
Numerical Methods and Programming  
P. B. Sunil Kumar 

Department of Physics 
Indian Institute of Technology, Madras 

Lecture - 9 
Polynomial Interpolation 

 
Today, we start looking at some of the numerical methods. So far, we have been looking 
at the programing part, and the representation of data on the computer floating point, and 
the errors due to that. So to summarize, we so far looked at some elements of C 
programing, and how do a floating point number represented by a finite number of digits 
in a computer, and what are the errors which come because of finiteness of the floating 
point, and also the round-off, and how those errors propagate in a calculation which 
involves a series of mathematical operations. And also, what are the, how to identify the 
sensitive steps in the series of operations. 
 
These are the things we looked at. The next part of this course we would look at some of 
the techniques of numerical programing, the numerical methods, the methods which are 
commonly used in scientific programing. So, one of the topics is interpolation. That is 
what we start today. So we start today with interpolation. So interpolation of data. So that 
is what we will be looking at in today’s lecture: when do we use interpolation and where 
do we use it. So, suppose we have a set of n discrete points, x of i and y of i, which I have 
represented here, and it is required to find the value y at a point between x of i and x of i 
plus 1.  
 
Let us say we have, because of some numerical calculation or simulation or some 
experiment which is done, we have a set of data points as a function of some variable. So 
we had some set of data points which I have represented like that.  
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It could be a measurement of temperature as a function of time, or any other property, or 
it could be output from a simulation. In this case, we have a discrete set of data points, 
and you want to find out what is the value of this function, is at some point in between, 
which is here represent by this dot. So in those cases we need to have a function, a curve 
which goes through all these points, and it approximates the value here.  
 
So this is, we are talking about a method of approximating some values, a function. So 
that is what I have represented here. These points are given by i noted here as x of i and y 
of i, i notes the set of discrete points. So y of i is my function f of x. So x of i are a set of 
discrete points, and y of i is a function value, and you want it between any two points, i 
and i plus 1, some value, x. And I want to find out what is the functional value of y at that 
point is?  
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So one way to do that is to say that there is a polynomial pn of x. So we can say a 
polynomial pn of x which passes through all these points, it takes values pn of xi is equal 
to yi. So this is what we have put in here.  
 
So we have this function yi as f of xi. So we have yi as f of xi, and if you can construct a 
polynomial which takes in values yi at a set of points, xi at the discrete points, xi, and then 
that is a good approximation to this curve. That is one way of doing it, and then once we 
have the polynomial given to us of order n, given this n points, then we could, order n 
minus 1. So if you give n points, you have an order, n minus 1, and then we could 
evaluate the function value at any point, x, in between. That is one way of doing this, and 
we all know this given n points it is possible to find a unique polynomial of order n minus 
1, which is going through these points. 
 
So, given n points it is possible to find a unique polynomial of order n minus 1 which 
goes through all these points. So we call this polynomial as the interpolating polynomial.  



So that is the notation we are going to use. We are going to use, say, that the points are 
the discrete points are given by xi, and the functional value is given by yi or f i, and the 
polynomial of order n would be given by pn of x. That is a polynomial of order n. So this 
polynomial is called the interpolating polynomial, and in today’s lecture we will try to 
find out how to construct this polynomial. This is a unique polynomial, i agree, but there 
are many representations of this. So how do we construct this polynomial and what are 
the approximations involved?  
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That is what we would try to find out today. So here is a plot which shows a set of data 
points, and then I am drawing two curves here just to show you the difference between 
what do we mean by interpolation, or interpolating polynomial, and what is the difference 
between an interpolation polynomial and a fit. So here are two curves. As we just saw, 
this is the set of data points which we obtained from simulation, or from experiments, and 
we have one curve which goes through the, a red curve which goes through, which goes 
in between these points, and then we have another curve which goes through all of these 
points. So the curve which goes through all of this here, this black one, is my 
interpolating polynomial, while this curve, the red curve, is a data fit. It is a fit to that 
thing.  
 
By this, I want to show you the difference between these two curves. So, here is a 17th 
order polynomial which goes through that, and here is a fit to this data by a function f of 
x equal to 1 by x plus a. That is the difference. So the difference between data fit and 
interpolating polynomial should be clear from this particular plot. Also keep in mind that 
even though this data goes through all these points it is still an approximation. It is not the 
exact function, f, which we are getting by doing this fit. It is still an approximation to the 
data. So that is what I showed you before, that is, the red curve which we showed before 
is an approximation, is a fit to this curve 1 over x plus a, but while the other curve was, 
which goes through all the points, was a polynomial. But remember that the interpolating 



polynomial is still an approximation to the actual function, f of x, which produced those 
data points. 
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It is not the function; it is an approximation to the function. So as I said, there is a unique 
polynomial of order n minus 1 if you are given n points. If you know the function value 
at n points, we have a unique polynomial of order n minus 1, but there are many ways of 
getting this polynomial, or many ways of representing this polynomial.  
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So that is what you would go through now, and then we would look at some methods in 
which it is easiest to construct the polynomial. Instead of going through all the methods 
of constructing the polynomial we will just look at one or two methods where it is easy, 
programing-wise, to construct this polynomial.  
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So here is an approximation to a polynomial of order n here. So we have said that a 
polynomial p of x which fits in the function values at f of “xi” functional value of “x ’'.  
  
So here is a polynomial of that which I have written down here. So p of x is ao plus a1 x 
plus a2 x square up to an x to the power of n, so nth order polynomial. These coefficients 
then, we have a condition that this p of x should match the function value, or the 
measured function value, or the functional values. We have these functional values, this 
pn of x should satisfy these functional values, or it should satisfy this relation that pn of xi 
is equal to y of i. We should satisfy this condition, and that will allow us to determine 
these coefficients, a0, a1, a2, a 3, up to an. That is the method we would use. And so we 
could equate p of xi to “y” of i and y of xi or f of xi, and then we could say, we could 
determine these coefficients, a0 here. 
 
 So we will have, since we have n plus 1 function values, and we have n plus 1 equations.  
We are equating that, and we have n plus 1 coefficients to determine, so we can 
determine that. So the problem is that even though it looks simple when I say this, that 
you know you have n plus 1 equations, and you have n plus 1 unknowns, and you can 
simply determine this n plus 1 coefficients from this set of equations, but it is not always 
trivial, because we will see that we have tried to compute these coefficients. We have loss 
of significant digits, and because of that, these approximate, this polynomial can be very 
errorless. That is what we would see in the, we will try to see through an example. 
 



So here is an example. So we have a function, and we have just 2 values. The functional 
values are given at x equal to 6000 as 1 by 3. I have chosen this thing because we know 
that this number is particularly to represent in a finite digit floating point representation, 
and f of 6001 as minus 2 by 3. So we have f of 6000 as 1 by 3, and f of 6001 as minus 2 
by 3, and we want to approximate this function. So there are two points. So we have a 
polynomial of order 1 that it is a straight line, and you want to approximate this curve by 
an interpolating polynomial of the form a0 plus a1 x. So we have p of x as “a0”, plus “a1” 
x as our polynomial.  
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Now we try to determine the values of that. So how do we do this? We say, that p of 
6000. So we would say we have this polynomial now as p of x is equal to ao plus a1 x.  
And we have the value as x equal to 6000. We had f of x equal to 1 by 3.We know that, 
and then we will substitute that here. So we will say 1 by 3 is equal to “a0” plus “a1” into 
6000, and then we have f of 6001 as minus 2 by 3 here. We have f of 6001 as minus 2 by 
3.So we will put that in here and we will say, f minus 2 by 3 is “a0” plus “a1” into 
6001.That is what the 2 equations which we would have. 
 
So now, we have to compute “a0” and “a1” from this which is trivial, and we will do that, 
and then we would get the approximation of the polynomial as written there as p of x is 
equal to 6000.3 minus x. That is the value which you would get. “a0” 6000.3 minus x. 
Now let us see what happens if you, I said we have used the condition that p of x is equal 
to f of x, and then computed “a0” and “a1”, and we got the polynomial, and we would 
expect p of x would be equal to f of x when we substitute any of the x values into this 
polynomial. That is what we try, we expect. 
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When we do that, what we find is that in a 5 decimal digit floating point arithmetic we 
would get p of 6000 as 0.3, and p of 6001 as minus “0.7”.So, which means the loss of4 
decimal digits which is not something which you would be happy with. 
 
So that is, so this is an example to show that even though such a method of equating a 
polynomial straight away into the measured function values, and evaluating the 
coefficients from that, will not always lead to correct polynomial, because of the error in 
the representation of the floating point numbers, or in the representation of real numbers 
in a finite number of digit floating point representation. So that is what we see. So there 



are better methods of doing this. So one method to do that is, to use a Taylor series 
evaluation. As we go on the course, we will see many times, we will use this particular 
series called Taylor series, so I thought may be a good thing to spend a few minutes. I am 
just trying to understand what the Taylor series is. 
 
So given a function f of x and it is derivative, we set that point, and if the function is a 
smooth differentiable function, and then given that function and it is derivatives, or it is 
differentiable at many points, and then at a particular point x equal to c, if you have all 
the derivatives, then evaluate. We can evaluate the function near the point x equal to x0, 
or x equal to c, or say any point x equal to x0, or x equal to c by expansion around that. 
So here, I am showing that this function f of x is being expanded around c to another 
point x0 to get its value at x0.  
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Let us look at this Taylor series a little more in detail. That is what a Taylor theorem says. 
If a function, f, and it is first n plus 1 derivatives are continuous, and on an interval 
containing “a” and “x”, then the value of the function at x can be determined by, from the 
value of the function at “a”, by this series. 
 
That is what we have used there. What we are using here is the value of the function at a. 
And f prime of a, as we saw in earlier lectures, is a derivative of a with respect to x 
evaluated at x equal to a, multiplied by x minus a, and in the second derivative divided by 
2 factorial times x minus “a” whole square, and all the way up to the nth order derivative 
with respect to x evaluated at “a” divided by n factorial into x minus “a” to the power n, 
and then there is some remainder in this series. 
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So we can see that the remainder of this series is given by a function of this form. That is 
basically if you do a Taylor series expansion, and we always, because we cut it off at 
some order n, we have some error, and that is what is given by this x minus f power n 
divided by n factorial, into the n plus 1th derivative.  
 
So, the error in the Taylor series is always n plus 1. It is proportional to the n plus 1th 
derivative of that function. Here that particular function is a function of t, some variable t.  
That is, what is the essence of the Taylor approximation?  
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We will use this Taylor series to expand and get our data fit, to get our polynomial 
approximation. Instead of using a polynomial approximation of this form, what we will 
do is, we know, we will try to approximate the polynomial around these points by 
expanding the around this point. So we know the functional value at this point. So we 
will write a Taylor series expansion around that particular point.  
 
So that will be a better representation, a better polynomial for region around this. So that 
is for short intervals. This is, we have better method than doing this kind of an expansion. 
So here, actually, expanded this polynomial around x is equal to 6000. We would have 
found a much better approximation to this polynomial than 6000 this, what you obtained 
here. That is what we are trying to see. So we will try to see how to minimize this error 
by using this kind of an expansion. So we had chosen x equal to c.  
 
So we would take, see this particular example as 6000 and expand it around that region. 
So that is what you would see. Now, if I use c is equal to 0, then we have our polynomial 
which is obtained here. So basically, we want to write this polynomial as something 
minus c here. x minus c, where c, I would like to take as 6000.  
 
I could take that as 6000 and then compute all those quantities again. That is what you 
should be trying to do. That will be an expansion of the function around x equal to 6000. 
So we will see that now. Now then, you will write the polynomial of many order as in 
this fashion now. Instead of writing a1 x we will write it as p of x as a0 plus “a1” into x 
minus c plus “a2” into x minus c, whole square, etcetera, up to x minus c to the power n. 
So that is an nth order polynomial. So this is an nth order polynomial with x minus c to 
the power n as the highest term. Again, we see these coefficients, a0, a1, a2, now we know 
are actually the derivatives of the function p of x, original function p of, function f of x, 
in this case, the function p of x, but we do not know the function. 
 
So we have to evaluate this instead in another way, but that we will do in similar fashion 
as we done earlier. This is, we will equate this function to various values. So again, we 
know what the c is here, in this case. Because we know where we are, expanding it 
around and then we would determine the values of a0, a1, a2 by again equating this 
polynomial to the known values of the function.  
 
 
Let us take x equal to 6000 here. That is c equal to 6000, and then we are getting p of 
6000 now as 5 digit floating point representation. We are getting as “0.333333” and p of 
6001as “minus 0.66667”. So, we have a much better representation now, of this 
polynomial than what we obtained here. That is basically the essence of this calculation, 
this idea. 
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That is, we expand it in a series. So now, the same thing, as I said here. So what we were 
doing was writing f of x as f of x0 plus, we said that x minus xo into derivative of x at x0. 
So actually, it is what we are writing is del f by del x at x equal to x equal to x0, and then 
we wrote it as x minus x0 square by 2 factorial into del square f by del x square at x equal 
to x0. We said that it is x minus x0 to the power n divided by n factorial into del n. So that 
is what we had written in short notation as fn this derivative, and fn of x0, we said, that is 
basically the derivative the nth derivative of “f” with respect to x0. This is the series 
which we have written. So this is what you were writing before as f of x being the 
polynomial, now as p of x as we are writing this as ao, and then we are writing this as a1 



into x minus x0 plus a2 into x minus x0 to the square, etcetera. So that is what we were 
writing. So now, this can be written in a slightly different fashion. So we could say that, 
in this particular case, we have always expanded the whole function around x equal to x0. 
Now there is a slightly different way of writing this polynomial in which we will not use 
for different, you will not use x equal to x0 as expansion point all the time but we would 
use something like this. 
 
So we have to use here, we have to use the first term as x minus c1, and the second term 
is, instead of x minus c1 square we are using x minus c1 into x minus c2 and continue up 
to n, and the nth term would be a n, x minus c1, x minus c2, x minus cn. So notice that 
where c1 equal to equal to c2, c3, etcetera, up to cn are equal to c0, or x0, in this particular 
case, then we would get this polynomial which I have written here. So this would follow 
from this if I use all the coefficients, c1, c2, cn equal to x0. That is what we call the shifted 
form. This is what called the Newton’s form. So this is called the Newton’s form for the 
polynomial, and what we would get if I put all these coefficients equal to the same thing 
is the shifted form which were all centers are equal to, all centers are equal, and if I put 
all coefficients equal to 0, then we get the normal power form which we obtained in the 
beginning. 
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So to summarize, we have the Newton’s form. So the Newton’s form, we had p of x as ao 
plus a1 into, in this language, x minus c1, plus z2 into x minus c1 into x minus c2 up to an, 
which goes as x minus c1, into x minus c2 all the way to x minus cn. We said that if I put 
c1 equal to c2 equal to cn as xo, then we go back to that which is called the shifted form. 
 
So that is, shifted form or we could have c1 equal to c2 equal to cn equal to 0. So that is 
the power form. They are all the same polynomial. They are just represented in different 
ways of, in different ways, and because of the finiteness of our representation, the real 
number representation has been represented as a using a floating point of finite number of 



digits. We have different answers, numerical answers coming from this, but 
mathematically, they are all the same polynomial, because the polynomial which passes 
through, the nth order polynomial which passes through the n plus 1 points is a unique 
polynomial. So now, so we will write this particular polynomial in a slightly different 
format. That is what we would look at.  
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For computational purpose, it is better to write this in a kind of a nested form, and that is 
what I am trying to show here. So the same thing which I have written there is now 
written in a slightly different form. That is, we write it in what is called a nested form. In 
this form, we write it as ao plus x minus c1 into a1 plus x minus c2 into a2, etcetera. So you 
see, x minus c1 is common for all terms starting from the second one. So I could take out 
x minus c1 outside, and write it as a1 plus a2, then x minus c2 is common for all the terms 
down this. So, I could take that out and then continue writing that in this fashion, and 
then you would get a function, a form of this type, and this is called the nested form, and 
this is what you would see in many text books when you talk about Newton’s form in the 
nested form.  
 
We need to do, as I said, if you want to do, if you want to evaluate after obtaining this 
polynomial, so we equate this polynomial to n plus 1 function values which we know. 
We can obtain these coefficients ao, a2 up to an minus 1. We will take c1, c2, c3, c4 as the 
functional values which we know. The x values at which the function values are known 
are c1, c2, c3, and then from that we can actually compute this whole polynomial, all the 
coefficients in this polynomial, and then we have to evaluate. Since, we know the 
polynomial we can evaluate this polynomial at any given value x. So when we do that, 
we have to do two n multiplications and n additions. There are n terms here, so we have 
to do two n multiplications and n terms.  
 



Each bracket here has one multiplication to do, so we have two n multiplications, and we 
have n additions to do, but it is, however it is a very easy thing to program. That is a very, 
it is still a very popular form to use. 
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So now, there is, once we have the nested form and we saw this quantity, there is when 
you program it we would use what is called a divided difference method to compute the 
values, the coefficients. So we just saw that there are, while equating this polynomial to 
the function values at xi or x equal to c1, c2, c3, etcetera, I can actually compute all these 
coefficients, ao, a1, a2. So that is easy to see. We can see that I could just take p or at x 



equal to c1, then I would get it as ao. So “p” at x equal to c1 from this polynomial, it is 
that all other terms would vanish and that is just ao and “p” at x equal to c2 would be then 
ao plus “a1” into “c2” minus c1. All other terms will be 0. So by doing in this fashion we 
can actually compute all these coefficients, ao, a1, etcetera. But that is not a very elegant 
or a very good form of computing it. So we can use what is called a divided difference to 
actually achieve this quantity. So we will see how this divided difference is executed. So 
first let us fix a notation. So we would call the function values at xo as f0, and the 
functional value at x1 as f1, x2 as f2, and x3 as f3, etcetera. This is clear. So this is the 
notation we are going to use.  
 
So we have the points at which the function is known, and these are the function values 
which we have got up to xn fn. So basically, f of xo will be called as f0, f of x1 is called x1, 
etcetera, and then we would write this using a slightly different notation, exactly the same 
thing.  We are going to use a slightly different notation to make things more clear there 
instead of writing ao, a1, a2, a3, etcetera. We are going to use this in this notation. So we 
are going to use, change the notation a little bit. We are not going to use ao, a1, a2, 
etcetera. We are going to use f of square bracket, xo, x1, f of square bracket, xo, x1, x2, 
etcetera. So that tells us what the coefficients are. so the coefficients are now not called  
ao, a1, a2,it is called f square bracket xo, x1, f square bracket xo, x1, x2,  etcetera. So this is 
just to make programing easy.so now we have this form.  
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So we are going to write our polynomial as pn of x equal to f. Remember, this is a square 
bracket. So it is xo, x1, and then the next term would be, so that is the form which you are 
going to write, and then as I said we can now take pn at xo. That will be ao, and pn at x1 
would be ao plus x minus x1 into f of xo x1, and then we would get a series, we would get 
a set of equations of this form, and that is what then, we would make up a difference 
table.  
 



So let us compute this quantity here. So we can say that the function values are now 
called f1. So, f of pn at xo is now called f0. So we have equations which say f0 equal to 
ao. And then we have equation called f1 which is f of pn of x1, this will now be ao plus x 
minus x1 into f xo x1. So we can easily that f “xo x1” is nothing but f1, and ao was f0, so it 
is f 1minus f0 divided by, this is x1 minus xo.  I substitute x1 there, so it is x1 minus xo.  So 
it is f1 f0 by x1 minus xo. So that is the value. That is the coefficient. That is what we have 
written here. So then we can compute the next coefficient in a similar way.  
 
As I said, we could now write down f2, so that would be ao plus x2 now minus xo. I am 
substituting it here into f of xo x1 plus x2 minus xo into x minus x1 x2 minus x1, into f of xo 
x1 x2. Now I can see that I can read off, I know what ao is .I knows what f of xo x1 is. 
That is from this equation. So I have this here, and this one here, and then I know x2 x1, 
etcetera, so I can compute this quantity. From that I know f2, so we can compute this 
quantity from that. But this is not the way we are going to do. We are going to do, use, by 
using what is known as the divided difference method. So I will show you what that is, 
and we will compute that using an example. 
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So what we will do is, we will first construct these functions, the two-point functions. We 
will do that here. We have written that xo as f0, x1 as f1, x2 function value f2, x3 function 
value “f3”, and “x4” function value “f4”. We have written that, and having done that now 
what we will do is we will construct the differences. 
 
We did one here right? We did between “xo” and “x1”. So I will do that here. So I will 
write here as this quantity called here f1 minus f0 divided by x1 minus xo, and I know that 
this is the coefficient of the first term in the polynomial, and I know that this is the 
coefficient of the second term in my polynomial. The polynomial, the second term is 
given by that. So now I have to construct the third term, the coefficient of the third term, 
etcetera. So to do that I will first make what is called the first order differences. So that is 



the, so we would make the first divided difference, the first divided differences, the 
second order divided differences, etcetera, and then we will construct all of them in a 
series. That is what we will try to do. So we had the first order, first divided difference 
given by xo, x1, or in general, given by ft minus f s by “xt” minus “xs”. That is the first 
divided differences.  
 
So we will construct that for all of them. We will write them here as “f2” minus “f1” by x2 
minus x1, and then between these two as “f3” minus “f2” divided by “x3” minus “x2”, and 
then between these two as “f4” minus “f3” divided by “x4” minus “x3”.So right now, this 
thing has no consequence to the polynomial here. It looks like because we have 
constructed the coefficient one here and the second one here, and then we will do the 
second divided difference. So the second divided difference would be the divided 
difference between these quantities. So these two will give us 1, and these two will give 
us 1, and these two will give us 1, so the second divided difference is then given by this 
quantity. 
  
So this is what we call, so this is what we call as f of x, we call that as xo, x1, and then by 
same notation we would call this quantity as f of “x1 x2”, and this quantity here as f of “x2 
x3”, and this one as f of “x3 x4”, and then we will construct the next divided difference as 
f of “x1 x2” minus f of “xo x1” divided by x2 minus xo, and here it will be f of “x2 x3”. We 
have been writing it as, the notation we write, f1 minus f2, f2 minus f1, f3 minus f2. So we 
should write it as similar way here.  
 
So we would write it as x2. We call it as x2, x3 minus f of x2, “x1 x2” divided by x3 minus 
x1, and here it will be f of “x3 x4” minus f of “x2 x3” divided by x4 minus x2. So that is the 
second difference. And now what I am trying to show is that. So this is the coefficient of 
the first term, and that is the coefficient of the second term. So we will call this the first 
term, and this is the coefficient of the second term, and this will be the coefficient of the 
third term.  
 
Basically, that is what f of, so this is f of “xo x1 x2” is. So you can just rearrange terms 
here and write everything in terms of these functions which are known, and then we can 
show that this term, what we get from here, is just exactly the same as this quantity. That 
is f of “x1 x2” minus f of “xo x1” divided by x2 minus xo. So what I am trying to say is that 
I can, here I can substitute for this. This I know, and I can rearrange terms here, and do a 
little bit of algebra, and then I can show that f of xo x1 x2 is f of x1 x2 minus f of “xo x1” 
divided by x2 minus xo, so that it can be shown from this, and that I leave that as an 
exercise for you to do. 
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In general, we would compute the higher order differences in this form. That is the 
functions with third order term. The coefficient of the third order term which had xo, 
x1,x2, I showed you, is the difference between the second order coefficients, second order 
divided differences, the first order divided differences, divided by x2 minus xo. We look 
at the intervals here. This also keeps increasing as we go down or go up on the order.  
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So in general, we can write f of xo x1 up to xn, as the divided difference of just the level 
before that is f of xo f of x1 x2 up to xn minus f of xo, x1 up to f of xn minus 1. So that is the 
way, you are going to write. 



  
So you are going to write everything one order before. So here, notice that here xo x1 x2 is 
the difference between x1 x2 and xo, x1 divided by x2 minus x1 xo. So now, when I take f 
of xo x1 x2 x3, that is the next term here would be, we know that it is x3, the next term 
which we would write would be f3, would be equal to  ao plus x3 minus xo into f of xo x1 
plus x3 minus xo into x3 minus x1 into f of xo x1 x2, which we now know from that and the 
next term, would be x3 minus xo into x3 minus x1 into x3 minus x2 into f of xo x1 x2 x3. 
That will be the next coefficient. So this equation should determine that.  
 
So now again, instead of going through all this to determine f of xo x1 x2 x3, we could use 
a series from here. So then, we will have this term now, would be called f of xo,  x1 x2 x3, 
and this would be called f of x2 x3 x4, and this term here, that is, f of xo x1 x2 x3, this 
coefficient of the term which is the third order, or the fourth term, the third order 
coefficient, would be then given by f of x1 x2 x3 minus f of, minus f of xo x1 x2 divided by 
x3 minus xo. So that is the way we would write. So that is what is there in general nth, so 
when you go to the nth term we will take 1 to n minus 0 to n minus 1 divided by xn minus 
xo. That sets the coefficients. By this way we can divide, we can compute all the 
coefficients. So here is the table which we are going to try to construct here. 
 
So the table is here. So we have all the function values, all the points, and all the function 
values, and then we have the first order differences, divided difference, and then we have 
the second order divided difference, and then the third order divided difference, and then 
we will have one more here which will be the fourth order divided difference.  
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So in this way we can compute all of them in a more systematically, and this is easier to 
compute, easier to program, than actually doing each of these terms individually when 
you go to large order in the polynomial. So when you go to large order of the polynomial, 
it is easier to do it using the divided difference method. So here is an algorithm. Once you 



have this divided difference method and then to evaluate the polynomial again we will 
not use this. We will use the nested form which we mentioned earlier. So remember what 
was the nested form? We will not write the polynomial in this fashion. 
 
We will write the polynomial now as pn of x, then the nested form as ao plus a2. So we 
have x minus xo into a1 plus x minus xo into x minus xo into a2 plus x minus x2 into a 3, 
etcetera. So that is the nested form which we had. So we will have many things to close 
there. So that is the nested form which we wrote and that is what you would use to 
evaluate the polynomial at any value x. So we will use divided difference method to 
compute the coefficients by writing this 1 2 3, these coefficients, by doing this divided 
difference, and then we will use these coefficients and put them back here.  
 
So, let me substitute this, “ao” as f of “xo x1” and this will be then f of “xo x1 x2” plus x 
minus x2 into, etcetera. So that is what you will have. So we can compute it in this 
fashion much easier because it is again nested form and is much easier to program. That 
is what I have shown here. We start from the last term in the nested form and then we go 
up on the, in this case, so we will keep going up by doing this. So first we compute the 
last term. So that is the an. We know this coefficient, and then we go up. These are the 
coefficients which I have represented here as f of “f” square bracket xo x1, etcetera, and 
then we will go up from there. That is why I go from loop n minus 1 to n minus 2. 
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We will actually do this using an example. We will actually do this computation then, it 
becomes more clear. The idea is that if I have only 3 terms, so I have only my polynomial 
was, x minus xo into f of a1 and x minus xo x minus x1 a2, that is, if that is only a second 
order polynomial. And then I could stop here and I say that my function is, you see now it 
is only a second order polynomial. I know the function value at xo x1 and x2, 3 points. 
Then, I have a second order polynomial. And then the way I would use it in the nested 



form would be just to say that my function is actually equal to f of, my function is 
actually equal to, I start from this and I will say f is f of x0 x1 x2.  
 
So that is what I would say. That is what I call here by saying b1 equal to an, and then I go 
to the next point. That is n in this. In my particular case n was just 2. So I will go to the 
next one and I will say that I will multiply that n. i is n minus 1 here. This is actually i 
plus 1 is n. That is my function here. I multiply that by z minus the value which I knew 
this and then add the next coefficient to it. That is saying that is the next step. This is the 
first step, and the next step I will do, I will have to compute, then I will have to multiply 
this by that. So I will compute, multiply x minus x1 with this coefficient, f. That is what I 
did, and then I add the next one to this, that is, f of xo x1. That is what I get, and the next 
step I would take this f, this whole coefficient, and multiply that by x minus xo and then 
add ao to it.  
 
So that is what is here. So the term before that, you multiply that by x minus xo or x 
minus x1, whatever that number is. So this is now my new f, and then I take the next f. I 
will take x minus xo and multiply f and then add ao. So that is the step1, step2, step3.That 
is what it is here. This is exactly what is being given here. We can write this down and try 
to do this by substituting numbers here. You can see that this is exactly what I have 
written on this board here. So that is, now I give a small problem here which you can 
work out. We will just do that here.  
 
So we have, let us say, a function value function given at x “2.5” “3.75”, “five” and 
“6.25”, and the function values are given as minus “28.62”, “159.5131265”. So we have 
1, 2, 3, 4 points at which the function is known, and then we want to construct a 
polynomial which goes through this Newton using Newton divided difference method. So 
we will get a polynomial of order 3. So what we get is a polynomial of order 3 because 
we have 4 points here. So we will just, we will use this form to actually we will use the 
form which is given here, this function of order 3. So we will substitute the actual 
numbers for this, and we will just go on with this calculation. I am listing the values here. 
So the values of x and f of x, so they are “2.5” and minus “28.62”. And then I have 
“3.75”, and that is minus “159.36”, and then I have “5.0”, and that is minus “513.97”. 
And then I have “6.25”, this is minus “1265.45”, and I have this and then, I compute the 
first differences, that is, minus “104.592”. 
 
I am doing this computation. I am doing exactly this, that is f1 minus f0. I subtract this 
from this and divide it by the difference between these two. That is what I have done 
here. So I get this number, and I do the difference between these two, and divide it by the 
difference between these two, and then I will get minus “283.688” and I take the 
difference between these two numbers and divide it by the difference between these two 
numbers, and then I get it as minus “601.184”, and then I would take the difference 
between these two numbers, these two numbers, and divide it by the difference between 
these two “2.5” and 5, and similarly, I take the difference between these two and then I 
divide it by the difference between “6.25” and “3.75”. 
 



So that will give me minus “71.64” and minus “126.998”.Then I take the difference 
between these two and divide it by the difference between “6.25” and “2.5”. So that gives 
me minus “14.76224”.So we have all the coefficients of the polynomial 1, 2, 3, 4. The 
polynomial now is p of x, that is 3n is 3, would be equal to minus “28.62”, plus x minus 
xo is “2.5” in the nested form, then I will write that the next point as minus “104.592”, 
plus the next one is x minus “3.75” into the coefficient will be minus “71.64”.Then I will 
write it as, so I have the next coefficient, and then I will have minus “671.64” plus x 
minus “6.25”, and then I will multiply that again by minus “14.76224”. 
 
So that is the way, I would compute this. So I can close all the brackets. So I computed 
all the coefficients that is starting with minus “28.62” minus “104.592” minus “71.64” 
minus “14.76224”, and then I can write that in a nested form, and that gives me my 
polynomial. So you can see that x minus 2 x minus “3.75” and x minus “6.25”. So that is 
the, that determines the order of the polynomial. It is order of 3, the polynomial. This is 
my final polynomial, and then I can substitute any value of x and evaluate any value of x 
in between these numbers, and evaluate this polynomial. So we will see other forms of 
writing this, and some more problems in the coming class. 
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You could actually use this method to evaluate, to get a set of discrete points of log x 
between 1 and 8, and then you construct using this divided difference method, a 
polynomial, which goes through all these points, and then compare that with the function 
log x. So that gives you a good idea about how accurate your polynomial would be as you 
increase the number of points in between. With this, we will stop here. We will go to 
other forms of representing the polynomial in the next class.     
   


