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Today, we start looking at some of the numerical methods. So far, we have been looking
at the programing part, and the representation of data on the computer floating point, and
the errors due to that. So to summarize, we so far looked at some elements of C
programing, and how do a floating point number represented by a finite number of digits
in a computer, and what are the errors which come because of finiteness of the floating
point, and also the round-off, and how those errors propagate in a calculation which
involves a series of mathematical operations. And also, what are the, how to identify the
sensitive steps in the series of operations.

These are the things we looked at. The next part of this course we would look at some of
the techniques of numerical programing, the numerical methods, the methods which are
commonly used in scientific programing. So, one of the topics is interpolation. That is
what we start today. So we start today with interpolation. So interpolation of data. So that
is what we will be looking at in today’s lecture: when do we use interpolation and where
do we use it. So, suppose we have a set of n discrete points, x of i and y of i, which I have
represented here, and it is required to find the value y at a point between x of i and x of i
plus 1.

Let us say we have, because of some numerical calculation or simulation or some
experiment which is done, we have a set of data points as a function of some variable. So
we had some set of data points which I have represented like that.
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It could be a measurement of temperature as a function of time, or any other property, or
it could be output from a simulation. In this case, we have a discrete set of data points,
and you want to find out what is the value of this function, is at some point in between,
which is here represent by this dot. So in those cases we need to have a function, a curve
which goes through all these points, and it approximates the value here.

So this is, we are talking about a method of approximating some values, a function. So
that is what | have represented here. These points are given by i noted here as x of i and y
of i, i notes the set of discrete points. So y of i is my function f of x. So x of i are a set of
discrete points, and y of i is a function value, and you want it between any two points, i
and i plus 1, some value, x. And | want to find out what is the functional value of y at that
point is?
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Where do we use Interpolation?
Suppose we have a set of n discrete polnts
fofih, rithh and it is required to find the value » at a
point bil.'n:ﬂﬂ vigh and v+l .

One way to do this is to construct an v/ th order

polynomial which passes through all these points
and then evaluate the polynomial at the « we wanl.

Given % points it is possible to find the umigue
polynomial of order (V-/} going through these
points,

We will then call this polynomial and the
“interpolating polynomial™,

So one way to do that is to say that there is a polynomial p, of X. So we can say a
polynomial p, of x which passes through all these points, it takes values pn of x; is equal
to yi. So this is what we have put in here.

So we have this function y; as f of x;. So we have y; as f of x;, and if you can construct a
polynomial which takes in values y; at a set of points, x; at the discrete points, X;, and then
that is a good approximation to this curve. That is one way of doing it, and then once we
have the polynomial given to us of order n, given this n points, then we could, order n
minus 1. So if you give n points, you have an order, n minus 1, and then we could
evaluate the function value at any point, X, in between. That is one way of doing this, and
we all know this given n points it is possible to find a unique polynomial of order n minus
1, which is going through these points.

So, given n points it is possible to find a unique polynomial of order n minus 1 which
goes through all these points. So we call this polynomial as the interpolating polynomial.



So that is the notation we are going to use. We are going to use, say, that the points are
the discrete points are given by x;, and the functional value is given by y; or f i, and the
polynomial of order n would be given by p, of x. That is a polynomial of order n. So this
polynomial is called the interpolating polynomial, and in today’s lecture we will try to
find out how to construct this polynomial. This is a unique polynomial, i agree, but there
are many representations of this. So how do we construct this polynomial and what are
the approximations involved?
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That is what we would try to find out today. So here is a plot which shows a set of data
points, and then | am drawing two curves here just to show you the difference between
what do we mean by interpolation, or interpolating polynomial, and what is the difference
between an interpolation polynomial and a fit. So here are two curves. As we just saw,
this is the set of data points which we obtained from simulation, or from experiments, and
we have one curve which goes through the, a red curve which goes through, which goes
in between these points, and then we have another curve which goes through all of these
points. So the curve which goes through all of this here, this black one, is my
interpolating polynomial, while this curve, the red curve, is a data fit. It is a fit to that
thing.

By this, I want to show you the difference between these two curves. So, here is a 17th
order polynomial which goes through that, and here is a fit to this data by a function f of
x equal to 1 by x plus a. That is the difference. So the difference between data fit and
interpolating polynomial should be clear from this particular plot. Also keep in mind that
even though this data goes through all these points it is still an approximation. It is not the
exact function, f, which we are getting by doing this fit. It is still an approximation to the
data. So that is what | showed you before, that is, the red curve which we showed before
is an approximation, is a fit to this curve 1 over x plus a, but while the other curve was,
which goes through all the points, was a polynomial. But remember that the interpolating



polynomial is still an approximation to the actual function, f of x, which produced those
data points.
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The distinction between interpolation and
“fit” is clear from the above figure.

The red curve is a fit to a function

Iix)
(x+a)
While the black curve is an interpolating
polynomial.

But remember that the interpolating
polynomial is still an approximation to the
“correct function  F fx)" which proeduced the

points (=i, wil.

It is not the function; it is an approximation to the function. So as I said, there is a unique
polynomial of order n minus 1 if you are given n points. If you know the function value
at n points, we have a unique polynomial of order n minus 1, but there are many ways of
getting this polynomial, or many ways of representing this polynomial.
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Polynomial Form

A simple and in most of the cases easy way to
find an interpolating function is to find a
Polynomial that goes through all the points.

i there are  points then there s a unigue
polynomial of order (-7 that goes through all
the points.

But this unique polynomial can be represented
in many different ways.




So that is what you would go through now, and then we would look at some methods in
which it is easiest to construct the polynomial. Instead of going through all the methods
of constructing the polynomial we will just look at one or two methods where it is easy,
programing-wise, to construct this polynomial.
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Let us start by writing the polynomial
approximation Fiv) to & function /i) in the
form of

P(x)=a,+ax+a,x" +..+a x .

The coefficients ”,-‘-"'r j = #t.n ) can be
determined by equating Mx )= fix )

Though simple this form is not always useful
mainly because , the loss of significant digits
can be high in this form. This is clearly
demonstrated in the following example.

So here is an approximation to a polynomial of order n here. So we have said that a
polynomial p of x which fits in the function values at f of “x;” functional value of “x ™'

So here is a polynomial of that which | have written down here. So p of x is ao plus a; x
plus a; x square up to a, x to the power of n, so nth order polynomial. These coefficients
then, we have a condition that this p of x should match the function value, or the
measured function value, or the functional values. We have these functional values, this
pn Of X should satisfy these functional values, or it should satisfy this relation that p, of x;
is equal to y of i. We should satisfy this condition, and that will allow us to determine
these coefficients, ag, a, az, a 3, up to a,. That is the method we would use. And so we
could equate p of x; to “y” of i and y of x; or f of x;, and then we could say, we could
determine these coefficients, ap here.

So we will have, since we have n plus 1 function values, and we have n plus 1 equations.

We are equating that, and we have n plus 1 coefficients to determine, so we can
determine that. So the problem is that even though it looks simple when | say this, that
you know you have n plus 1 equations, and you have n plus 1 unknowns, and you can
simply determine this n plus 1 coefficients from this set of equations, but it is not always
trivial, because we will see that we have tried to compute these coefficients. We have loss
of significant digits, and because of that, these approximate, this polynomial can be very
errorless. That is what we would see in the, we will try to see through an example.



So here is an example. So we have a function, and we have just 2 values. The functional
values are given at x equal to 6000 as 1 by 3. | have chosen this thing because we know
that this number is particularly to represent in a finite digit floating point representation,
and f of 6001 as minus 2 by 3. So we have f of 6000 as 1 by 3, and f of 6001 as minus 2
by 3, and we want to approximate this function. So there are two points. So we have a
polynomial of order 1 that it is a straight line, and you want to approximate this curve by
an interpolating polynomial of the form ag plus a; x. So we have p of x as “ay”, plus “a;”
x as our polynomial.
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Example:

Considar a function v which takes values
A= 15 and JTiHE = - 208

i we approximate this function by a polynomial of
the form

P(x)=a,+a,x

then in five-decimal-digit floating point arithmetic
we will obtain /o= .

Now we try to determine the values of that. So how do we do this? We say, that p of
6000. So we would say we have this polynomial now as p of x is equal to ao plus al x.
And we have the value as x equal to 6000. We had f of x equal to 1 by 3.We know that,
and then we will substitute that here. So we will say 1 by 3 is equal to “ay” plus “a;” into
6000, and then we have f of 6001 as minus 2 by 3 here. We have f of 6001 as minus 2 by
3.50 we will put that in here and we will say, f minus 2 by 3 is “ay” plus “a;” into
6001.That is what the 2 equations which we would have.

So now, we have to compute “ay” and “a;” from this which is trivial, and we will do that,
and then we would get the approximation of the polynomial as written there as p of x is
equal to 6000.3 minus x. That is the value which you would get. “a0” 6000.3 minus X.
Now let us see what happens if you, | said we have used the condition that p of x is equal
to f of x, and then computed “a,” and “a;”, and we got the polynomial, and we would
expect p of x would be equal to f of x when we substitute any of the x values into this
polynomial. That is what we try, we expect.
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Example:

Consider a function /(v which takes values
A= 105 and AT eME] = - 205

i we approximate this function by a polynomial of
th form
P(x)=a,+ax

then in five-decimal-digit floating point arithmetic
we will abtain /' foj-d0i J.x

That ks Pyotam=a § e Paec] =<4 7, which means a
lass of lour decimal digits [

It is not so difficult to understand why this is so.

When we do that, what we find is that in a 5 decimal digit floating point arithmetic we
would get p of 6000 as 0.3, and p of 6001 as minus “0.7”.So, which means the loss of4
decimal digits which is not something which you would be happy with.

So that is, so this is an example to show that even though such a method of equating a
polynomial straight away into the measured function values, and evaluating the
coefficients from that, will not always lead to correct polynomial, because of the error in
the representation of the floating point numbers, or in the representation of real numbers
in a finite number of digit floating point representation. So that is what we see. So there



are better methods of doing this. So one method to do that is, to use a Taylor series
evaluation. As we go on the course, we will see many times, we will use this particular
series called Taylor series, so | thought may be a good thing to spend a few minutes. | am
just trying to understand what the Taylor series is.

So given a function f of x and it is derivative, we set that point, and if the function is a
smooth differentiable function, and then given that function and it is derivatives, or it is
differentiable at many points, and then at a particular point x equal to c, if you have all
the derivatives, then evaluate. We can evaluate the function near the point x equal to X,
or x equal to c, or say any point x equal to Xo, or x equal to ¢ by expansion around that.
So here, | am showing that this function f of x is being expanded around c to another
point X to get its value at Xo.
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Polynomial approximation as Taylor series

Glven the function value /o and its derivatives
Sx) at o=, we can evaluate the function at near

a point -, by the Taylor series
.Jr.l:'."-u]: f.{(l.i'*‘_f.'j"[r‘-'ﬂ. L {'TII _{“'

o I R o L ¥
+'f {‘”1 e (X% —C) o

1
s

Let us look at this Taylor series a little more in detail. That is what a Taylor theorem says.
If a function, f, and it is first n plus 1 derivatives are continuous, and on an interval
containing “a” and “x”, then the value of the function at x can be determined by, from the
value of the function at “a”, by this series.

That is what we have used there. What we are using here is the value of the function at a.
And f prime of a, as we saw in earlier lectures, is a derivative of a with respect to x
evaluated at x equal to a, multiplied by x minus a, and in the second derivative divided by
2 factorial times x minus “a” whole square, and all the way up to the nth order derivative
with respect to x evaluated at “a” divided by n factorial into x minus “a” to the power n,
and then there is some remainder in this series.
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Taylor's theorem

if the function / and its first »+/ derivatives are
continuous on an interval containing « and «, then
the value of the tunction at « is given by
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This k% called Taylor's serbes

So we can see that the remainder of this series is given by a function of this form. That is
basically if you do a Taylor series expansion, and we always, because we cut it off at
some order n, we have some error, and that is what is given by this x minus f power n
divided by n factorial, into the n plus 1th derivative.

So, the error in the Taylor series is always n plus 1. It is proportional to the n plus 1th
derivative of that function. Here that particular function is a function of t, some variable t.
That is, what is the essence of the Taylor approximation?
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where the remainder, ~, | is defined as

-

((x=1)
R, = | ”-I‘r ()t

where i Is a dummy variable

in essence the theorem suggesis thal smooth
functions can be approximated by polynomial,




We will use this Taylor series to expand and get our data fit, to get our polynomial
approximation. Instead of using a polynomial approximation of this form, what we will
do is, we know, we will try to approximate the polynomial around these points by
expanding the around this point. So we know the functional value at this point. So we
will write a Taylor series expansion around that particular point.

So that will be a better representation, a better polynomial for region around this. So that
is for short intervals. This is, we have better method than doing this kind of an expansion.
So here, actually, expanded this polynomial around x is equal to 6000. We would have
found a much better approximation to this polynomial than 6000 this, what you obtained
here. That is what we are trying to see. So we will try to see how to minimize this error
by using this kind of an expansion. So we had chosen x equal to c.

So we would take, see this particular example as 6000 and expand it around that region.
So that is what you would see. Now, if | use c is equal to 0, then we have our polynomial
which is obtained here. So basically, we want to write this polynomial as something
minus ¢ here. x minus c, where c, | would like to take as 6000.

I could take that as 6000 and then compute all those quantities again. That is what you
should be trying to do. That will be an expansion of the function around x equal to 6000.
So we will see that now. Now then, you will write the polynomial of many order as in
this fashion now. Instead of writing al x we will write it as p of x as ap plus “a;” into x
minus c¢ plus “a;” into x minus ¢, whole square, etcetera, up to x minus c to the power n.
So that is an nth order polynomial. So this is an nth order polynomial with x minus c to
the power n as the highest term. Again, we see these coefficients, ap, ai, az, now we know
are actually the derivatives of the function p of x, original function p of, function f of x,
in this case, the function p of x, but we do not know the function.

So we have to evaluate this instead in another way, but that we will do in similar fashion
as we done earlier. This is, we will equate this function to various values. So again, we
know what the c is here, in this case. Because we know where we are, expanding it
around and then we would determine the values of ap, ai, a; by again equating this
polynomial to the known values of the function.

Let us take x equal to 6000 here. That is ¢ equal to 6000, and then we are getting p of
6000 now as 5 digit floating point representation. We are getting as “0.333333” and p of
6001as “minus 0.66667”. So, we have a much better representation now, of this
polynomial than what we obtained here. That is basically the essence of this calculation,
this idea.
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A better approximation will be oblained I we

choose the « In the above serkes (o be close to the
value of « we are interested in. This results in the
shifted power form,

p(x)=a,+a,(x-c)+a,(x-c)

+ e+ a (x—e¢)"

L]

with the coefficients

a,= f(c)i!
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In the example given in the previous page
we will use ¢ to be 6000, then in five-
decimal-digit floating-point arithmetic we
now get
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That is, we expand it in a series. So now, the same thing, as | said here. So what we were
doing was writing f of x as f of xo plus, we said that x minus xo into derivative of x at Xo.
So actually, it is what we are writing is del f by del x at x equal to x equal to Xo, and then
we wrote it as X minus Xp square by 2 factorial into del square f by del x square at x equal
to Xo. We said that it is X minus Xo to the power n divided by n factorial into del n. So that
is what we had written in short notation as fn this derivative, and f, of xo, we said, that is
basically the derivative the nth derivative of “f” with respect to Xo. This is the series
which we have written. So this is what you were writing before as f of x being the
polynomial, now as p of x as we are writing this as ao, and then we are writing this as al



into X minus Xo plus a; into X minus X, to the square, etcetera. So that is what we were
writing. So now, this can be written in a slightly different fashion. So we could say that,
in this particular case, we have always expanded the whole function around x equal to Xo.
Now there is a slightly different way of writing this polynomial in which we will not use
for different, you will not use x equal to X, as expansion point all the time but we would
use something like this.

So we have to use here, we have to use the first term as x minus ¢y, and the second term
is, instead of x minus c; square we are using X minus c; into x minus ¢, and continue up
to n, and the nth term would be a n, X minus ¢;, X minus ¢, X minus ¢,. So notice that
where c¢; equal to equal to c;, cs, etcetera, up to c, are equal to cp, or Xo, in this particular
case, then we would get this polynomial which | have written here. So this would follow
from this if | use all the coefficients, ci, C,, Cy equal to Xo. That is what we call the shifted
form. This is what called the Newton’s form. So this is called the Newton’s form for the
polynomial, and what we would get if | put all these coefficients equal to the same thing
is the shifted form which were all centers are equal to, all centers are equal, and if I put
all coefficients equal to 0, then we get the normal power form which we obtained in the
beginning.
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Newton's form

In Newton's form for the polynomial approximation

pix)=a, +a(x—¢)+a{x—c lx-c,)

FEAX—C X —C k. X —C. )
Al |

i s easy to see that if all the centers are equal to

some value « this becomes the shifted form while if
all the centers are equal to zero this would be the
power form

So to summarize, we have the Newton’s form. So the Newton’s form, we had p of x as a,
plus a; into, in this language, X minus cy, plus z, into X minus ¢; into X minus ¢, up to an,
which goes as x minus ¢, into x minus c; all the way to x minus c,. We said that if | put
cl equal to ¢, equal to c, as xo, then we go back to that which is called the shifted form.

So that is, shifted form or we could have c; equal to ¢, equal to ¢, equal to 0. So that is
the power form. They are all the same polynomial. They are just represented in different
ways of, in different ways, and because of the finiteness of our representation, the real
number representation has been represented as a using a floating point of finite number of



digits. We have different answers, numerical answers coming from this, but
mathematically, they are all the same polynomial, because the polynomial which passes
through, the nth order polynomial which passes through the n plus 1 points is a unique
polynomial. So now, so we will write this particular polynomial in a slightly different
format. That is what we would look at.
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For computational purpose, it is better to write this in a kind of a nested form, and that is
what | am trying to show here. So the same thing which | have written there is now
written in a slightly different form. That is, we write it in what is called a nested form. In
this form, we write it as a, plus x minus c; into al plus x minus ¢, into a,, etcetera. So you
see, X minus c; is common for all terms starting from the second one. So | could take out
X minus c; outside, and write it as a; plus a,, then x minus c, is common for all the terms
down this. So, | could take that out and then continue writing that in this fashion, and
then you would get a function, a form of this type, and this is called the nested form, and
this is what you would see in many text books when you talk about Newton’s form in the
nested form.

We need to do, as | said, if you want to do, if you want to evaluate after obtaining this
polynomial, so we equate this polynomial to n plus 1 function values which we know.
We can obtain these coefficients a,, a, up to a, minus 1. We will take c;, c, C3, 4 as the
functional values which we know. The x values at which the function values are known
are ¢y, Cy, Cs, and then from that we can actually compute this whole polynomial, all the
coefficients in this polynomial, and then we have to evaluate. Since, we know the
polynomial we can evaluate this polynomial at any given value Xx. So when we do that,
we have to do two n multiplications and n additions. There are n terms here, so we have
to do two n multiplications and n terms.



Each bracket here has one multiplication to do, so we have two n multiplications, and we
have n additions to do, but it is, however it is a very easy thing to program. That is a very,
it is still a very popular form to use.
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A simplified format for this form is called the nesfed
form

pix)=a, +{x—c }{a +{x—0c,)

(@ +(x—¢c, Ha, +...+{x—c_ )

" : v | |
(a_,+(x-c )a.)..l}

To evaluate the polynomial at a particular value this
form needs to perform o mulliplications and
additions. However it is easy o program!
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Divided difference

if the function (v is known for several valuves of «
for example

So now, there is, once we have the nested form and we saw this quantity, there is when
you program it we would use what is called a divided difference method to compute the
values, the coefficients. So we just saw that there are, while equating this polynomial to
the function values at x; or x equal to ¢, C,, C3, etcetera, | can actually compute all these
coefficients, a,, a1, a2. So that is easy to see. We can see that | could just take p or at x



equal to c1, then I would get it as a,. So “p” at x equal to ¢; from this polynomial, it is
that all other terms would vanish and that is just a, and “p” at x equal to ¢, would be then
2o plus “a;” into “c,” minus c;. All other terms will be 0. So by doing in this fashion we
can actually compute all these coefficients, a,, a;, etcetera. But that is not a very elegant
or a very good form of computing it. So we can use what is called a divided difference to
actually achieve this quantity. So we will see how this divided difference is executed. So
first let us fix a notation. So we would call the function values at x, as fo, and the
functional value at x; as fi, X, as f,, and x3 as fs, etcetera. This is clear. So this is the

notation we are going to use.

So we have the points at which the function is known, and these are the function values
which we have got up to x, f,. So basically, f of xo will be called as fo, f of x; is called X1,
etcetera, and then we would write this using a slightly different notation, exactly the same
thing. We are going to use a slightly different notation to make things more clear there
instead of writing a,, a, ay, as, etcetera. We are going to use this in this notation. So we
are going to use, change the notation a little bit. We are not going to use ao, ai, az,
etcetera. We are going to use f of square bracket, xo, X1, T of square bracket, X,, X1, X2,
etcetera. So that tells us what the coefficients are. so the coefficients are now not called
ao, a1, Ap,it is called f square bracket x,, X1, f square bracket x,, X1, X2, etcetera. So this is
just to make programing easy.so now we have this form.
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We consider the n-th degree polynomial written in a
special way

P(x)=a,+(x-x,)f]x,,x ]+
(x—x,0x =X )X, X% ]

+ et (X — X WX —X,)

el X=X, Y15 X. ]

So we are going to write our polynomial as p, of x equal to f. Remember, this is a square
bracket. So it is X,, X1, and then the next term would be, so that is the form which you are
going to write, and then as | said we can now take p, at X,. That will be a,, and p, at x;
would be a, plus x minus X; into f of X, X3, and then we would get a series, we would get
a set of equations of this form, and that is what then, we would make up a difference
table.



So let us compute this quantity here. So we can say that the function values are now
called f;. So, f of pn at xo is now called f0. So we have equations which say f, equal to
ao0. And then we have equation called f1 which is f of pn of xy, this will now be ao plus x
minus Xx; into f X, X1. So we can easily that f “X, X;” is nothing but f;, and ao was fo, so it
is f Iminus fo divided by, this is x; minus X,. | substitute x; there, so it is X; minus X,. So
itis f; fo by X1 minus X,. So that is the value. That is the coefficient. That is what we have
written here. So then we can compute the next coefficient in a similar way.

As | said, we could now write down f,, so that would be ao plus x, now minus X,. | am
substituting it here into f of X, X1 plus X, minus X, iNto X Minus X; X, Minus X;, into f of X,
X1 X2. Now | can see that | can read off, | know what ao is .1 knows what f of X, X; is.
That is from this equation. So | have this here, and this one here, and then | know X; X1,
etcetera, so | can compute this quantity. From that | know f,, so we can compute this
quantity from that. But this is not the way we are going to do. We are going to do, use, by
using what is known as the divided difference method. So | will show you what that is,
and we will compute that using an example.
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So what we will do is, we will first construct these functions, the two-point functions. We
will do that here. We have written that X, as fo, X1 as f, X, function value f, X3 function
value “f3”, and “x4” function value “f,”. We have written that, and having done that now
what we will do is we will construct the differences.

We did one here right? We did between “x,” and “x;”. So | will do that here. So I will
write here as this quantity called here f; minus fo divided by x; minus X,, and | know that
this is the coefficient of the first term in the polynomial, and | know that this is the
coefficient of the second term in my polynomial. The polynomial, the second term is
given by that. So now | have to construct the third term, the coefficient of the third term,
etcetera. So to do that I will first make what is called the first order differences. So that is



the, so we would make the first divided difference, the first divided differences, the
second order divided differences, etcetera, and then we will construct all of them in a
series. That is what we will try to do. So we had the first order, first divided difference
given by X,, X1, or in general, given by f; minus f s by “x;” minus “xs”. That is the first
divided differences.

So we will construct that for all of them. We will write them here as “f,” minus “f;” by x;
minus X3, and then between these two as “f3” minus “f,” divided by “x3” minus “x,”, and
then between these two as “f,” minus “f3” divided by “Xx4” minus “x3”.So right now, this
thing has no consequence to the polynomial here. It looks like because we have
constructed the coefficient one here and the second one here, and then we will do the
second divided difference. So the second divided difference would be the divided
difference between these quantities. So these two will give us 1, and these two will give
us 1, and these two will give us 1, so the second divided difference is then given by this
quantity.

So this is what we call, so this is what we call as f of x, we call that as X,, X1, and then by
same notation we would call this quantity as f of “x; X,”, and this quantity here as f of “x,
X3”, and this one as f of “x3 X4”, and then we will construct the next divided difference as
f of “x1 X2” minus f of “X, X;” divided by x, minus xo, and here it will be f of “x, x3”. We
have been writing it as, the notation we write, f; minus f,, f, minus f;, f; minus f,. So we
should write it as similar way here.

So we would write it as x,. We call it as Xz, X3 minus f of X,, “X; X2” divided by x3 minus
X1, and here it will be f of “x3 x4 minus f of “x, x3” divided by x4 minus x,. So that is the
second difference. And now what | am trying to show is that. So this is the coefficient of
the first term, and that is the coefficient of the second term. So we will call this the first
term, and this is the coefficient of the second term, and this will be the coefficient of the
third term.

Basically, that is what f of, so this is f of “X, X3 X2” iS. S0 you can just rearrange terms
here and write everything in terms of these functions which are known, and then we can
show that this term, what we get from here, is just exactly the same as this quantity. That
is f of “X1 Xo” minus f of “X, X;” divided by X, minus X,. So what | am trying to say is that
I can, here | can substitute for this. This | know, and | can rearrange terms here, and do a
little bit of algebra, and then I can show that f of X, X1 X2 is f of X3 X, minus f of “X, X1”
divided by x, minus xo, so that it can be shown from this, and that | leave that as an
exercise for you to do.



(Refer Slide Time: 41:08)

In general, we would compute the higher order differences in this form. That is the
functions with third order term. The coefficient of the third order term which had X,,
X1,X2, | showed you, is the difference between the second order coefficients, second order
divided differences, the first order divided differences, divided by x, minus x,. We look
at the intervals here. This also keeps increasing as we go down or go up on the order.
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Higher order differences are defined in terms of
lower-order differences. For example,

Jlx.x ] flx.x]

So in general, we can write f of X, X1 up to Xy, as the divided difference of just the level
before that is f of X, f of X1 X2 up to X, minus f of X,, X3 up to f of x, minus 1. So that is the
way, you are going to write.



So you are going to write everything one order before. So here, notice that here X, X1 X2 is
the difference between x; X, and X,, X; divided by X, minus x; Xo,. S0 now, when | take f
of X, X1 X2 X3, that is the next term here would be, we know that it is X3, the next term
which we would write would be f3, would be equal to ao plus x3 minus X, into f of X, X3
plus X3 minus X, into X3 minus X; into f of X, X; X2, which we now know from that and the
next term, would be X3 minus Xo into X3 minus X; into X3 Minus X, into f of X, X1 X, Xs.
That will be the next coefficient. So this equation should determine that.

So now again, instead of going through all this to determine f of x, X1 X2 X3, we could use
a series from here. So then, we will have this term now, would be called f of X,, X1 X2 X3,
and this would be called f of x, X3 X4, and this term here, that is, f of X, X; X2 X3, this
coefficient of the term which is the third order, or the fourth term, the third order
coefficient, would be then given by f of X1 X2 X3 minus f of, minus f of x, X1 X, divided by
X3 minus X,. So that is the way we would write. So that is what is there in general nth, so
when you go to the nth term we will take 1 to n minus 0 to n minus 1 divided by x, minus
Xo. That sets the coefficients. By this way we can divide, we can compute all the
coefficients. So here is the table which we are going to try to construct here.

So the table is here. So we have all the function values, all the points, and all the function
values, and then we have the first order differences, divided difference, and then we have
the second order divided difference, and then the third order divided difference, and then
we will have one more here which will be the fourth order divided difference.

(Refer Slide Time: 45:44)

Here Is the divided difference table,

So in this way we can compute all of them in a more systematically, and this is easier to
compute, easier to program, than actually doing each of these terms individually when
you go to large order in the polynomial. So when you go to large order of the polynomial,
it is easier to do it using the divided difference method. So here is an algorithm. Once you



have this divided difference method and then to evaluate the polynomial again we will
not use this. We will use the nested form which we mentioned earlier. So remember what
was the nested form? We will not write the polynomial in this fashion.

We will write the polynomial now as pn of x, then the nested form as ao plus a;. So we
have x minus xo into al plus x minus xo into X minus Xo into a, plus X minus X; into a 3,
etcetera. So that is the nested form which we had. So we will have many things to close
there. So that is the nested form which we wrote and that is what you would use to
evaluate the polynomial at any value x. So we will use divided difference method to
compute the coefficients by writing this 1 2 3, these coefficients, by doing this divided
difference, and then we will use these coefficients and put them back here.

So, let me substitute this, “a,” as f of “x, X;” and this will be then f of “X, X3 X2 plus x
minus X, into, etcetera. So that is what you will have. So we can compute it in this
fashion much easier because it is again nested form and is much easier to program. That
is what | have shown here. We start from the last term in the nested form and then we go
up on the, in this case, so we will keep going up by doing this. So first we compute the
last term. So that is the a,. We know this coefficient, and then we go up. These are the
coefficients which | have represented here as f of “f” square bracket x, x3, etcetera, and
then we will go up from there. That is why I go from loop n minus 1 to n minus 2.
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An algorithm for the nested form

Given the coefficients and the centers of the newtons

form and also the number ; where the values to be
calculated

hrl =&,

Fori=n-1.n-2....0.do:

b =a,+{(z—c, )b,
Then,b, = f(z)

We will actually do this using an example. We will actually do this computation then, it
becomes more clear. The idea is that if | have only 3 terms, so | have only my polynomial
was, X minus X, into f of a; and x minus X, X minus X a,, that is, if that is only a second
order polynomial. And then I could stop here and | say that my function is, you see now it
is only a second order polynomial. I know the function value at X, X; and Xx,, 3 points.
Then, | have a second order polynomial. And then the way | would use it in the nested



form would be just to say that my function is actually equal to f of, my function is
actually equal to, I start from this and I will say f is f of X X1 X2.

So that is what | would say. That is what | call here by saying b; equal to a,, and then I go
to the next point. That is n in this. In my particular case n was just 2. So | will go to the
next one and | will say that I will multiply that n. i is n minus 1 here. This is actually i
plus 1 is n. That is my function here. | multiply that by z minus the value which I knew
this and then add the next coefficient to it. That is saying that is the next step. This is the
first step, and the next step | will do, I will have to compute, then | will have to multiply
this by that. So I will compute, multiply x minus x1 with this coefficient, f. That is what |
did, and then I add the next one to this, that is, f of X, ;. That is what | get, and the next
step | would take this f, this whole coefficient, and multiply that by x minus xo and then
add ao to it.

So that is what is here. So the term before that, you multiply that by x minus X, or X
minus X;, whatever that number is. So this is now my new f, and then | take the next f. |
will take x minus X, and multiply f and then add ao. So that is the stepl, step2, step3.That
is what it is here. This is exactly what is being given here. We can write this down and try
to do this by substituting numbers here. You can see that this is exactly what | have
written on this board here. So that is, now | give a small problem here which you can
work out. We will just do that here.

So we have, let us say, a function value function given at x “2.5” “3.75”, “five” and
“6.25”, and the function values are given as minus “28.62”, “159.5131265”. So we have
1, 2, 3, 4 points at which the function is known, and then we want to construct a
polynomial which goes through this Newton using Newton divided difference method. So
we will get a polynomial of order 3. So what we get is a polynomial of order 3 because
we have 4 points here. So we will just, we will use this form to actually we will use the
form which is given here, this function of order 3. So we will substitute the actual
numbers for this, and we will just go on with this calculation. 1 am listing the values here.
So the values of x and f of x, so they are “2.5” and minus “28.62”. And then | have
“3.75”, and that is minus “159.36”, and then | have “5.0”, and that is minus “513.97”.
And then | have “6.25”, this is minus “1265.45”, and | have this and then, | compute the
first differences, that is, minus “104.592”.

I am doing this computation. | am doing exactly this, that is f; minus fo. | subtract this
from this and divide it by the difference between these two. That is what | have done
here. So | get this number, and | do the difference between these two, and divide it by the
difference between these two, and then | will get minus “283.688” and | take the
difference between these two numbers and divide it by the difference between these two
numbers, and then | get it as minus “601.184”, and then | would take the difference
between these two numbers, these two numbers, and divide it by the difference between
these two “2.5” and 5, and similarly, | take the difference between these two and then |
divide it by the difference between “6.25” and “3.75”.



So that will give me minus “71.64” and minus “126.998”.Then | take the difference
between these two and divide it by the difference between “6.25” and “2.5”. So that gives
me minus “14.76224”.So we have all the coefficients of the polynomial 1, 2, 3, 4. The
polynomial now is p of x, that is 3n is 3, would be equal to minus “28.62”, plus x minus
Xo 1S #2.5” in the nested form, then | will write that the next point as minus “104.592”,
plus the next one is x minus “3.75” into the coefficient will be minus “71.64”.Then | will
write it as, so | have the next coefficient, and then | will have minus “671.64” plus x
minus “6.25”, and then I will multiply that again by minus “14.76224”.

So that is the way, | would compute this. So I can close all the brackets. So I computed
all the coefficients that is starting with minus “28.62” minus “104.592” minus “71.64”
minus “14.76224”, and then | can write that in a nested form, and that gives me my
polynomial. So you can see that x minus 2 x minus “3.75” and x minus “6.25”. So that is
the, that determines the order of the polynomial. It is order of 3, the polynomial. This is
my final polynomial, and then I can substitute any value of x and evaluate any value of x
in between these numbers, and evaluate this polynomial. So we will see other forms of
writing this, and some more problems in the coming class.
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Problem.
Find using Mewtons divided different method, the

potynomial of order four that passes through the
points,
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Problemz. e

Find a sixth order polynomial approximation to fy
i} between o=/ and =& using newilons divided
difference method, Choose different values of « , i-]
o & in the interval /- and compare the function
values at o=/ 44

You could actually use this method to evaluate, to get a set of discrete points of log x
between 1 and 8, and then you construct using this divided difference method, a
polynomial, which goes through all these points, and then compare that with the function
log x. So that gives you a good idea about how accurate your polynomial would be as you
increase the number of points in between. With this, we will stop here. We will go to
other forms of representing the polynomial in the next class.



