
 
Numerical Methods and Programming 

P. B. Sunil Kumar 
Department of Physics 

Indian Institute of Technology, Madras 
Lecture - 38 

Fast Fourier Transforms 
 

In the last class, we have been looking at computing the fourier transform of a function 
using some numerical method and we look two methods, we looked at are discrete fourier 
transform and the fast Fourier transform. So that is, if you have the function values 
tabulated at certain points and then how do we compute the Fourier transform that was a 
problem.  
 
So today what we will do is, we will actually look at the implementation of these 
techniques that is fast Fourier transform and the discrete fourier transform for a set of 
values, for a set of function values which we know of that is we know the functional form 
and so hence we know the fourier transform or what it should look like and then we can 
compute them using this numerical techniques which we looked at in the last class.  
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Okay so we have the function values tabulated at equal intervals and we call them as f0, 
f1, f2 etcetera and let us take case 8, 8 such functions that is we have to tabulate them at 8 
points. So we have f3, f4, f5, f6 and f7. So we have the function values tabulated at these 8 
points and you want to compute the Fourier transform of this. So this had tabulated at 
equal intervals.  
 
So we set the delta x the distance between let us say this is f of x, now we are tabulating.  



So f of delta x is now t the whole time interval, whatever interval between these two is 
divided by n, let us say l divided by n in the case of spatial variable.  
 
Okay we divide this to n, where n is now 8 here and then we have these tabulated 
function values. So the notation we were using was that this f0 will be now be written as f 
subscript 0 and this as f1, f2, f3, f4. So we use this notation fn as the function value at n, at 
n th point. So that is the notation which we were using, we see that here. So we divide the 
total interval into n equal intervals and denote this function by fn, that is what we looked 
at and then we want to compute the Fourier transform as that.  
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So remember the Fourier transform which you are going to compute, is computed with 
this expression, right. So the idea I remember was that, we want to actually compute the 
transform and then we have, so we know that the discrete fourier transform can be written 
in this as fk, we normally write it as sigma e to the power of, so we say f of x right, f of k 
is f of x, e to the power of minus ikx. Okay that is what we will do for all x values, 
discrete values of x, we would sum over all x values.  
 
Okay so whatever limit are that is what the actual discrete form is but now we have 
replaced the x, the x is now replaced by, so now we are going to write x as some delta x 
times n that is our x and similarly, our k value is actually 2 phi divided by whatever be 
the interval is in this case t is the total interval and then, this total interval multiplied by 
some m is our km. 
 
So we have a xn, okay so we are going to replace this continuous variable x by a discrete 
variable xn which is delta x into n and km by some, this the smallest k vector which we 
can get which is 2 phi by the total interval divided by, multiplied by some number integer 
m. So we have these two discrete values and that is what we are going to substitute there. 
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So now when you substitute that in this we get the expression which I just now written, 
so I just say that fk is now become sigma fn that is our function value at xn into e to the 
power of I will say minus i omega 0, we set m times n.  
 
So now omega 0 is this value and omega 0 times n, that is what we are going to, that is 
the expression which we are going to write and now this sum goes from n equal to 0 to n 
minus 1 where n is the, so n is the total number of points. So if it is 8, it goes from 0 to 7 
that is the sum which we are going to write.  
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So that is the that is basically the sum which we want to compute. Now let us try to use 
this function here and this form of the, this expression for the discrete fourier transform 
first and compute the fourier transform of a function of this form that is a gaussian, let us 
take a gaussian. So we have a function of this form. So now I am going to write I have a 
function which is of this form.  
 
So that is my f of x and this is x let us goes from, it goes from now for specific example 
we take it from minus 1 to plus 1. So it goes to 0 by that almost to 0 by that time and 
actually the function form which I am going to use in the program is e to the power of 
minus 5 times x square, I know what the fourier transform of that is, so this will be the 
fourier transform of this would be some factor which is a normalizing factor multiplied 
by e to the power of minus k square by 20. 
 
So let us take this function and let us descriptize this into certain number of points like 
this. So one is this and then some equal intervals we will descriptize this function and we 
will call them as f of 0, f1, f2 etcetera. So, care should be taken that we are going to call 
this as f0, f1, f2, f3, f4, f5, f6 and f7 like that. 
 
Okay, so because of that my f0 value, so x0 value should be minus 1 not 0. So I should 
had x, n as delta x times n minus my total interval divided by 2 that is the xn I should 
actually substitute here and then this would be now, l is 2 the total interval okay that 
should be my form. 
 
So my xn interval xn is given by delta x times n minus l by 2 because I start from here. So 
l is my l is this total interval l which is equal to 2. So now that is what I have and then if I 
do this this form which is given normally in any text book which you look at for the 
discrete fourier transform what you see is this.  
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Okay so now that gets modified a little bit, now that will get e to the power of, an 
additional term e to the power of minus i phi to the power k. Okay so you will find this 
this should be k here, k is the integer. So you will get an extra factor here which is 
multiplying this and it would change the sign of all the odd k values. So that is something 
you should be careful about that is, if you are going for symmetric interval and then this 
xn is actually having an additional factor here which would show up in the fourier 
transform in the discrete fourier transform by this quantity which you can see by 
substituting this into this expression straightaway.  
 
So actually what you would be computing is this quantity just to get that correct and that 
is our program which you will look at now. So we look at a program which implements 
this. So here is the program, okay this program is a discrete Fourier transform. Okay so in 
this I am reading off the, I have a file called real data which is actually the data which 
contains this function.  
 
Okay so we can actually plot that and then see first. So we have, so we will plot this 
using, here is my plot of this function I guess you could see this that I have a gaussian 
function here which I have descriptized at 1, 2, 3, 4, 5, 6, 7, 8 points. So I have the 8 
points this is gaussian when descriptized. 
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I will use a different symbol, so you will see it better. Okay so here you can see it better 
here is the my gaussian function which is being descriptized now at 8 points now that is 
the function which you are going to use to the compute the, this is the the Fourier 
transform of this is what we are going to compute using the discrete Fourier transform. 
So let us look at that, this real data contains that 8 data points. So I have 8 data points, so 
n that is 0 to 7. 
 
So I put n equal to 7 here the value goes from 0 to 7. So starting from 0 to 7 it will read 
off that x and f values actually as you see that when you compute the discrete fourier 
transform actually where the x values for which this function is evaluated, that 
information is not here. So that is what I am warning you about this one.  
 
Okay so when you look at a standard text book and see that formula here we do not have 
the information about where the x values are as long as it is equally spaced this function 
should work, but to get these signs correct the sign of the Fourier terms, the Fourier terms 
transform correct we need to also multiply it by e to the power of minus i phi by k 
depending upon what your interval actually is where you start from. Of course you do not 
have to do this, if the if your origin was here that is if this whole thing is shifted then you 
do not have to use that here there is a shifting factor there which you have to be careful 
about.  
 
Okay so now you have the function read off here. So we will read the function values into 
this we are going to use only the f we are not going to use this x1 values at all, we are 
going to use only the f values here now this is our what I call in this thing as k my basic 
omega naught. So that is 2 phi by n plus 1 capital n is n plus 1 here capital n is 8. 
 
Okay so I am reading from 0 to 7 so n is 7 but number of points is 8. So that the smallest 
k value I have is 2 phi by n plus 1 that is 2 phi by 8 that is my omega naught. Okay so 



then for each of these k values, now I substitute I find this transform now we look at this 
here again that I want to find this sum.  
 
So now to find this sum this is a complex number. So now many of the languages like c 
does not handle complex number. So I split this into two and I would write this as sigma 
n equal to 0 to n minus 1, I would say fn now this would be written as cos and sine I will 
write it as cos of i omega naught, cos of omega naught kn plus phi k that is what I would 
have and then one that is first step and then I will say that this plus i times minus i times 
sine of omega naught kn plus phi k.  
 
Okay so that is the sum, now I split this into 2. Okay so that I can evaluate this term and 
this term. So that is the imaginary part and that is the real part. So, I do the real part and 
the imaginary part separately here. So i times, so I have the imaginary and the real part 
and the imaginary part separately, okay so that is what I have in this program here. Okay 
so I have the real part here and which is cos of the omega naught multiplied by the j and 
the i here.  
 
So i is my the k values, so i is the 1 which multiplies the phi also that is my k on the 
board what I have written this is k and this is j value is the n, when we say sum over so 
when we say j value goes over the function is evaluated at different j values and we sum 
over all j values that is 0 to n.  
 
So n little n which is 7 in this case, so I sum over all that i initialize the sums for the real 
and the imaginary part and I do the sum so then I have the Fourier transform. So now I 
can do this sum explicitly and I would get the Fourier transform for each of these i values 
up to n plus 1 by 2 that is what I am doing. 
 
So I take the first 4k values that is n is 7, so n plus 1 by 2 is 4. So I get the first 4k values 
here, 5k values and that is what I am going to print out into this file which is called which 
I call as dt underscore data, so discrete transform data. I am going to put that into that 
file, I am going to write the function values the real part which is sum the real part and 
sum one which is the imaginary part.  
 
Okay so I will write these two into this file and I will also write the k value, now the k 
value is phi times i that is my k value which I have, so I will write that also. Okay we will 
remember the largest the smallest k value in term in the real units in the smallest k value 
is 2 phi by this distance. So that is the smallest k value I have, so 2 phi by that distance 
that distance is 2 the smallest k value is actually the k small smallest k value is actually 2 
phi by 2, so that is phi.  
 
So that is what I am trying then phi multiplied by the integer multiples of that phi are the 
other k values, so I am writing that here. So I have the different k values and the real part 
correspond for the Fourier transform and the imaginary part of the Fourier transform that 
is what we have. So now this file I will plot this file now this file is I called dt data, again 
we will use the same symbol and so now that is the Fourier transform. So I have done 
only one part of the thing it is symmetric. 
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So as I said the Fourier transform of the gaussian is a gaussian, so now it is symmetric. 
So I plot only one part of the Fourier transform now which starts from 0 to 12 here. So 
this is one part of the Fourier transform and the other part is symmetric. So I did not 
compute that, so that is why I said only the first 5 of the fourier transform which we have 
computed here. So now we see that this is a pretty good gaussian and it actually fits in 
with exponential minus k square by 20, it actually fits into that I can show you that here 
we can see that it fits in very well through that curve let us increase the line width, the 
width.  
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So you can see this function this is the actual function, this green curve here is the 
function which I would have got if I had done the fourier transform analytically and I did 
an 8 point discrete Fourier transform and I get numbers which are pretty good. You can 
see that they actually go almost on to this into this line and considering the fact that we 
do not use 8 points to compute this, this is a reasonably good result that is a discrete 
Fourier transform implementation very simple to implement but as I said in the last class 
this requires n to the power of 2 operations. So it is not computationally very efficient.  
 
So we need n square complex operations, so instead of this n square complex operation 
we have done 2 times n square real operations by splitting this fourier transform here into 
two different that is a cosine and a sine transform and our calculation here the imaginary 
part of this is 0, in this particular, for this particular function. So we see that this is easy to 
implement and we can compute and we can obtain a reasonably good accuracy.  
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So now we look at the fast Fourier transform implementation as we said in the last class 
that this fast Fourier transform technique reduces the number of operations to n log n. So 
hence it is the popular the most used method for computing discrete Fourier transforms. 
So what was the technique the technique was that we would have the function values and 
we would split them into 2 halves and then take the sum between these 2 and then replace 
this function by the sum and take the difference between these 2 and replace this function 
by the difference multiplied by w to the power 2, w being e to the power of minus i 
omega naught, where omega naught is the same as just found out 2 phi by n that was the 
technique. So we just briefly go through that. 
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So we write the fourier transform in this case, the discrete Fourier transform as now fn w 
to the power nk that is what we write and then this w here remember is e to the power 
exponential minus i 2 phi by capital n, where n is number of points. So that is exactly this 
is the same as what we used in the discrete Fourier transform case, so we use this and 
then we just write that into 2 halves. So it is n equal to 0 to n by 2 minus 1 and n starting 
from n by 2 to n minus 1 that is what I just now said.  
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We split this whole interval into two intervals and write this as two different sums and 
then we notice that I can change a variable here and then make the interval, the range of 
the sum the same. 
 
So I will replace this n by m minus n by 2 and then write the sum as m equal to 0, n equal 
to 0 to n by 2 and m equal to 0 to n by 2 minus 1, where here now f instead of n here now 
it is fm plus n by 2. 
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So that is the difference and now we have 2 phi by n times k instead of n, it is m plus n by 
2, we have a change of variable here. So instead of the sum going from n equal to n by 2 
to n minus 1 we have made it to 0 to n by 2 minus 1. So that these two limits of the sum 
are the same and now I can combine these 2 and write it in this fashion and then I can 
write the Fourier transform, discrete Fourier transform now as fn plus e to the power of 
minus i phi k fn plus n by 2 e to the power of minus i 2 phi kn by n and that is what 
omega naught 2 phi n is our omega naught and e to the power of i omega naught is w.  
 
So this part is actually w to the power kn that is what we say. So now we notice that this 
is simply means that for all the odd k’s this is the plus sign it is a minus sign this is for 
odd k it is a minus sign for even k it is a plus sign. So we can separate out the odd and 
even sum that is the key observation for the implementation of fast Fourier transform. So 
this odd and even k’s can be separated here that is what we do and then we will write for 
the even function as plus, right even function now is plus. 
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So now k is replaced by 2k, so k goes from 0 to n by 2 and then we have all the even 
values computed here and the even values it is plus because e to the power of i 2 phi k is 
minus 1 to the power k and it is plus 1for even k and for odd k values, we know that it is 
minus sign here right. So because e to the power of i phi k is minus 1 it is negative for an 
even, for odd functions, odd values of k. 
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So we have the even and odd separated out. So let us write that here and that is what we 
are going to use in the program now, so and we will do that for the same function again 
so we are going to write this now as f0 minus f1 and f0 minus f4 and here we are going to 



write f0 plus f4, f0 minus f4 into w0 and here we are going to write f1 plus f2, f5 and we 
are going to write here f1 minus f5 w1 and here f2 plus, sorry I made a mistake here it is 
f0 minus f4 into w0 and here it is f1 plus f5 into w1 and then here we have f2 plus f6 and 
here we have f2 plus f6 at w square and here we have f2 minus f2 plus, f3 plus f7 and here 
we have f3 minus minus f7 times w cube.  
 
So that is what we have all the differences, the difference between the functions 
multiplied by the weights where, w remember is e to the power of minus i 2 phi by n that 
is w, okay so n is the total number of points.  
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So then this is the fourier transform of the, this is the first step of this thing and then we 
take this we call this as g0, g1, g2 and g3 and we call this as h0, h1, h2 and h3 that is what 
we did and then we continue this process again. So now we did this and we said that here 
I will replace by g0 plus g2 and this I will replace by g1 plus g3 and this is g0 minus g2 
multiplied by w power 0 and this is g0, g2, g1 minus g3 multiplied by w to the power 2 
notice that it is 2 and here, it is h0 plus h1 and here h0 plus h3 h2 and here it is h1 plus h3 
and this is h0 minus h2 w power 0 and here h1 minus h3 w power 2. 
 
We can do one more step, we can take the difference between now we have these 
quantities now we can take the, so we have divided this here 4 into 2 and now this has 
become 4, we have 4 divisions, 4 sets now we can this further here and take the sum and 
the difference and write that again.  
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Okay so now that is the key, way of doing the discrete Fourier transforms. So at the end 
of it we have the Fourier transforms listed here. So that is the observation, so we have f2 
k and then we continue this and writing its as the discrete Fourier transform and that is 
what we did.  
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So let us write it here in this fashion, so we start from here we want to take this as two 
sets. So look at that each step I go forward I divide the interval into 2 to the power of that 
step intervals, it is the first step I do 2 to the power of 1 interval I have the whole set 
divided into 2 to the power of 1interval that is 2 intervals and the next step I have 2 to the 



power of 2 intervals that is 4 intervals that is 1, 2, 3 and 4 and the next step I should have 
to do 2 to the power of 3 that is 8 there are 1, 2, 3, 4, 5, 6, 7, 8,. So it will be I have 8 
intervals and that is the n because I have only eight points  
 
So that means that the number of points to start with should be a power of 2, otherwise I 
cannot do this now that is the restriction we have with fast Fourier transform. So number 
of points you start with should be always a power of 2 in this case we have taken 2 to the 
power of 3.  
 
So it is a restriction on this, so now if you do this now if you take the sum and difference 
between these 2 functions and that will give us. So the sum and difference the sum 
between these 2 will give us f0 and the difference between these two will give us f4 
etcetera. Okay that is what it is and we also saw that what we get at the end is a jumbled 
up version of what we started from here now the f0 will be replaced by the fourier 
transform k equal to 0 but f1 will be replaced by the fourier transform for k equal to 4 but 
f2 will be replaced by the Fourier transform for f equal to 2, sorry that is f0 and that will 
be f4 and that will be f2 and this will be f6. 
 
So that is how it goes so f3 will now be replaced by f6 etcetera. So the way to see is the 
following that I have the function values written in this order now this is in binary 01, this 
is the least significant bit and that is the most significant bit. So I start with 0,1 this is 2 
and that is 2 plus 1, 3 and this is 0 plus 0 plus 2 to the power of 2 that is 4 and this is 5, 6 
and 7. 
 
So that is what we write it as in this in binary and the result we finally get would be in 
this form this will be replaced by the k value 0 itself and this will be replaced by 0 0 1. So 
we interchange the most and least significant bits, so that is what was 1 become 4 and 
what is 0, what is 2 will become 2 again.  
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So 0 1 0 and this will now go to 0 1 1, so that is why it is 6.Okay so what was 3 will now 
become 6 now this goes to 1 0 0. So that is we had here as 4 now that became 1, so 4 
becomes 1and then this will again remain as 1 0 1 because it is symmetric now this 
becomes 1 1 0 and this will become 1 1 1. So we had here to start with 0, 1, 2, 3, 4, 5, 6 
and 7 and the Fourier transform order will be again 0 and now this is 4 and this is 2 and 
this is 6 and that is 1and this is 5 and this is 3, that is 7. 
 
So that is the order in which it will come so it is not difficult to decipher what it is so it 
will come as the Fourier transform, if you pack the array with the functions in this form 
in this given as f 0, 1, 2, 3, 4 etcetera those functions by this algorithms which we just 
looked at Sand-Tukey algorithm, if you use that those functions would be the that array 
elements will be replaced by the fourier transform but for k values it is pointing to 0, 4, 2, 
6, 1, 5, 3 and 7. 
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So that is what we will get that is one points which you should keep in mind that first 
point is that we need a 2 to the power of n points to implement this algorithm and the 
second is that the array elements of the functional value array elements now replaced by 
its Fourier transform but in this order 0, 4, 2, 6, 1, 5, 3 and 7 that is obtained by reversing 
the bits, the most interchanging the most and least significant bits in the in this order that 
is what we will see now. 
 
We will see an implementation of how we implement such a algorithm in a program this 
is what we are going to see now. This is little more complicated than the discrete Fourier 
transform for obvious reasons but much faster and once we have implemented it is of 
course, it is much more easy to execute. Okay so let us see this now, we have the same 
thing that we have the function values evaluated here now one more problem with this 



thing is again that these w’s here which I have written remember they are complex 
numbers.  
 
So when I say w to the power 1, 2 etcetera these are complex numbers. So since 
languages like c does not handle complex numbers we have to handle the real and the 
imaginary part of each of them separately for each of these functions we have to have real 
and imaginary part handle separately. So I do that with starting from here itself, so this 
function has a real and imaginary part in principle even the input data could be a complex 
number. So we say this as a real and imaginary part that is what I am going to call fr and 
fi. 
 
So my array fr and fi actually handles that real and imaginary part of the function, we are 
again doing an 8 point fast Fourier transform. Our input in this particular case is real, so I 
am only reading off fr, fi is put equal to 0 it is a real function. So that is what the input 
value is, so now once we have the function value just print that out here not necessary 
actually.  
 
So we can remove this here and then we have now the question is how many steps do we 
have to go, so I said that we have to go in this steps. So till we reach step everything is 
only one function number of divisions is equal to the number of points which we have, so 
in this case we have 8 at the end the number of divisions should be 8. 
 
So that is what we have to do so we have gone 2 to 4 to 8 that is what we will do, so that 
many steps you have to do in this case it is 3 steps. So once we know that the n can be 
written as 2 to the power of some m and that is the number of steps which you have to go 
so that we have to compute this m that is the first step so first step if you are given n we 
need to compute what the number of steps we have to go and that is given by log m by 
log 2. 
 
So that will be in this case it will be 3, in general it will be log m by log 2 because we 
have to write our n as m to the power of 2 to the power of m. So I have to start with I 
have said that I have introduced a new integer m and I have put m equal to n and then I 
compute the number of steps which I require with this case l will be 3 remember that and 
then that means I have to through 3 steps.  
 
So this is the loop this loop here, this particular loop here is the one which would do that.  
So this loop goes l times, so that means it goes through step 1, step 2 and step 3 in this 
case so that is the outer most loop so that loop is to go step 1, step 2 and step 3. Okay so 
this division it will do. So in the first division that is when k equal to 0 in the first loop, 
we will divide m equal to we will divide m at by half remember m was n. So we divide 
that into 2.  
 
So that whole full interval, so n1 tells you the number of points in that interval, in each 
interval how much is that number of points start with the whole thing was one interval, so 
n1 is same as m, m is same as n.  
 



So take a minute to notice this, so I need to divide my interval, I mean to divide my 
whole set into several intervals and I should have 3 such divisions in this case because 
there are 8 points. So in the first set I have the whole thing as one interval that is n1 is m 
and then where m is n which is 8 and then I divide that into 2, so m is m by 2. So that is 
what I did.  
 
So this is basically saying that I take this whole set as one unit and then I divide that into 
2, now this is my n1 and this is m, m is the number of points inside this and then I have 
my k as 2 phi by n1, n1 is the interval and I know this is the smallest k possible.  
 
So now there is a reason why one writes it like 2 phi by n1 because notice that what we 
multiply here is w to the power 0, w to the power 1 and w power 2 and w power 3 that is 
in the first step when you go from here to here the multiplication is by 1 power 1, 2, 3 but 
in the next step the multiplication is by 0 and 2. So we do not want to, that is difficult to 
implement in an algorithm. So what we do is we always multiply it by 0, 1, 2 etcetera in 
all intervals but we change the w itself, the w itself we changed by dividing multiplying 
this power by 2.  
 
Okay so our omega naught in this case the way have written here the omega naught is the 
same it is 2 phi by n here 2 phi by n here. So what I do is I write w to the power 1, w 
power 2, w power 3 in this step using omega naught as 2 phi by n and in the next step 
instead of writing w2, I will write w1 w to the power 1 but I change my omega naught to 
omega naught into 2 that is this will become phi by n by 2. 
 
So that is what the reason why I write n1 here. So in the first step it is a full interval and 
in the next step next step when I go for k equal to 1, you can see n1 will be replaced by m 
value, m value was half that. So that means I will actually double my omega naught, so 
that serves the purpose instead of, for change in the power here to 2, I will change the 
omega naught I will double the omega naught. So that is what both are same, so now then 
I have to do that sum and difference and that is what has been done here.  
 
Okay so now what have we done we just replace this into the first the whole interval 
replace into two halves and then I find the sum and the difference here that is what this 
point will be doing now these two loops are basically doing that so how many times I 
should do that, that is depends on which interval you are now that is done here.  
 
So n1 is the size of your interval, so now this interval to start with n1 is same as the whole 
n so it is only one interval so I am just going to take the whole thing. So this loop in the 
first k value this loop runs only once j equal to 0 it will only run because n1 is the same as 
n which will be then greater than n minus 1, if you do that. Okay so the first step I go 
here and I just take the sum and difference here.  
 
So okay I replace, I store f1 r as the real part of a function and f1 i as the real part of 
function at i and f2 r and f2 i are the real part of the i plus m and the real and imaginary 
part of i plus m. So what am I doing, I am saying that when I go in the step, I have to do 
this divide this to 2 and I have to take the sum it has real and imaginary part.  



 
So that is i and that is i plus m where m is the number of points in that interval which is n 
by 2 to start with and I replace the real and imaginary part of this f0 by the sum that is 
what I have done here which is my g0 actually, the real and imaginary part of g0 and I 
take the difference between these 2 multiply it by w0 and write the real and imaginary 
part and store it the real and imaginary part of f4. 
 
So I do that here and then in the next step when I go, I have to do this twice for each 
interval now the next step when I go, I have to do this twice because now here I have to 
do it only once from here to here but here I have to do between these two and then 
between these 2 right. I have to take g0, g2, g1, g3 and then h0, h2 and h1, h2, h3 and that 
is what my j loop is doing here.  
 
So this j loop is basically doing that this is telling that how many times you have to do it,  
the first time you have to do it only once because n1 is just n. So this loop will be only for 
j equal to 0 but when we go to the next loop the next time that is k the next k value n1 is 
going to half, so that means I have to do this twice. So this j loop will run for 2 values j 
equal to 0 and j equal to 1. 
 
So that is what it will do that, so that is the basic idea here. So I have to do this replace I 
have to do this twice in that particular case. So the j value goes then not 0 to 1 sorry 0 to 
and then next 1 would be n1 would be now 4. So this j value will be 0 and 4, so that 
means that I will do 0 to 3,1 set and next j value is 4. So I start from 4 to 7 in another 1 
because I have that functions here replaced by 4 will be this h0 and 7 would be h3 for f7 it 
will be h3. 
 
So in the first set I do 0 to 4 and in the next set I will do 0 to sorry 4 to 7, 0 to 3 and 4 to 7 
sorry that is what you will be doing here and that is what it is saying here saying I should 
run from j value which was 0 in the second step first j value is 0 and to m minus 1which 
will be three and the next j value is j plus n1 which is 4.  
 
So i starts from four and goes all the way to 7, okay so that is the sum and the difference 
again we will replace. So now you keep doing this loop till we finish that, that is we will 
reach l, l is 3 here. So we will do it in 3 loops and at the end we have the function values 
now only thing one more thing which you have to note here is that when I do the 
difference I do fr and fi and fr i plus n and fr i minus n sorry fi i plus m.  
 
So now i plus m is replaced by this the difference right. So now there are 2 points here, so 
I have the real and the imaginary part. So the real part has 2 contributions one comes 
from the, so you have the this w to the power one now that is written as cos minus i sine.  
So we have this w0. 
 
So remember w to the power n is nothing but e to the power of minus i 2 phi by n into n,  
now that has 2 parts that is cos of 2 phi by n into n and minus i sine of 2 phi by n into n. 
So when I compute the, this itself is a complex number f0 and f4, f0 minus f4 is a complex 
number and now that I am going to multiply by another complex number.  



 
So I had to pick up the real the two contributions to real and imaginary parts. So that is 
what I have done here one comes from the real part of f1 r minus f2 r multiplied by the 
real part of w to the power n and then the imaginary part of f1 and f2 multiplied by the 
imaginary part of w that is the real part contribution and similarly for the imaginary part 
and with appropriate signs.  
 
So that is the whole process so then we can now write this function again we have to 
divide this by n the number of inter points which we use. So final value which you get 
here at the end divided by n is the Fourier transform and then we can compare that 
Fourier transform which you obtained with the fourier transform which you obtained 
using the discrete function. So that is, so now that is been plotted here. So the value 
which if you run that what we get is what is, so that is the value which we get.  
 
So now this is we can see is now we have to compare this with, now let us compare it 
with this now you look at this and this value here I have not written the k value I have 
just numbered it as 0, 1, 2, 3, 4, 5, 6, 7. So this is the order in which the fourier transform 
is going to come out and this is the real part and this is the imaginary part and the one 
which I am showing here at the bottom and this is the again this is the real part and the 
imaginary part of the first 5k values, the first 5k values which we have obtained using the 
discrete Fourier transform and you can see that the numbers exactly match but the order 
is completely different.  
 
So we have the same number but the order is completely different. Okay you can see that 
0 is the same as 0 and now what is one is now here what was one here has now gone to 0, 
1, 2 3, 4 here. So what is 4 here has become 1 there that is what we expect remember 
what was. So let us look at this way, so what is 0 here is the same as 0 there, now what 
has come out as one in the fast Fourier transform is actually 5 here, 4 here 0, 1, 2, 3, 4 
and that is what we see here we said that what will come out as one the first, this 0 and 
what comes out as one is actually 4 in the element, the array number one in the of the 
data will be replaced by the Fourier transform corresponding to k equal to 4 and now 
array number 2, the array element 2 that is f of 2 will be replaced by Fourier transform 2. 
 
So the discrete Fourier transform and the fast fourier transform should match at 2 that is 
what we would see so this is discrete fourier transform’s k equal to 2 and matches with 
the fast fourier transform’s k equal to 2. So ignore the signs here there is something more 
to the signs which I will just tell you here right now, we just look at the magnitudes and 
so here we get the same matching. Okay so the discrete Fourier transforms 2 matches 
with the fast fourier transforms 2 matches with that of the discrete fourier transform but 
remember the element number one here matches with the element number 4 in the 
discrete Fourier transform. So similarly, we can see other numbers also.  
 
So they match exactly like this. So now there is a problem with the sign now that problem 
with the sign comes from the fact that we had this e to the power of i phi which we do not 
take care in this particular Fourier transform. Okay so now if you have this code and in 
fact if you have this particular code and then we have one more part to be written which I 



did not show here that is to reorder the Fourier coefficients. So now we have to I have 
one more part to this program which would actually reorder this fourier coefficients and 
give us as f0, f1, f2, f3, f4 etcetera.  
 
So in that order, so we have to have an algorithm which would actually do this bit 
reversing and give us the correct sequences. So that would be the end of this section, so 
that is what we would want to look at here. So now we could actually add one more part 
to this and that is what we will see next that is how to actually reorder these coefficients 
such that we get the same order as the function value which has been put in.  
 
So to get the fourier transform into this of this array of functions in the correct order, we 
need to do a bit reversal and that bit reversal is done in this loop, the following loop. So 
remember those fr’s and fi stores the fourier transform and we saw that in the 8 point fast 
fourier transform which we had done we had the order as 0 and then we got it as 4 and 
then 2 and then 6 etcetera.  
 
So we want it as 0, 1, 2, 3. So now to get that we do the following  thing that is we start 
with an integer j as n by 2 that is 4 and then we run a loop from i to n minus 2 in steps of 
one. So whenever i is less than j we do we interchange between i and j, so there is no, I 
am not going to the details of how this algorithm works, the algorithm is arrived at but 
this algorithm works. So here that is start with the j which is n by 2 always it is and then I 
start from i equal to 1and reverse i and j.  
 
So the second point the first point is 0, we do not need to change anything that is f of 0 is 
same is f k equal to 0. So and then the next one is instead of 1 it comes as n by 2. So now 
in our 8 point fourier transform we got instead of one we got 4. 
 
So if it is a 16 point instead of one you would get 8. So we need to reverse that it is done 
here i and j are interchanged by storing first the i value into a temporary array for both 
real and imaginary part and then we would flip between the i and the j values and then we 
would go again. We will decrease k by n by 2 and if k we will run a loop till k is less than 
j plus 1. 
 
So remember we said n was j was 4, now k is 4here. So k is not k is equal to k is less than 
j plus 1 j plus 1 is 5, so we go here and change j to j minus k and k to k plus half etcetera. 
Okay so now you do this and whenever you come back into this loop here and whenever i 
is less than j you flip this thing. Okay so there are three four loops in this case one is start 
from j equal to n by 2 and then we go from i from I, 1 to n minus 2 and if i is less than j 
we make the flip and then we make it k equal to n by 2 and then say that you run find a 
new j and k value such that k is less than j plus 1. 
 
So by doing j equal to j minus k and k equal to k by 2. So you have to go through this 
loop till k is less than j plus 1 and then say j equal to j plus k and go back here again. So 
in the first case j was 4, i is 1 if you flipped j and 41 and 4 it came here now k is 4. So k is 
less than j plus 1 so we went here, so now j is 4 and k is four so j becomes 0 and k 



became 2. So k is not less than j so we so k is 2 here and j is 0, so we go back from here 
so j is put equal to 2 because k is 2 and j is 0. 
 
So we go back here and now i is 1 but then and the j is 2. So that is what we will 
interchange now, so we keep doing this till we get everything reversed. So remember to 
conclude here it is start with j equal to n by 2 and run a loop from one to n minus 2, i less 
than n minus 2 in steps of one and reverse and interchange i and j when i is less than j and 
then the next loop is starting from k equal to n minus 2 and then do this loop where j 
equal to j minus k and k equal to k by 2 till k is less than j plus 1 and then we come out 
put j equal to j plus k go back and check i is less than j or not if it is again interchange 
between i and j that is the loop.  
 
So what we get from this is the following if you do this and if I plot the Fourier 
transform, so if I plot the Fourier transform what we get is f, ft data. So that is the Fourier 
transform we get, so now it comes down like this here and then goes up again here. So 
you see this, so it comes down and it goes up again as you number goes we know that our 
real function was a gaussian.  
 
So now what we are getting here we know the fourier transform, of the gaussian should 
be a gaussian but that is not what we get we get it goes up like this and that is because the 
way f, ft works to get the correct fourier transform we have to cut it at the middle that is 
at the fourth point here and then paste it on the other side. So finally what we have to do 
is that the fourier transform comes in this array this is actually folded.  
 
So if you have 8 points in the fourier transform and after doing the bit reversal it comes 
from 0, 1, 2, 3, 4 correctly and then the other part we have to cut and then paste in the 
other side. So that is if I can do that here, so it comes like this. So it comes so this part it 
comes correct up to this and then it is going up again here. So actually we have to make a 
cut here and take this part and paste it on this side. So with that we can conclude the 
fourier transform part of this course.                   


