this equation by an operator method which gives us the solution explicitly 
without going through this relatively difficult boundary value problem. The hard part is 
that it’s a second order equation. Had this been a first order equation, you could write 
down the solution by a very simply formula. So Dirac string actually reduces to saying 
that this becomes a first order equation. This is a second order differential operator. so 
it’s  - h cross squared over d over 2 m d 2 over dx 2 + 1/2 m omega squared x squared 
acting on the wave function. And what Dirac did was to break this up into 2 first order 
factors. once you do that, then a solution of this equation implies that each of these 2 
factors; if they commute with each other acting on the wave function must give you E 
times phi. So just factors the second order differential operator into 2 first order factors 
and then the answer is a more or less obvious immediately. Another way of saying is I 
have x squared + p squared, if I want to write it as a product of 2 factors, what should I 
do? The first step is to get rid of the ih cross factor and we would like to make it simpler. 
There is a length scale in the problem. The parameters in this problem are m, omega and 
h cross.  
 
(Refer Slide Time: 00:50:46 min) 
 

 
 

So out of these parameters, you can construct a quantity of dimension x and dimension p 
and what’s the quantity of dimension length? The length that you can construct = M L 
squared T to power -1. MT inverse is omega. So I could construct h cross by m omega 
square root is the length and what’s the momentum? Momentum is mass times velocities, 
MLT inverse. So if I took m omega h cross, this is MT inverse and then M L squared T 
inverse and I took the square root of that, I get MLT inverse. So this suggest that square 
root of h cross m omega has dimensions of momentum. So when I construct new 
operators which are linear combinations of x and p, I may as well get rid of these 
dimensional quantities. 
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So let’s define an operator a = x divided by this quantity here (Refer Slide Time: 52:24). 
So it’s dimensionless + i p divided by m omega h cross. And a dagger is not Hermitian. 
These (Refer Slide Time: 52:47) are Hermitian but this operator is not Hermitian because 
I have got an i sitting there and that operator is x over square root of h cross over m 
omega - i p over square root of m omega h cross. so I am writing x + i p and x  - i p but 
when I multiply the two, I get x squared  + p squared and I have got this factor 1/2 sitting 
here. I’d like to get rid of that (Refer Slide Time: 53:23) 2. So let’s make this a 2 here 
(Refer Slide Time: 53:25). This will make the Hamiltonian look very simple because I 
got rid of that and when I multiply the 2; I get 1 over root 2 and 1 over root 2. That gives 
me a half and that will exactly match this here. First thing I got to ask is are these 
operators, a and a dagger Hermitian? They are not Hermitian. So these are directly not 
physical observables. They are combination of these operators here and there is this 
important i factor.  What is a with a dagger equal to?  x commutes with itself, p 
commutes with itself. So I got to take the commutator of this with that (Refer Slide Time: 
54:15) and add it to the commutator of that with this (Refer Slide Time: 54:19).  
 
This with that (Refer Slide Time: 54:22), you can see what’s going to happen. It’s a half 
sitting in the denominator because of these 2 things here (Refer Slide Time: 54:29) and 
then there is an h cross. So there is h cross in the denominator. The m omega factor 
cancels because it’s in the denominator here and in the numerator there. And then x with 
p is = i h cross and the i with - i gives you + 1 and an h cross. But the h cross cancels with 
whatever was in the denominator. But the half remains and then in the other term, this 
(Refer Slide Time: 54:55) with that is exactly the same thing except now you get a - sign. 
You get a - i. but there is a +i here, so that again gives you a half. So it’s immediately 
obvious that this is equal to exactly 1. It has been normalized in a such a way the that it is 
exactly 1.  
 
And remember a and a dagger themselves are dimensionless. The physical dimensions 
are M to the 0, L to the 0 and T to the 0. so it’s a great advantage to be able to write the 
Hamiltonian in these dimensionless variables. And what happens to the Hamiltonian 
itself?  Now we can see all we have done is to factor this Hamiltonians with that h cross 
an omega put in. 
 
 
 
 
 
 
 
 
 
 
 



 27 

(Refer Slide Time: 00:55:47 min) 
 

 
 

So we get h cross omega, a dagger a + ½.  I leave you to verify that you get this extra 
term there. This is the well known oscillator Hamiltonian written in terms of a and a 
dagger. These operators are called ladder operators or raising and lowering operators for 
a reason which will become clear. They are also called creation and annihilation 
operators in quantum field theory. This is starting point of quantum mechanics in some 
sense. so our job know is to find the eigenvalues of this (Refer Slide Time: 56:35) 
operators; this is half times unit operator incidentally. We have to find the Eigenvalues of 
this operator given this commutation relation; a with a dagger. This should be the unit 
operator incidentally but I am just going to write it as a dagger = 1. Incidentally that again 
shows that it cannot be finite dimensional because trace a dagger is trace a dagger a but 
that’s zero and can’t be the trace of the unit operator for any finite unit operator. Now 
Dirac’s solution was the following and this method is due to him. 
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(Refer Slide Time: 00:57:23 min) 
 

 
 

P. A. M. Dirac was one of the founders of quantum mechanics as you know and he is the 
one who proved the equivalence of the Schrodinger and Heisenberg pictures. He gave the 
operator formalism of quantum mechanics that was in fact is PhD thesis and he is 
possibly the only person in the world who could ever have a PhD thesis whose title was 
quantum mechanics. He was very young when he did this.  A few years later he got the 
Nobel Prize and when he walked into the High Table at Cambridge in his college, there 
was a round of applause. Lord Rutherford was presiding over the table. He had already 
got the Nobel Prize and there were several other people who got it already. When the 
applause went on for a little longer, Rutherford sort of growled and said, “That’s enough 
of that. This is not the first time the prize is coming around this way.” Dirac was one of 
the greatest physicists of all time and his idea was to introduce these operators, which has 
now become a very standard fare in quantum mechanics. He is the one who first 
introduced the bra and ket notation to start with. He also called it transformation theory 
because the whole thing was just going from one basis to another and how to write things 
in different bases and so on. He essentially laid the foundations of the modern way of 
looking at the subject.  
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Now the problem is, define N = a dagger a. I will call this operator as capital N. it’s 
called the number operator, the reason being that N’s eigenvalues turns out to be 0,1, 2, 3,  
and so on. They will be all natural numbers. Now what’s the commutator of N with a?   
 
(Refer Slide Time: 00:59:48 min)  
 

 
 

By our rule for commutators which follows from the rule for Poisson brackets, we know 
that A with BC is A with B with C on the right hand side and A with C with B on the left 
hand side. Never change the order of the operators. B appears in the left C appears on the 
right. Similarly, AB with C is A with C with B on the right hand side + A on the left and 
B with C. It is a fundamental rule for commutators and all we have to do is to apply that 
here. a commutes with itself. So that is zero and all you have is a dagger with a, with a on 
the right hand side. This a (Refer Slide Time: 01:00:47) goes out and that’s on the right 
hand side. But a dagger with a is - a with a dagger. So this is equal to – a. and similarly N 
with a dagger is very simple. It’s a dagger a, with a dagger and that is equal to a dagger 
on the left hand side, a with a dagger and that is  a dagger. So there is a little algebra that 
is formed here. The original algebra was a with a is zero, a dagger with a dagger is zero, a 
with the unit operator is zero, a dagger with the unit operator is zero and a with a dagger 
is one, the unit operator. That formed an algebra called the Heisenberg algebra. And once 
you add N to it, you can see there is a kind of closed algebra. The commutator of any two 
of these quantities is a linear combination of the same set of operators. 
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Now suppose our job is to find Eigenstates of this quantity (Refer Slide Time: 01:01:58), 
this (Refer Slide Time: 01:02:00) is trivial because this is a unit operator. Anything is in 
the Eigenstate. So let us suppose there exists an Eigenstate. 
 
(Refer Slide Time: 1:02:14 min) 
 

 
 

Let lambda be an eigenvalue and let’s suppose N operator acting on Eigenstate lambda 
gives the eigenvalue lambda in the Eigenstate lambda. I should really write psi with a 
subscript lambda to show it’s an Eigenstate with eigenvalue lambda but let’s abbreviate 
notation and just put lambda inside the ket. What do we know of lambda? Can it be any 
arbitrary complex number? It must be real because a dagger a is Hermitian. You take the 
Hermitain conjugate of a dagger a, you get a dagger a once again. So after all, it’s the 
Hamiltonian apart from a constant. So lambda must be real. Then take that statement N 
with a = a and apply it to an Eigenstate lambda. So I have this operator identity and I 
apply each side of this identity to the same state, lambda. This implies N a lambda - a N 
lambda = - a. so it says N acting on a acting on lambda; this is already some ket vector 
and N acts on it. What is N on lambda by definition? That is lambda on lambda, it’s a 
number.  Lambda is a number and so I move it to the right hand side and I get (lambda - 
1) a on lambda. What conclusion do you draw from this?  
 
If this (Refer Slide Time: 01:05:00) is an Eigenstate of N, so is this operator acting on 
lambda an Eigenstate of the same operator N but with an eigenvalue reduced by unity. In 
exactly the same way, you take N with a dagger on lambda = a dagger on lambda and use 
the factor its +a dagger there and it tells you that N acting on a dagger acting on lambda 
is = (lambda + 1) a dagger lambda. So it says if ket lambda is an Eigenstate of N, so is a 
dagger acting on ket lambda with an eigenvalue increased by 1. So a dagger is called the 
raising operator and a is called the lowering operator because these respectively raise and 
lower the eigenvalues of N. 
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Together of course you could call them ladder operators; they go up and down but we 
still don’t know what lambda is. So if I start with some lambda, I apply a on it, I get 
another Eigenstate with eigenvalue (lambda - 1). I apply a once again, I get another 
eigenvalue with (lambda - 2) and so on. This will keep going down below. Eventually, 
since lambda is real, it will hit a negative value. But you cannot have a negative 
eigenvalue for a dagger a. why is that? N cannot have negative eigenvalues because in 
any state, what so ever, this operator a dagger a psi; that is the expectation value, for any 
arbitrary state. This is the expectation value of this operator and this is equal to the norm 
of a psi whole squared, exactly as I did for the kinetic energy. It says take this ket, vector 
take its bra vector and take the inner product. That’s the square of the norm. No 
eigenvalue can be negative because in no state of the system can this have a negative 
expectation value. So what does that tell you?  What is the only possibility lambda is real 
number? You start with some lambda, it is a real number but then if lambda is an 
eigenvalue (lambda- 1), (lambda- 2), (lambda - 3), etc. It’s a negative value but it’s not 
allowed to hit negative values. Lambda must be an integer. So you have no choice but to 
say that lambda must have been any positive integer and then you can keep going down 
till you hit zero but you can keep going up all the way to infinity. So that proves that 
lambda must be = N. 
 
(Refer Slide Time: 1:08:52 min) 
 

 
 

N is 0, 1, 2, etc. that’s the least value it can have and it can’t be negative. Suppose it’s 
1.1, then there is an eigenvalue 0.1. Then there is another eigenvalue (0.1 - 1) but that’s 
not allowed. Student- (0 – 1) is also negative. Professor - No, there exists a state such that 
a acting on it must give you 0 and the eigenvalue has become zero. There is no way you 
can lower it after that. So it implies there exists a state zero such that a acting on zero is 
zero and then to go to - 1, you will have to act with a on that but it’s already gone, its 
zero.  So it can’t be a fraction. If it were 1.5, then it will go to 0. 5 and then - 0. 5.  So 
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there must be a state with Eigenvalue zero such that a acting on that Eigenstate is zero 
and it annihilates it. 
 
I should really call it phi subscript zero but I use this notation lambda. This state is the 
ground state. In field theory, it’s called the vacuum and the annihilation operator a 
annihilates the vacuum. When it acts on it, it gives you a null vector. Zero is not the null 
vector in the linear vector space. This vector is not the null vector. This is zero times 
whatever vector you like. This vector here stands for phi subscript zero, just my notation 
that I use this zero here. Our job is to find out what are these states, what do they look 
like and so on.  
 
(Refer Slide Time: 01:11:47 min)  
 

 
 

The next job is to find the Eigenstates n because we now know that a dagger a acting on n 
is n on n and incidentally the Hamiltonian acting on n is h cross omega N +1/2 unit 
operator acting on n. so these (Refer Slide Time: 01:12:30) are the energy levels. There is 
that extra half, it’s called zero point energy and it says the lowest energy level in this 
harmonic oscillator is not zero but half h cross due to quantum fluctuations. We will see 
the significance of that. 
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 (Refer Slide Time: 01:12:46 min)  
 

 
 

So it essentially says that in a potential like this (Refer Slide Time: 01:12:50), classically 
the equilibrium state is when the particle is sitting at the origin at rest; zero kinetic energy 
is zero potential energy. Quantum mechanically this is not is not possible because if you 
localize the particle at the origin, it’s uncertainty in momentum becomes infinite. so you 
{cont} (01:13:12 min) can’t have a state of absolute rest doesn’t exist the ground state 
energy is here (Refer Slide Time: 01:13:19) at this point at half h cross omega and the 
first excited state is 3 h cross omega over 2 and then 5 half’s h cross omega over 2 and so 
on. They are equispaced energy levels all the way to infinity. Now our job is to find the 
Eigenstates n and then to explicitly represent these Eigenstates. I need to find the wave 
functions I have to go back and find phi n of x for each of these quantities. 
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(Refer Slide Time: 01:14:10 min)  
 

 
 
So let’s start by saying I have the ground state and I will normalize it. I will find its 
explicit representation later on but let’s say it is a normalized Eigenstate. Then I would 
like to find the first excited state. What is this equal to? It’s a dagger acting on this 
quantity. That’s what raises it up by 1. This corresponds to eigenvalue 1 of the number 
operator n, but I am not sure if it’s normalized or not. I need to normalize this. So I put 
some constant here. So it becomes constant times this quantity.  
 
In general, if I start with this Eigenstate n and I apply a dagger on it, it’s going to go to n 
+ 1. So in general, let’s write (n +1) as some constant which may depend on n a dagger 
on n. I raise with the a dagger and I lower with the a and I want this to be a normalized 
state. So the question is what is this cn equal to? Now what I would do is I take the bra 
vector on this side. So <n +1> <n +1> is 1, by construction all these Eigenstates are 
normalized, then this implies that mod cn whole squared n a a dagger on n is 1 because I 
take this (Refer Slide Time: 01:16:06) quantity and I take its bra. The bra of it is n bra 
and then an a on the left.  
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(Refer Slide Time: 01:16:33 min)  
 

 
 

Can I simplify this (Refer Slide Time: 01:16:31)? I don’t know a and what a dagger does 
on n. So i use the commutation relation which says a dagger - a dagger a = 1. I use the 
commutation relation here. So it says a dagger = (N +1) because a dagger a is the number 
operator and therefore this is n (N + 1) n but this is the Eigenstate of number operator 
with eigenvalue n. therefore this is equal to mod cn squared (n +1). And if I insist that 
should be equal to 1, then it immediately tells you that cn, apart from a phase factor is 1 
over square root n +1.  That guarantees that all my Eigenstates of the number operator are 
normalized.  I start by saying I have a set of normalized Eigenstates and now I am asking 
how do you go from one Eigenstate to another. By applying a dagger, you move upwards 
but there is a constant factor multiplying it. 
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(Refer Slide Time: 01:18:14 min)  
 

 
 

So it gives me the first piece of information. That’s how it raises preserving 
normalization in this fashion. 
 
(Refer Slide Time: 01:18:29 min)  
 

 
 

In exactly the same way, n - 1 is found by applying a on n here and there is some 
coefficient d n which I would liked to find out. Then if these states are normalized, (n - 1) 
is 1, this is mod dn squared and this is just a dagger a. I don’t even have to apply the 
commutation relation and this is equal to dn squared.  



 37 

So it gives you the other piece of information that this dn is root n. this is why when it hits 
zero, it stops. So a on zero is zero. There is no state - 1, so it’s completely consistent with 
that. So these are these are the pieces of information you need. Now let’s see what the 
wave function looks like. You put in all the x’s and p’s and things like that see what 
happens. 
 
(Refer Slide Time: 01:20:29 min)  
 

 
 

To avoid solving a second order differential equation, I simply choose this equation, a on 
zero is zero. But what’s a in terms of x and p? this is x divided by root 2 h cross over m 
omega + ip over root 2 m omega h cross, that operator acting on zero is zero. Can we get 
rid of some of these constants? This is root m omega by 2 h cross. so we can get rid of  x 
root m omega over 2 h cross and this 2 h cross so let’s just write m omega x. i would like 
to find out what the ground state wave function is. What’s phi zero of x? 
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(Refer Slide Time: 01:21:40 min)  
 

 
 

By definition, this is x zero by definition. That’s the representative in the position basis of 
the ground state vector zero. That’s the definition of ground state wave function in the 
position basis. So let’s take ket x on both sides. What is this (Refer Slide Time: 01:22:11) 
represented by? This is represented by - ih d by dx acting on x or zero. So this says - i +i 
cancels. So you get h cross d over dx phi zero of x. that’s this on that (Refer Slide Time: 
01:22:33) + m omega x. phi zero of x must be zero because this (Refer Slide Time: 
01:22:43) operator acting on this ket vector just gives you the label x. This is the equation 
that must be satisfied by the ground state wave function. And it’s a first order differential 
equation and they are trivial to solve.  
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 (Refer Slide Time: 01:23:05 min)  
 

 
 

It says phi 0 of x = some normalization constant, A 0. This is m omega over h cross (Refer 
Slide Time: 01:23:17) and this goes away. So you have got d phi over dx + constant 
times x phi = zero. What sort of solution is this? e to the power  minus the integral of this 
quantity (Refer Slide Time: 01:23:37) and that’s x squared over 2.  So it immediately 
says A 0 e to the power - m omega x squared over 2 h cross squared. That’s the solution. 
What kind of a function is that? It’s a Gaussian function since it has no nodes and it’s a 
bell shaped curve. That’s guaranteed to be the ground state wave function of this 
problem. It was completely painless since it did not involve second order equations. 
What’s A 0 and how do we find it? All we have to do is to normalize it.  
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(Refer Slide Time: 01:24:25 min)  
 

 
 

So phi zero of x norm squared dx, - infinity to infinity = A 0 squared I will choose the 
phase to be zero, so this is just A 0 squared. That’s a Gaussian and you know the integral 
of a Gaussian e to the power - Ax squared is square root of pi over A. so this is square 
root of pi over A. A in this case is m omega and then a 2 h cross squared and I want to 
normalize this. So A 0 = m omega over 2 pi h cross squared to power one quarter. 
  
(Refer Slide Time: 01:25:42 min)  
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So I put that in here (Refer Slide Time: 01:25:29) and I get m omega over 2 pi h cross 
squared to the power one quarter times this. That’s my ground state wave function. How 
do I find the first excited state without solving any differential equation? I use this 
relation here (Refer Slide Time: 01:26:37). So how should I use it?  
 
(Refer Slide Time: 01:26:43 min)  
 

 
 
 
I would like to find state one. This state is one over square root of 1 a dagger on state 
zero. The x representative of it is phi one of x and therefore I got to do this. This is 1 over 
root 1 x on this (Refer Slide Time: 01:27:24) quantity but this is x over square root 2 h 
cross over m omega - i p over root 2 m omega h cross on zero. but that’s same as square 
root of 2 h cross over m omega x on phi  0 of x because this is going to act on this and just 
produce a number and the rest is phi  0 of x which you already found out there.  And then 
i times - ih cross. So - h cross over root 2 m omega h cross d over dx on phi 0 of x. and 
we have phi 0 of x already. So all you got to do is to differentiate and that’s guaranteed to 
give the normalized Eigenfunction.  
 
So please notice I am not normalizing each of these separately. I already constructed that 
one over square root of one it took care of it automatically. So this (Refer Slide Time: 
01:29:13) Eigenstate is normalized. So it has got an added advantage that even the 
normalization of all these Eigenstates is done in one shot. What kind of function would it 
be? Well, x phi 0 of x has to be an odd function. We already saw it’s got to be an odd 
function. This is a Gaussian and that multiplied by x and this is the derivative of a 
Gaussian. So it’s again got an x outside. So it’s of the form x e to the power - x squared. 
What would its solution look like?  
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(Refer Slide Time: 01:29:45 min)  
 

 
 

So phi 0 of x looks like that (Refer Slide Time: 01:29:59) and phi 1 of x looks like that 
and similarly for phi 2 and so on. I will leave you to find out what phi n of x is. It’s a 
little painful to do this by differentiating and so on but the nth one is going to be an nth 
order polynomial.  
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And phi n of x is, apart from some normalization constant, it’s the Hermite polynomial x 
in these dimensionless units times this Gaussian. But this is the n th Hermit polynomial   
H 0 of x is 1, H 1 of x is 2 x and so on.  Next time I will mention a few properties of these 
polynomials. This is one of a family of orthogonal polynomials and those are the 
solutions to the harmonic oscillator problem. We will also see why this is so significant. 
They turn out to have very interesting connections. What would their Fourier transforms 
be?  
 
This problem is sort of symmetric in x and p. so you would expect the position space and 
momentum space Eigenfunctions to be exactly the same. So the Fourier transforms of 
these combinations are again Hermite polynomials times Gaussian’s in p. they look 
exactly the same in units of square root of 2 m omega h cross. This also has implications 
for Fourier transforms itself because it says that the harmonic oscillators Eigenfunctions, 
in a sense are the Eigenfunctions of the Fourier transform operator in function space. So 
it’s got close links with many other things and we will point out some of them.  Let me 
stop here.  
 


