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I could write down arbitrary Hamiltonians but there is no guarantee that this would 
actually represent a realizable physical system. Our approach rather has been to say that 
all the physical systems we know of are assumed to be Hamiltonian systems and then we 
try to model the physics of the systems by model Hamiltonians. So necessarily 
Hamiltonians are abstractions trying to approximate some reality. 
 
Now most physical systems have a lot of interaction with other physical systems and 
therefore one of the crucial and important points one has to find out is how to include 
these interactions in a reasonable manner and this is a nontrivial problem. So it’s a 
problem of modeling and then of course there is no guarantee that given a Hamiltonian, 
you can actually find the eigenvalues and eigenstates analytically. that’s a separate 
question and for that you have to solve the Schrödinger equation and as you know the 
number of solvable integrable classical mechanical problems is itself small and the 
number of integrable quantum mechanical problems is even smaller, it’s not immediately 
doable. Let me give you an instance of precisely this point. You know that if you took 
the1dimensional simple harmonic oscillator, it’s integrable. 
 
(Refer Slide Time: 00:02:35 min) 
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H (x) and p = p squared over 2 m + one/2 m omega squared x squared. That’s of course 
integrable classically. Quantum mechanically we will solve this problem and show that 
its energy levels are actually computable analytically. But if you add to this, some lambda 
x to the power four for instance; make it an anharmonic oscillator with some positive 
constant lambda, and then classically the problem is integrable. This is because 
every1degree of freedom of system is actually integrable. The Hamiltonian = constant e 
is in fact this equation to the phase curves in the phase trajectories. But quantum 
mechanically this problem is not solvable in closed form. You can’t find the energy 
levels of this system exactly. You can of course find them to arbitrary accuracy by good 
perturbation methods but you can’t find them exactly. So in fact you see that quantum 
mechanics in that sense is more difficult than classical mechanics. Even the few 
integrable problems in classical mechanics are not necessarily integrable in quantum 
mechanics.  
 
It’s immediately related to the non-commutativity of x and p. that’s what makes it 
immediately more difficult to solve. So we talked a little yesterday about the problem of a 
particle in a box and then in 2 dimensions and then in 3 dimensions and so on. It gets 
progressively harder to impose these boundary conditions as the shape of the box 
becomes more and more complicated. But1important lesson we learnt was that the 
movement you go to higher dimensions, it’s possible to have degeneracies in the 
spectrum. It may not always be the case, like we saw in the case of a rectangular box in 
which the ratio of the lengths of 2 sides is incommensurate but under suitable conditions, 
if there is suitable symmetry in the problem then the levels can become degenerate. so the 
lesson I want you to remember right now is symmetry implies degeneracy in quantum 
mechanics. And we will exploit this fact as we go along and see how what important and 
how important a role it plays. 
 
One aspect I want to mention right now and which we will return to later on has to do 
with nature of symmetry in quantum mechanics as opposed to symmetry in classical 
mechanics. It’s a very profound implication but let me mention this right now and then 
we will return to this when we do 3 dimension problems. Let me do this by the way of a 
simple example. In classical mechanics, if you look at a particle executing a circular orbit 
around an attracting center, you have a situation where the hydrogen atom for example of 
the Kepler problem. 
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You have a particle going around in an orbit in this (Refer Slide Time: 05:48) fashion. 
Let’s assume for simplicity it’s a circular orbit. Then we know that the angular 
momentum of this particle is constant under one over r four or any central force and we 
also know that the angular momentum is not 0 because it’s = m v times the distance in 
magnitude and that’s certainly not = 0. On the other hand when you do the Bohr's theory 
of the electron in a hydrogen, you’re advised that the angular momentum mvr is nh. 
 
(Refer Slide Time: 00:06:one9 min) 
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This is one of the equations you write down in the Bohr’s theory saying the magnitude of 
the angular momentum in an orbit is an integer multiple of Planck’s constant. That is the 
first input. And the next input is to say that the force is an electrostatic force. so you write 
down the centripetal acceleration which is mv squared over r. this is the magnitude of the 
inward acceleration due to the circular motion and this is = the centripetal force, the 
attractive force due to the nucleus. That’s = e squared or z e squared over r squared. Then 
you take these 2 equations and we eliminate and find v and r. this is how you normally do 
the Bohr atom. After that you write n = one, 2, 3, etc and you discover En is quantized 
and is proportional to 1 over n squared. 
 
And if you use the fact that when the electron and proton infinity separated the energy is 
0 the potential energy is 0, then bound state energies are all negative and they are labeled 
according to n and it’s an infinite sequence of such bound state energies. This much we 
know from the Bohr’s theory. And the values of n are 1, 2, 3, 4, etc. but there is a little bit 
of cheating that’s being done here. 
 
This n comes about by quantizing the orbital angular momentum. mvr is the orbital 
angular momentum but we also know that when we solve the Schrödinger equation, the 
ground state of the system has n = one, also called 1S state has l = 0 and m= 0. This m is 
a magnetic quantum number. The ground state is spherically symmetric. The wave 
function in fact can be written as phi 100 (r theta phi) in spherical polar coordinates is 
proportional to e to the - r over a 0; a0 is the Bohr radius and there is no angular 
dependence. The ground state is spherically symmetrical but the orbital angular 
momentum is 0. How does that tally with this fact that this electron as suppose to be 
going around in a Bohr orbit in which case it’s angular momentum is distinctly not 0. 
 
How do these pictures match? Forget this spin. This is independent of this spin of the 
electron. we see the difficulty of the problem is, classically if you have a particle orbiting 
at a distance a 0 from the center, the angular momentum is not 0. Quantum mechanically, 
the correct ground state energy E is proportional to -1 in Rydberg units, the ground state 
is characterized by principle quantum number, 1 orbital angular momentum 0 and 
therefore the projection quantum number 0. But l = 0 implies that the angular momentum 
is actually 0. Now how could it possibly be 0 when it’s orbiting at a distance a0?  
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Of course you would say the answer it’s not orbiting at a distance a 0. there is only a 
probability density or probability amplitude and indeed the angular momentum is not an  
eccentric trajectory and if I plot the probability that electron is at a distance r between r 
and (r  + dr) from the nucleus what’s that = in the ground state what’s that = that’s the 
probability density. So you must find it from the wave function. So this is = mod phi10 0 
of r. let me drop the theta and phi because there is no theta phi dependence. If this were 
true, apart from some constant, this will be e to the - 2 r over a 0 dr and we I sketch this as 
a function of p (r) versus r, this is a damped exponential. So it says, in fact that the 
probability of finding the electron at the nucleus is much larger than that of finding it 
anywhere else. There is an r squared as well.  
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So we have to argue is that the actual probability is the wave function of this electron in 
this state as a function of r mod squared dV. This is the probability of finding the electron 
in any volume element dV. and now if you say the probability of finding it at a distance r, 
you must integrated over the angles but this dV has its r squared dr d omega, where d 
omega is the solid angle element and when we integrate over d omega, you get a famous 
four pi factor.  
 
(Refer Slide Time: 00:one2:50 min) 
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And once you put that in, there is an extra r squared factor and this whole thing changes. 
This is no longer the probability density. The right one is with an r squared. this r square 
is an increasing function of r and e to the - 2 r is a decreasing function of r. the product of 
a 2 of course will be something which is parabolic there and then dies down 
exponentially. And it’s not hard to check that this is near a0. So the maximum radial 
probability density peaks at r 0. So the probability of finding this electron in a small 
interval about a 0 is much larger than that of finding it in an interval dr anywhere else. 
That’s certainly true.  Still it doesn’t answer this question of how does the angular 
momentum become 0. Because, classically, the angular momentum can be zero only if 
the electron passes through the origin. You know if this goes back and forth, then it is 
passing through the origin and the distance of closest approach is 0 and therefore the 
angular momentum is 0 about that point. But if it’s most of the time at a distance a 0 and 
is orbiting around, the angular momentum can’t be 0. And yet you are told that is the 
exact solution. It says the angular momentum is 0 but it matches in all other ways. The 
energy level is actually right; whatever we get from the Bohr Theory is actually right. 
The conclusion that the electron is exactly at a0 distance is wrong but it’s predominantly 
at a 0 distance.  
 
How is it that an electron which is predominantly at a distance a0 has 0 angular 
momentum? Well, you shouldn’t think of it as going through a trajectory. That’s the first 
mistake. Quantum mechanically the particle doesn’t have a trajectory at all. If you did, 
then you know its position and momentum instantaneously. But in spite of that how is it 
that you end up with a 0 angular momentum, quantum mechanically? What fixes the 
direction of the angular momentum classically? The initial conditions fix the plane in 
which the particle moves. Once you tell me r 0 and p 0, r cross p is constant and it fixes it. 
So classically, the symmetry of this central force implies that any initial condition that 
you impose will forever fix the direction of the orbit. That’s what conservation of angular 
momentum means. And what does rotational symmetry physically mean? It means that if 
an orbit is permitted in this plane, it is permitted in the other planes as well because these 
planes are all related to each other by a rotation of the coordinate axis. What you call the 
xy plane, I may call the yz plane because I simply chose another coordinate system. The 
physics doesn’t change between yours and mine. 
 
Classically different solutions which differ in the direction of the angular momentum are 
related by rotation transformations. You can go from my solution with says that it’s 
orbiting in the xy plane to his solution which says it’s orbiting in the yz plane by a 
rotation of the coordinate axis. So the group of transformations under which the 
Hamiltonian is in variant namely the rotation group each element of that group of 
rotations takes you from one possible solution to another possible solution. What you call 
initial position momentum I would call it slightly differently in my coordinate system. 
But the 2 of us are related by a coordinate transformation. Once you fix a coordinate 
system and once you specify the initial conditions the orbit is fixed. This is the meaning 
of symmetry in classical mechanics. 
 



 8 

Now quantum mechanics however says super position is valid. Therefore any solution is 
a super position of all possible solutions. That’s the crucial role of symmetry in quantum 
mechanics. It says if 2 solutions are related to each other by a symmetry transformation 
the general solution is a super position of these 2 solutions. You don’t have to superpose 
it nature superposes. And then of course it is easy to see if you took this orbit and put it in 
all possible planes and added up all the angular momentum, the net angular momentum 
be 0. 
 
So that’s the reason why in quantum mechanics, you can still sustain a 0 angular 
momentum solution even though the electron has overwhelming probability to be at a 
non-zero distance from the origin. This is the very profound and deep aspect of symmetry 
in quantum mechanics. It is totally different from what you in classical mechanics and 
that’s the power of the super position principle. If you have understood that then a great 
deal of understanding is gained on what symmetry really does in quantum mechanics. So 
you can see that symmetry in quantum mechanics is actually much more powerful 
statement than it is in classical mechanics because of this possibility of super position.  
 
So we will exploit this now. We shouldn’t use the word most of the time because there is 
no time involved here. These are stationary states. So I would say it’s the most probable 
value. This is now leading as in very deep orders about quantum ergodicity. So there is 
no concept of a phase space and a point in phase space in quantum physics. So this 
question of is it ergodic in this sense is not a very meaningful one. 
 
The time dependence of these states is just an exponential in time. Just sinusoidal 
completely. So that varies but that’s not going to affect probability densities because it’s 
a pure phase factor. So when you take mod psi squared, the time dependence goes off 
completely. So it’s not as if probabilities are changing in time. we will look at examples 
where we have an atom in 2 possible states and is flipping between the up state and the 
down state or a spin flipping between up and down, then the probabilities could change in 
a time dependent way. And that is indeed what happens in real physical systems.  
 
Now that we did the particle in a box, let’s get our hand in by doing one more problem 
and then we will go on to a harmonic oscillator. And this is the problem of a particle in a 
potential. We looked at it as a free particle inside a box but now let’s put in a potential 
and see what happens. 
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(Refer Slide Time:  21:27 min) 
 

 
 
Now one way of doing this is to say there is a box of size L and it’s got infinite potential 
here. So this really like saying there is an infinite barrier on this side and infinite barrier 
on this side and the particle is inside this box because I put V to be infinite outside and 0 
inside. So the infinite well its deep inside this well. One could ask what about the 
problem of a particle inside a finite well. So that’s my potential. If I draw the potential 
energy V (x) and is 0 here and L here (Refer Slide Time: 22:06) and it is 0 outside this 
distance L and it’s a - V 0 in the particles inside (Refer Slide Time: 22:15). if V 0 tends to 
infinity, then of course I have the problem of a particle in a box. And the question asked 
is what the energy levels of this particle are. Now it will turn out that the ground state 
which earlier was strictly like this (Refer Slide Time: 22:33) from 0 to L and then 
vanished at the end can no longer be so.  
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And that is immediately clear because if you recall our equation, it was of the form phi 
double prime + kn squared phi - V (x) phi = 0. This kn here was proportional to the 
energy at these points there is a finite discontinuity in the potential. So this term has a 
finite discontinuity. Phi itself is continuous but V of x is a finite discontinuity that was we 
cancelled by the finite discontinuity here. So the second derivative has a finite 
discontinuity. For the first derivative, what do you think would happen at the ends? It’s 
certainly not a delta function. It is not infinite like it was earlier. so this is going to be 
much milder and is not hard to see that in this problem, the wave function will in fact 
spill over because remember we have to solve the problem from - infinity to infinity. in 
this problem, the wave functions spill over and has something like that (Refer Slide 
Time: 24:10). So there is a finite probability for the particle to actually tunnel into the 
other region but not very far.  
 
It would damp out. Let’s simplify this problem and solve an even simpler problem.  That 
is, I assume that the width of this well goes to 0 and that simultaneously the depth goes to 
infinity such that product is finite. What would we get in the limit? We would get a delta 
function and I would like to have a bound state. I would like to see if the potential can 
attract this particle and retain it in a localized form. So let’s assume that this is a negative 
delta function. If its positive, it’s a repulsive barrier. Then of course there is no possibility 
of any bound states.  So let us do that problem and see what happens. 
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(Refer Slide Time:  25:11 min) 
 

 
 

It’s an attractive delta function attractive potential. Now without further ado, let’s just 
write down the Schrödinger equation for this particle. - h cross squared over 2 m phi 
double prime (x)   + V of x phi of x = E phi of x. this is the time independent Schrödinger 
equation and I am trying to find out if their eigen values e and non trivial eigen functions 
phi for which this equation is satisfied.  
 
(Refer Slide Time: 00:25:51 min)  
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Let’s put the delta function to be anywhere on the axis it doesn’t matter since it’s an 
infinite axis. Let’s just put it at x = 0.  So V of x = - lambda delta (x); lambda greater than 
0. 
 
(Refer Slide Time: 00:26:07 min)  
 

 
 

What are the physical dimensions of lambda? Well, this is potential energy. So it is equal 
to ML squared. That’s T to the – 2 and that’s energy but this delta function has 
dimensions 1 over length. So when I take it to the other side, its ML cubed. So this is the 
problem we are going to solve. By the by if there is nontrivial E; we are trying to find out 
if there is one or more eigenvalues, what can it depend?  
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(Refer Slide Time: 00:27:12 min) 
 

 
 
It could depend on lambda, m and Planck's constant. It cannot depend on the length scale 
in the problem because it has 0 widths. This problem has a potential which looks like this 
(Refer Slide Time: 27:47). At 0, there is a negative delta function. so it must depend on 
lambda, h cross and m. can you find a quantity of physical dimensions energy with 
respect with these 3 quantities? If you can’t, then the problem is a non-starter. It’s 
reasonable to expect that the answer would be proportional to lambda. The deeper it is, 
the deeper the energy would be. But there is a - 2 there and you got to cancel the T’s. So 
what should I get? 
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(Refer Slide Time: 00:29:12 min) 
 

 
 

So E is proportional to m lambda squared over h cross squared. That’s the first guess. 
Clearly when lambda goes to 0, there can’t be a bound state. So it must in the numerator. 
So armed with that, lets try to solve the problem here. Now the way to do this is it is a 
delta function out here. So it’s obvious that you must try to solve it by first looking at 
what happens when x is not 0 and then asking what happens at the boundary when x = 0. 
 
(Refer Slide Time: 00:30:38 min) 
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So for x greater than 0, it says phi double prime of x = 2 mE over h cross square phi with 
a minus sign. Now please notice that the energy levels must be negative. If it’s positive, 
there is no potential at all. It’s a scattering solution. So E must be negative if it’s a bound 
state energy because it’s relative to what happens at infinite distance when there is 0 
potential. So let’s write this as 2 m modulus E and put a plus sign. So the equation is phi 
double prime x - k squared phi = 0 where k = 2 m mod E over h cross squared the whole 
half. That’s the first equation. What are the solutions? 
 
(Refer Slide Time: 00:32:04 min) 
 

 
 

So for x greater than 0, the solutions are phi of x = A e to the kx + B e to the – kx. Now 
you want this to be a normalizable solution. Therefore mod squared of phi must be finite. 
phi must go to 0 as k tends as x tends to  + infinity. Therefore this (Refer Slide Time: 
32:36) is not permitted because it’s not normalizable. The solution therefore is of this 
(Refer Slide Time: 32:44) form. Notice we put in the condition of normalizablility. The 
boundary condition at infinity has been put in. and for x less than 0 what is the solution? 
Again the delta function vanishes. So it’s a same equation has before except its = Ce to 
the kx + D e to the – kx. 
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(Refer Slide Time: 00:33:11 min) 
 

 
 

You want normalizability and time x tends to – infinity. So D must be 0 so this (Refer 
Slide Time: 33:41) is the solution. So that is for x less than 0 and you want the wave 
function to be continuous at the origin. So this implies that B = C. 
 
(Refer Slide Time: 00:33:43 min)  
 

 
 

So continuity implies that as you come from the left and as you go the right, these (Refer 
Slide Time: 34:02) two must be the same. B and k are unknown here. If you know k then 
you found what energy is possible. What is the shape of the wave function? It’s the 
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double exponential. So if I plot the shape of the wave function, assuming that B is real, it 
something like this and something like this (Refer Slide Time: 34:41). There is a slope 
differences cusp at the origin but it’s continuous. Now because there is a cusp at the 
origin the slopes are different. Phi prime of x is a discontinuity at the origin. Therefore 
phi double prime has an infinite discontinuity. And indeed it does because phi double 
prime has a delta function sitting there at the origin. so it becomes worse and this is a real 
discontinuity. Now how would I find B? I just say the whole of mod phi squared from - 
infinity to infinity should be equal to 1. That fixes B in terms of k.  How do I find k?  I 
haven’t put in the information of the potential at all. How do I do that? So that’s my 
solution and let’s write the Schrodinger equation down properly.  
 
(Refer Slide Time: 00:35:49 min) 
 

 
 
It’s phi double prime of x - 2 m lambda by h cross squared delta of x phi of x is = - 2 m E 
by h cross squared phi of x, that is k squared phi of x. that is the equation and we solved 
it for x less than 0 and x greater than 0 in which case for delta of x didn’t play any role at 
all. Now I need to find what this discontinuity of the slope is. So I would integrate on 
both sides. Well, if I integrate from - infinity to infinity, I am not going to focus on what 
happens at the origin. We are not going to get anything. So we would integrate from 
some - epsilon to + epsilon. I integrate on both sides and then let epsilon go to 0. So 
integrate - epsilon to epsilon dx on both sides of the equation and then let epsilon go to 0. 
What does this (Refer Slide Time: 37:13) give you? Well, it is second derivative. So 
when I integrate I get the first derivative at epsilon and then – epsilon. so this says d phi 
over dx x tends to 0  +; from the positive side when I let epsilon go to 0, - d phi over dx, 
x tends to 0 -. So what we are doing is finding this slope and this (Refer Slide Time: 
37:47) slope and taking the difference of the 2 slopes. And - 2 m lambda by h cross 
squared.  
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What does this (Refer Slide Time: 37:58) give you? It would be phi 0 and that’s a finite 
number. In fact phi of 0 is B and that is equal to 0 because it’s the area under the curve 
and is finite as epsilon goes to 0. and what is this number d phi over dx as x goes to 0? 
All you have to do is solve, take the slope here and put x = 0. That’s - kB and then 
subtract from another kB. So you get - 2 kB. That is the equation. B is not 0 because if it 
were 0, there would be no wave function at all. The 2 goes away and you get k = m 
lambda over h cross squared.  
 
(Refer Slide Time: 00:40:52 min) 
 

 
 

So k squared = 2 m mod E by h cross squared = m squared lambda squared by h cross to 
the four.  This implies mod E = - m lambda squared over 2 h cross squared. And there is a 
single bound state. Its energy is given as we expected from the dimension arguments. So 
the only new thing is that the exact answer was half of this combination m lambda 
squared over h cross squared. And this tells you that no matter how small lambda is, this 
system supports a bound state which is normalizable. The wave function dies 
exponentially fast as you away to x from + or - infinity and that’s the single bound state 
that you have. when you have a finite well, then more bound states could happen and 
depending on the product of the range of this potential a times the depth V 0, there is a 
combination V 0 a squared; the quantity of dimensions V 0 a squared which plays a 
fundamental role, you get one or more bound states of course if you put the particle in a 
finite. Then you have an infinite number of bound states of some finite width. 
 
So its clear that as the depth goes higher and, higher more and more bound states get 
supported. and they are always scattering states but we would be not concerned with that 
at the moment. I want to you notice that even a single delta function where the potential 
goes to - infinity and that supports a bound state. What would happen if you had 2 delta 
functions?  
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(Refer Slide Time: 00:42:39 min)  
 

 
 

So let’s suppose you have a, this is origin and you have a delta function here and a 
symmetric delta function here (Refer Slide Time: 42:45). So V of x = - lambda delta of (x 
– a) + delta of (x + a). What you think would happen? How would how would 
superposition work in this case origin?  The reason I do this is because it teaches us 
something very deep about quantum mechanical energy levels. So imagine what would 
happen if you took one potential very far to the left the other one very far to the right. 
Each of them would have a bound state of some kind.  So the wave function would look 
like this (Refer Slide Time: 44:04).  Both these energy levels would be degenerate. So 
this is an energy level here (Refer Slide Time: 44:12) and an energy here and they have 
exactly the same values. it was found to be - m lambda squared over 2 h cross squared. 
Now you bring both the wave functions closer. Tunneling is possible here. These wave 
functions would overlap and what would the situation be? Let’s look at it in terms of 
vector spaces. If you have 2 independent states which are not connected to each other, 
then the Hamiltonian in this 2 dimensional vector space would really look like this. 
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(Refer Slide Time: 00:44:55 min) 
 

 
 

There would be an E, 0 and a 0; E. this is what the Hamiltonian would look like in that 
vector space. Now I switch on a coupling between the two because the particle is free to 
move from one potential well to the other. That would correspond to adding a little piece 
here (Refer Slide Time: 45:19) and a little piece there. 
 
(Refer Slide Time: 00:45:16 min) 
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This is what the Hamiltonian looks like now. What happens when you diagonalized this 
Hamiltonian? it is just the eigenvalues of this Hamiltonian. That would be + or – epsilon. 
so it will turn out that in the 2 energy levels, one is slightly greater than E and the other is 
slightly less than E. so if you have 2 states sitting on top of each other, doubly degenerate 
and you switch on a coupling between the two, then what the system does automatically 
is split this degeneracy and go to an excited state and a ground state. That’s E + epsilon 
and E – epsilon. That’s what would happen here (Refer Slide Time: 46:26) because now 
you would solve the problem by imposing boundary conditions.  
 
You would say its 0 on this (Refer Slide Time: 46:31) and 0 on the other side. so the 
solution on the left is e to the + Kappa x and the solution on the other side is e to the - 
Kappa x. the solution at the centre is a superposition of both because you can’t rule out 
one or other exponential. Then you match both the wave functions and find their 
discontinuities. So you start by saying the solution on the left is A e to the Kappa x, B e 
to the - Kappa x + C e to the Kappa x at the centre and is D e to the - kappa x in this 
region on the right. you equate the values out here at x = - a and you equate the values out 
here at x equal  + a. that gives you one condition between B, C and D. on the other you 
get one condition between A, B and C. then you find the discontinuity here (Refer Slide 
Time: 47:38) and the discontinuity there. 
 
That gives you another set of equations between these unknowns. So you have four of 
these equations and a normalization condition. So we have five equations but now four 
equations are enough to determine four constants of integration but you also need to 
know what Kappa is. And that would fix the normalization constant. So there is just 
enough information to tell you what the possible values are and in accordance with that, it 
will turn out that you have 2 possible solutions or energy levels, one of which is lower 
and the other is higher. Now bring these wave functions closer and what would the wave 
function look like? Not surprisingly one wave function would look like this (Refer Slide 
Time: 48:48) and the other wave function would that look like that. One of them would 
be symmetric and the other would be anti-symmetric. Which do you think is going to be 
the symmetric solution and the anti symmetric solution?  
 
The lower one is going to be symmetric because it costs more energy and you don’t have 
a node here. In the anti symmetric one, there is a change of curvature and this is a node 
here. Therefore in the Schrödinger equation; remember this is a second derivative term 
the larger that is the more change of curvature there is, so that is going to contribute to 
the energy on the right hand side.  Phi double prime + potential on phi is = the energy on 
phi. So roughly speaking when this phi double prime term becomes larger and contributes 
more definitely, you are going to get a larger energy.  
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So, the symmetric nodeless one is going to be the ground state and the one with the node 
going to be the excited state. You could do for an infinite array of delta function 
potentials. Remember by Fourier analysis, an infinite array of delta function potentials is 
equal to an infinity array of exponentials and that problem is called the Dirac Comb. And 
it’s of great interest because we would like to find out either if there are potential dwells 
or barriers and the transmission coefficient. If I put in a beam of particles there, the 
amount of particles transmitted and reflected is given by the transmission coefficient. It’s 
called the Dirac Comb and I will put that down as one of the problems you have to solve.  
 
But in this lesson, we have learnt that the perturbation would lift degeneracy and it’s a 
very general one and this is also a very important phenomenon because typically, a 
perturbation would lift degeneracies, in sense that crossing energy levels repel each other. 
This is called level repulsion and that is really what happens there (Refer Slide Time: 
51:20). It’s a very basic phenomenon and it’s responsible for many things including the 
formation of forbidden gaps in energy bands in solids. And that’s because of level 
repulsion ultimately. 
 
Now that we have done two of these problems, I think I should stop here today. We are 
now ready to go on to solving the most important one of them which is the simple 
harmonic oscillator. But we wouldn’t do this by solving differential equations because it 
involves special functions and it will indicate the solution. But I will show you a much 
cleverer method due to Dirac called the operator method which helps you to find 
eigenvalues and eigenfunctions without solving the Dirac second order differential 
equation. But it’s completely equivalent. 
Thank you! 
 


