
Numerical Methods and Programming 
P. B. Sunil Kumar 

Department of Physics 
Indian Institute of Technology, Madras 

Lecture - 32 
Solving Ordinary Differential Equations  

Runge Kutta Method 
Today we will continue with our discussion on numerical methods to solve differential 
equations, ordinary differential equations initial value problem that is with all the 
boundary conditions specified at the beginning. So we were looking at the method 
called Runge Kutta Method in the last class, in which the function which we had to 
solve in the differential equations which we had to solve of the form y prime is equal to 
f of xy was split into 2 steps in the case of second order Runge Kutta Method that is 
what we looked at in the last time. 

(Refer Slide time: 01:51) 

 
So there is, so let us summarize that so we have been writing the differential equations 
of this form first order differential equations of this form f of x, y. So the prime means 
the first derivative with respect to x and this is the function of x and y then we said we 
looked at various different methods of solving such differential equations with all 
boundary conditions specified at the beginning that is the first order differential 
equation there is only 1 boundary condition that is specified x is equal to x0, that is the 
beginning as y0. So that is the initial value problem that is what we were solving and we 
looked at simple methods of solving this including the Runge Kutta Method.  

 

 

 



(Refer Slide time: 10:06) 

 
So in the second order Runge Kutta Method, we write the solutions as of yn plus 1equal 
to yn plus ak1 plus bk2 remember here or we mean by solving such a differential 
equations is to actually find, to find out what is the function dependence of y on x is. So 
y at x given interval x greater than or equal to x0 to less than or equal to x1 that is what 
we wanted to solve. So now we have to solve this numerically, we of course this 
interval into n interval,  n points and then write y of xn now we will denote this by yn is 
that  the notation which we use.  So y prime means the derivative with respect to x and 
y xn is yn.  

So then we wrote yn plus 1 there is xn plus the next interval from xn the next position 
after xn that is xn plus h can be written as we said, yn plus ak1 plus bk2 and we said k1 is 
the function at xn, yn  and k2 is the function at xn plus alpha h and yn plus beta k1 that 
was the method, that is that is the second order method Runge Kutta Method in which 
we actually wrote this as this form there is yn plus 1that is given yn given the y value at 
n at any point xn what is the y value at xn plus 1 that is the next interval xn plus h is the 
distance between xn plus 1 and xn.  

So what is the y value there that is given by yn plus ak1 plus bk2 where, a and b, a and b 
are some co-efficient just to be determined and k1 is the function value at xn yn and k2 
is this function value right hand side the derivative xn plus alpha h and yn plus beta 
k1where alpha and beta are to be determined. Then the technique we used  was to 
expand this we could 2 things we could say that y at yn plus 1that is y at xn plus h, I can 
expand it  around xn using a Taylor’s series expansion and say that this is equal to Y at 
xn that is Yn plus the derivative of this function Y prime at xn into h, I could write this  
in this form and then say the next 1 would be Y double prime of xn into h square by 2 
etcetera, I could expand this in Taylor’s series.  
 

 

 

 



 

(Refer Slide time: 10:16) 

 
So that is I would get order h, so remember h, h is the interval here that is xn plus 
1minus xn so we could get orders this order h order h square and order 0 terms in this 
expansion and then we could do we could obtain the same thing by another way that we 
could take this expression and then again expand the right hand side in the Taylor’s 
series. 

So when do that I can write this this we got let me call this as 1 and then we could start 
from here that is yn plus 1as yn which is yxn plus a times f of xn, yn plus b times k2 now 
k2, f is at xn. So f at xn plus alpha h comma yn plus beta at f xn yn we call this as fn now. 
So now what we could do is just we have expanded this on the right hand side right 
hand side of this equation we could also expand this function here and do the Taylor’s 
series expansion of that. So that would lead to yn plus af, we call f is f is at xn and yn we 
call it as fn, so we call that.  

So we say f is the value of f at xn and yn and then we could write b times I could expand 
this around that, that is f plus the derivative of f with respect to x, fx I call, that is  
derivative of x with respect to x into alpha h. So similar as this derivative of f with 
respect to x times alpha h and then derivative of f with respect to y and derivative of y. 
So I will write derivative of f with respect to y as del f by del y into del y by del x del y 
del x so that is2 times. Okay so I will write this as f times fy, f times fx, fy I am writing, 
I am writing fy as del f by del y into del y by del x that is why I am writing this.  

So that is k1 is f, so just write as beta f, so I could write terms all in expansion like that 
so all these terms. So then I could compare other terms of order this equation from this 
equation to this equation and then get the co-efficient beta b alpha and I will compare 
all alpha terms, order h terms and order h square terms between the equation 2 and the 
equation 1 and then I would determine a and b that is the what is the method was. 

   

 



(Refer Slide time: 10:44) 

 
So let me just summarize that once again here, slide I will write yn plus 1 as yn plus ak1 
plus bk2 and then where k1 is the h f xn yn and k2 is h f at xn plus alpha h, yn plus beta 
k1 and then I would just expand this term y at xn plus 1 using Taylor’s series expansion. 
So that is y at xn plus that is h times f which is the derivative and h square times the 
second derivative etcetera and then I would go back in their expand the terms, the term I 
would go ahead in the next equation that is I would write this, I would write this right 
hand side of this equation which is what written in the board and then I would write it as 
alpha h f1 plus beta k1 fy plus alpha square h square by 2fxx etcetera. 

 (Refer Slide time: 12:39) 

 
So now get these 2 equations by solving by comparing 1 and 2 and then we would write 
a equal to b equal to half alpha equal beta equal to 1 as the solution of these equations 
that is not the only solution of course because there are 4 unknowns ab and alpha and 

 



beta but this is 1 of the solution. So we make a choice here. We will make a choice here 
and we say a equal to b equal to half and alpha equal to beta equal to 1 would satisfy 
these equations. Okay that is what we have done in the last class let us summarize that 
here okay.  

So basically I take this expansion this, equation which is our solution and expand the 
right hand side and the left hand side and right hand side independently there is y and 
plus1is y, x plus h which I can Taylor expand using Taylor’s series and I can also 
expand beta k2 because k2 is that with term which also I can expand around xn yn and 
then compare the 2 expansions. So orders h square and h terms and then I would get this 
this term that I would get the expression with a plus b equal to 1 and beta alpha plus b 
beta equal to 1 that is what I would get.  

So these 2 expressions then from these 2 expression I can solve, I get that these 2 
expression I can solve get the solution that a equal to b equal to half and alpha equal to 
beta equal to 1. So that is the summary which we did and that would lead to an equation 
of the following form.  

 
(Refer Slide time: 12:51) 

 
So we would get the solution as if I use a equal to b equal to half and alpha equal to beta 
equal to 1 as my solution, as we just written here and then I can write yn plus 1 as yn 
remember, plus a is half so it is half times k1 plus half times k2 which is yn plus half 
times f at xn, yn plus half times f at k2 was f at xn plus alpha h, alpha is 1. So xn plus h, 
yn plus beta is again 1 yn plus1 k1, so k1is h times f it is h times f so it is h times f that is 
what we have to obtain. So I forgot to write h here, so there is actually h terms all the 
sequences we write remember k1 as h times f of xn, yn and k2 as h times f of xn plus 
alpha h plus yn plus beta k1there is h in this steps here okay. 

 

 

 



(Refer Slide time: 15:13) 

 
So I write all that here it become h by2, h by 2 that is the equation, that is what our yn 
plus 1 would be, okay so that is the Yn plus 1 so we can do we can write it in terms of 
this basically saying it is Yn plus half times h f derivative evaluated at xn yn and 
derivative evaluated xn plus h and yn plus hf. So now remember that this is nothing but 
our whole predictor corrector terms method which we looked at.  

So we said that there are 2 ways of in the first method we looked at simple extension of 
the Euler method that is in the Euler method we said that there if we want to go to the 
next terms next position on the curve there we use the, use the function value at the 
given position and then multiplied by the derivative of that function, add to that the 
product of the derivative and the interval that was the Euler method.   

That is in the Euler method, we choose to write y in the Euler method we had Euler we 
wrote yn plus 1 as yn plus h times f of xn, yn and in the predictor corrector method we 
said simple extension of this we said I can evaluate in to 2 steps that is 1 is this then I 
would say that I would evaluate.  

So this I call as yn 0 and in the predictor corrector predictor corrector method, we wrote 
it as yn plus 1, 0 as yn plus h times f of xn, yn and then we wrote yn plus 1 as yn plus h 
by 2 into f at xn yn plus f evaluated xn plus h, yn plus 1, 0. So in that method we had a 
predictor value for Yn plus 1 using the derivative at xn, yn and then we corrected that by 
taking a mean of these the 2 derivatives that is derivative evaluated xn, yn and the 
derivative evaluated at xn plus h yn 0 that is the predictor value and then we said that if 
these 2 does not compare this is yn plus 0, yn plus 1 did not compare then we go back 
and then do this again that was the predictor corrector method iteration.  

 

 

 

 

 



(Refer Slide time: 19:30) 

 
So here we are doing the exactly the same, we just saying that in the second order 
Runge Kutta we are saying the exactly the same, we are saying what we did by making 
this choice a equal to b equal to half and alpha equal to beta equal to 1is to go back to 
the predictor corrector and write it as Yn plus h by 2 into f at xn yn plus f at xn plus h, yn 
plus hf by 2 that was the simple our simple scheme of second order Runge Kutta 
scheme.   

So we could we could just look at an implementation of this here, is the code which 
does that. So this code would do a simple implementation of the second order Runge 
Kutta scheme. So I have again this code just like our numerical integration scheme here 
again we have x and y as descritised n points. So I have some given some upper limits 
as 2 and 0 this integral from 0 to 2 of a function.  

 (Refer Slide time: 20:59) 

 

 



So we will see what the differential equations is it takes some differential equation and 
then we have the first order differential equation and we have to solve the differential 
equations between 2 limits that is 0 and 2 that is our x1 and x0 and I will have end 
points I will choose end points in between we will see how we choose the end points 
and then I have 2 arrays here x and y, this is some points is again which I would put the 
values at which I am going to evaluate the function and that is the independent variable 
and the dependent variable y. 

So first our equation, so we have only y of x is the solution of the equation. So then I 
have given here some memory to that variables the point is x and y by using malloc 
function and then I will print out the upper limit and the lower limit in which we are 
going to solve the equation and that is this point and then we would say this program 
would ask the number of points which you like to have in between these 2 intervals and 
that is takes rid out from the screen as end points which is given to n here, so n would 
be the number of points at which you evaluate use you would use number of points used 
to solve the equation.  

Okay then we had we call this program called Runge Kutta 2, second order Runge Kutta 
I just denote that I could the function Runge Kutta 2 and to this function we will supply 
the number of points at which you would like to use the upper limit the lower limit and 
a point to the function call my function because I need to tell the program which 
function at which is, what is my right hand side which is because I am going to solve an 
equation of the form.  

(Refer Slide time: 21:17) 

   

 
I am going to solve an equation of the form Y prime is equal to f of x, y. So I need to 
tell the program what this function is, that is I would write a program separately for that 
function for that and I say, I am supplying to this program that is Runge Kutta second 
order the point to that function and remember, when you supply point to a function like 
that we need to declare it outside the main program that is what I have done here.  

 



So that the function is declared here as my function and it takes 3 variables and that is 
all 3 are pointers, is the 3 points functions. Okay so then we call that we call pointer to 
that function and then x and y values and this program should return to the x and y that 
is the function value evaluated at x that is what this program would written. Okay given 
the number of points which you like to use the upper limit the lower limit and pointer to 
the function which would give the right hand side of my differential equation y prime 
equal to f of x, y then I would this print out this into a solution a file is called Runge 2 
underscore solution dot dat. 

(Refer Slide time: 22:17) 

 
(Refer Slide time: 22:54) 

 
So now what is this program to this Runge underscore Kutta underscore 2 program just 
simply does the second order differential equation that is it just solves it write the 
solution as the yn as y of i plus the interval times dy dx and then y of i plus 1 as y of i 

 



plus the interval times dy dx that is derivative evaluated at xn and yn and the derivative 
evaluated xn plus h and yn plus the beta n plus f that is what we will see here.  

So first the program recall as this program Runge underscore Kutta which we call this 
program and then that will again the structure of this program is the following that we 
are supplying to the program the number of points we would like and upper limit lower 
limit and the pointer to the function which would give the right hand side and x and y.  

 (Refer Slide time: 24:50) 

 
So and then this program I am going to call in this so first determines what the x values 
to use so that x values is used as lower limit plus i times xp is the interval that is h of 
our equations is the interval between 2 points, I just divided that determines the 
intervals by equally dividing the whole interval upper limit to lower by n points, this is 
not required. We could have unequal intervals but we in this case simple division of 
equals intervals and then I have my x values. Okay I start with my boundary condition 
which is y of 0 is equal to 1. 

So I am going to solve this with boundary condition y of 0 equal to 1 and then I would 
first call that function okay now the derives is my function here okay so derives is the 
function which gives me the derivative of the right hand side.  

Okay so you remember this program, I pass to this program a pointer to a my function 
here. So I call my function and this program receives it as derives here. So that when I 
supply here a pointer to the function which is the right hand side of my differential 
equation as my function and this function here that is the Runge Kutta program is 
actually receiving it as derives. So this is and then it call the derives with the x value the 
y value at which I want to evaluate the derivative and this function would written the 
derivative at that point x and y, so  both xx and yy a point is  and dy dx 1 is also a 
pointer. So I have allocated memory for all of that here dy dx xy dy dx etcetera.  

So I give putting some values into xx and yy that is xi and yi the starting point i is equal 
to 0 let us say, i equal to 0. I put in the values xx and yy and it causes the derives and 

 



the derives would written that the value at where is the derivative at that point xx and yy 
I do the first step here that is to calculate k1. 

So the k1 is now I call yn here, so it is y1 plus x times dy dx 1 that is would be that is 
that is used to evaluate the first point I need to, remember compute this quantity to 
compute k2 I need to first know this point that is yn plus beta  k1, k1 is this. So h times f 
xn yn. 

(Refer Slide time: 26:03) 

 
So I need to compute this quantity first I make a call to the derivative program which 
would return to me this function, this function here and then I would multiply that by h 
and then add to this one, beta is 1 remember. So I get this then I make a call again to 
that program with this yn and then this x value and then I would return written k2 and 
then I substitute both back here I get the yn plus 1 here that is what I am doing here.  

So first take the x and y value that is x0 and y0, i equal to 0 and then I evaluated the 
derivative there and then I computed this yn that is y0 plus x times derivative and then 
went to the next point xx1 now I equal to 0 x1 and then I use yy this value and then 
evaluate the derivative again and now compute my y next as the yi plus the derivative 
times.  

The interval times the 2 derivative e 1 with xn yn another multiplied by h, h is outside 
here so 1 line derivative evaluated at xn  and yn and this is evaluated at xn plus h that is 
xi plus 1 times,  yn times h into the derivative at xn yn. So that and then I divided by 2 
and now this program will then the loop  continues for all i going form 0 to n minus 1 
that is n points will be evaluated and would that return that to the main program. So 
what is my function here, when this calls derives remember is map into my function.    

So my function is this simply saying minus 2 y. So what are the equations I am solving 
here is simply y prime equal to minus 2y, like we have done before, and with the 
boundary condition that y of 0 equal to .1 So that is what we are finding trying to solve.  

 



So we solve this equations  using this several scheme that is what the program is, and  
we can just see how it would run, okay now that is between the upper limit 2, lower 
limit 0 and the number of points we would use, we will use just use 5 points to evaluate 
that and then we can plot this. We can plot this function, so I have created a file there 
call rung 2 solution dot dat and we know the solutions to the actual the equation is 
exponential of minus 2 star x that is the actual solution the equation. Okay so we can 
compare these 2 using that is the solution.  

Okay so now here is the function we could change the points now this is red parts other 
1, we got the solutions of the second order Runge Kutta with these 4points, 5 points 
here 1, 2, 3, 4, 5, 6 points evaluated and that is green line is the actual solution to the 
equation so far.  

(Refer Slide time: 31:26) 

 
So we can see that the second order Runge Kutta is not all accurate 4, 5 point 
integration if you want more accuracy we have to go to higher number of point s which 
is not surprising because this method is just a predictor corrector method, just 1 loop 
and so accuracy is not expected to be extremely high.  

So the 1 way to improve the accuracy is to go into larger number of points here we have 
more number of points or go to higher order Runge Kutta scheme, when you go to 
higher order Runge Kutta scheme we would use instead of just using a function like ak1 
plus bk2 we would now use more derivatives that is, now we will evaluate derivative at 
more number of points. Here now, we are evaluating derivative only a 2 points instead 
of higher order scheme, we would evaluate derivative at higher number of points. Okay 
that is the higher Runge Kutta scheme. We can see that here for example the 4th order 
Runge Kutta scheme we would write yn as k1 plus 2, k2 plus 2, k3 plus k4. 

  

 

 

 



  

(Refer Slide time: 32:10) 

 
So again, so we will write that now we see we have to evaluate the these are all 
derivatives the right hand side the function of the differential equations see evaluate 
now at the 4r parts and it is called the 4th order Runge Kutta scheme function. In this 
4th order Runge Kutta scheme, we are going to write Yn plus 1 as Yn plus 1 by 6 times 
k1 plus 2 k2 plus 2 k3 plus k4. 

So this the this numbers that is 6 and 1 here 2, 2, 1 this is evaluated this also arrived at 
using a similar scheme as what we have done for the second order scheme that is we 
would write  yn as  yn plus 1 as yn plus and we say ak1  plus bk2 plus ck3 plus dk4 and 
then we would write k1 as the  function value itself there and then k2 as the function 
value evaluated at  x plus alpha h plus y plus beta k1 and then the k2, k3 would be then 
the function value evaluated at x plus alpha some alpha 1h plus beta 2k, k2 etcetera and 
then we will have to determine all those co-efficient by a Taylor’s expansion. But now 
we will again, we have to go to order higher than hq to get this to get this answers.  

So that is rather cumbersome but it can be obtained and then we would get this co-
efficient 1 solution to that would be of this form the co-efficient here are 1 over 6, so 
this will be 1 here 2 and 2 and 1 that is what the 4th order scheme. I am not going to all 
the derivation here but that is the scheme the scheme would be same as what we did for 
the second order Runge Kutta scheme.  

So now this is what k1 here is f at xn, yn and k 2 would be f at xn plus h by 2, h by 2, yn 
etcetera that is what we have to write. Okay so that the scheme is the full scheme is the 
following, so yn plus k1 by 2, so yn plus k1 by 2 and k3 we would need this we just write 
this on the board here that is h times h times f at xn plus h by2, yn plus k2 by 2. So and 
then k4 would be hf xn plus h, yn plus k3 that is that is the solution we have to write yn 
plus 1 as yn plus 4 derivatives. So evaluate the derivatives at 4 times. 

 

 



 

(Refer Slide time: 35:21) 

 
Okay and then the orders to determine this these co-efficient sitting here Taylor expand 
all  the way to h4 accuracy we are going to get that much  here okay and then we have 
k1as h times the function value and k2 as h times the function value evaluated  at now 
xn plus hn by 2 half the interval yn plus k by 2 and k3 is now hn the function evaluated 
at xn plus hn by 2 again but now yn plus k2 by 2 using this derivative and then k4 is the 
function value at xn plus h and then yn now is obtained using this derivative as yn plus 
k3. 

So that is the that is the 4 values k1, k2, k3, k4. Okay so then we use that k1, k2, k3, k4 
and then write the 4th order Runge Kutta as yn plus 1 by 2, k1 plus 2, k2 plus 2, k3 plus 
k4. So we can see this also implemented in this simple code, so the code is very similar 
what we had just used not different.  

So it is again same way we have first part of the code is anyway now not different, so 
everything is same we  just call here now instead of calling earlier Runge 2 and now we 
are  calling Runge 4 and again pass the number of points required the upper limits lower 
limits and pointed to the function which supplies right hand side the differential 
equation and we have the same the right hand side of the differential equation that will 
try to solve dy by dx is equal to minus 2y with the boundary condition y of 0 equal to 1 
and then we would get so now this program in this, in this Runge 4 program which 
receives all of that. 

Okay will have to evaluate the function value at 4 points that is what done here it uses 
the derives that is the my function which would supply to me given the x and y what is 
the derivative on the right hand side that point is now that is this function. So here I 
supplied to start with the first part determine the k1,  I supply x and y and I got the k1 
here that is my this my k1 then I say that by I do that in 4 different steps. 

 

 



 

(Refer Slide time: 37:18) 

 
 (Refer Slide time: 38:10)  

 
So first I do the way I do this program is to write each type as first I compute this and I 
say my Yn plus 1 is this and do first this sum and then to this sum I add 2 k2 by 6 that is 
k2 by 3 and then that to add k3 by 3 and then I add k4 by 6 that is the other way which 
we are going to do that in this in this program I am going to start with saying that yn 
plus 1 is equal to yn plus k 1 by 6 and then I would say, yn plus 1 is yn plus 1 plus k2 by 
3 and yn plus 1 equal to yn plus 1 plus k2, k3 by 3 and yn plus 1 is yn 1 plus k4 by 6. So 
just doing this in a serial order. 

 

 

 



 

(Refer Slide time: 39:01) 

 
(Refer Slide time: 39:32)  

 
So first i initialize yn plus 1 to this and then keep to that k2 by 3 k3 by 3 k4 by 6. So that 
is what the program is doing, is this just starting from that yi plus 1 is yi plus x times 
derivative that is the function value  divided by 6 and then it will shift now the xx to x 
plus h by 2 and y to y plus the h times the derivative that is k1 by 2 and again I will call 
the same program that is supply to new x value, y value it supplies the new derivative and 
then whole yn plus 1, now I am adding that divided by 3 that is h times this derivative 
evaluated with new x  and y value.  

Okay i divided by 3 and I do the steps once again with again shifting the x to that and y, x 
is again taken as the same x is xi plus xp by 2 y is now y of i plus xp times now this 
derivatives evaluated here divided by 2 and then I supplied that and then I get a new 

 



derivative and then I add that to yn plus. So I do that 4 times till the last points where xx 
is now xi plus h that is xi plus 1 and y is yi plus this derivative evaluated here and then I 
compute the new derivative at that point and add that to the function. So that is the Runge 
4, we can run the Runge 4 here.  

(Refer Slide time: 41:12) 

 
 
So we could again supply 5 points to that, okay and we can now upload that along with 
this function with Runge 2 we will have will also upload Runge 4 solution. So compare 
the by plotting the solution we got using a 5 points, second order Runge Kutta and 5 
points, 4th order Runge Kutta and that is what we do here and this is the plot we obtain. 
Now green line is the actual solution that is exponential minus 2x to a differential 
equation that y prime equal to minus 2y with boundary condition y of 0 equal to 1 and the 
red squares here are the 1 which obtain with 4th order Runge Kutta 5 points, we use into 
we got 4th order Runge Kutta here and now this blue circles are the one which we obtain 
with 4th order Runge Kutta using again 5 points.  

So we can see the difference in the accuracy is quite remarkable that we get into by 4th 
order Runge Kutta we get much more accurate values. So now that is we see that 
increasing the order of the Runge Kutta scheme but definitely increase the accuracy. So 
another way to increase the accuracy would be to use the lower order scheme but then 
evaluated the function value at use more points in some sense both require larger number 
of revaluation of the function. So that is now we do 4th order Runge Kutta we are 
actually evaluated the function valued 4 different points.  

Okay while a second order Runge Kutta we are only evaluating the function at 2 points in 
the in this interval between xn and xn plus 1. So that 1, okay we see the this this is 1 way 
of doing this increasing the accuracy but then again there is a question of what should be 
the interval between these 2 points should be, okay should I use the same interval for all 
the points which is what I have done here between if I look at the interval between xn and 
xn plus 1 they are the same. 

 



So the question is always should be use the same interval 1 would thing that since we are 
trying to solve an equation of this form that is y prime we say f of x, y so wherever the 
derivative is large okay we should go to smaller steps, finally we are writing the solution 
as something like this. So then we are saying that we using the derivative and to evaluate 
the function at the next points we use the function value at that point and the derivative 
multiplied by some interval that is the basically scheme all of these the derivative 
multiplied by that interval I would think that the derivative is large and then we should 
use the smaller interval. So that we get the higher accuracy because otherwise, you could 
have large here.  

So we should be able to write a program such a way that the steps sides that is the h 
function is not a constant but instead it changes depending on the function value itself 
that we call an adaptive steps side. So evaluate we look at the function value that is the 
function that is the right hand side of this equation, okay and see how big it is and then 
depending up on that we could choose the steps sides that is 1 way of doing it, another 
way of doing this  just say that I will choose a steps side and see what I would get and I 
would change the steps size and again I will go to the same point at xn value and then see 
and compare these 2 that is another way of choosing the steps sizes.  

(Refer Slide time: 44:55) 

 
Okay we will choose a step size such that we get a higher accuracy and where the 
function value is not changing to past we could use larger steps sizes and where the 
function value changing very past we would say smaller steps sizes whereas looking at 
this graph I would say that we should be using smaller steps size in this this region where 
the function value decreasing rather fast while we could use the larger steps size here 
where it is not decreasing as, so fast okay that is the basic idea beyond what is called the 
adaptive steps sizes algorithms. So we look at that now.  

So in adaptive step size Runge Kutta we would get the yn plus 1 from using a steps, 2 
different step sizes we could use the step sizes h first and then we could half the step 
size and then go to the same x value and that is in 2 steps now and we would now say 
that I would evaluate y at x plus h by using y at x plus some h times now let me use any 

 



of those scheme let us say Runge Kutta 4, second order Runge Kutta and then I would 
write this as f at k1 plus k2 by 2 right. 

So I just use k1 plus k2 by 2 where, now to determine k2, I would use h times f function 
value evaluated at xn plus h and yn plus k1 now this h, I use and I get x plus h that may 
be the first steps and second steps what I do is the take h to h by 2 and then I would 
evaluate the second steps would use half the step sizes and then I would say I will 
evaluate x plus h by 2 first, okay from y at x, now k1 and k2 evaluated at x1 plus h by 2. 
Okay that is function value h times the function value xn yn, h by 2 times now I am 
going by the step size half h is going to h by 2.  

So we will do h by 2 steps and then again the function value evaluated at xn plus h by 2 
and yn plus k1 and that is what I do and there is half outside again. So that will be 
second steps now I do this once again then go to y at x plus h, y at now x plus h by 2 
and then do the same thing again that is half times h by 2 now the function value xn plus 
h by 2 yn plus half yn at x plus h by 2. So then h by 2 times f at xn plus h now, yn  plus 
k1. 

  (Refer Slide time: 48:33)  

 
So I do this in 2 steps there is 1 step here and I do it in 2 steps. So let me call this value 
as y0 and this value as y1 and then I compute an error which would be y1 minus y0 
divided by y1 mode of that. Okay and then if this method f by values are correct then 
whether I should go by step h or h by 2, I should get the same answer that is would be 
this would be 0 or should be very small.  

So if this not small then I will go back to loop again and half the step again I will go to 
half the step again and then I will continue this loop till I get the same that is the idea 
behind adaptive step size. So what is the summary is the I do I go to x plus h in 1 step or 
I go to x plus h by 2 steps x plus h by 2 and then x plus h using hx here and x plus h by 
2, I go into 2 steps and I compare the values I get from these 2 and compute in error, 
now this error is significant.  

 



Okay compare to depending about what accuracy you want, if this error is significant 
then I go back here and again half the steps. Okay, now I say my y0 is this y1 and I will 
compute it y1 again by passing the steps again going in 2 steps.  

(Refer Slide time: 50:55) 

 
 

So I will keep doing this till I get the same values by this 1 and y0 and that is the step 
size and thus determine the step size and then I go to next point of the integration using 
that step size and as my initial step size prediction and then I will again check this value 
and if these 2 values are same that is the first steps itself I use these 2 values are same 
then I can actually increase my step sizes h, I can go from h to 2h etcetera.  

So I keep doing this that is what we will see in this particular program. So as I said that 
I will go in step size I choose interval h compute the value yn plus 1 okay and check all 
yn by a single step and half of the step value h and compute j call now y2 here again yn 
plus 1 and compare these 2 and define error here y2 minus y 1 by y1 and then I will say 
I will compare with some predetermine error tolerance the value which I have got.  

We can use this equation to solve the differential equation which we just looked at. So 
that is given here in this program. So I am using the 4th order Runge Kutta using 
adaptive step size here. Okay now this program is slightly longer because we have to 
determine step size, I have written it slightly differently.  

Now this function is going to call Runge Kutta order 4 now with adaptive step size that 
is what we are going to call okay I call this Runge Kutta 4 now this with adaptive step 
size  in this part we are doing only this now I have to cannot divide my interval now 
into some predetermine number of points. So instead of I will ask the program as for the 
step size initial guess to the step size, you give some step size and then the program will 
determine automatically determine by using this which I just described what is the 
actual step size, optimum step size to be used. So the only thing is to supply we have to 
determine the step size from the program. 

 



So we cannot divide into the number of intervals initially, so what we do is we will go 
by step by step it starts from x0 in this program and then we call this Runge Kutta order 
4 which will return to the y value at the next point and what be the next point is and that 
will be determined by what steps it will use right.  

So that is the what we have written we just start with give some x0 as lower limit, okay 
the y value this is the boundary condition y0 is 1. So this is the boundary condition I 
start with this boundary condition and I call this program which would return to me the 
x and y value and the step size it used to determine the x and y value at next points 
okay. 

So that is the and then I use that as the next initial value, I use the initial value to get my 
next points and I use that as the initial value call this program again and till I do this till 
the, it will reach the upper limit. Now I have to go step by step. So we use the x initial 
value x0 and y0 and go to the next step using the this program, okay and which will 
return to me the step size used and I use that and then go to the next and now I use the 
x1 y1 which would return it will return the x1 y1 what is the next point and the y value 
there use that point and go to the next 1 and determine the x and y the next points 
etcetera.  

Now how does this program determine the step size the method I describes. So it starts 
with step size which you supplied   this program we call that which is step size which 
we kind of predicted or we guessed then we supply the pointer to the function and xy 
value this is the thing which would return you come here and then it would use the x1 y1 
value as the value which we supplied the initial values and then we have tolerance 
which also we have to set in, set it here as 10 power of minus 2 is my tolerance and then 
it would determine the first step xn plus h and it will do this 4th order Runge Kutta 
points up starting from here.  

So we supplied the initial value and it is going to do x1 as x1 plus h, x1 is the initial 
value y1 is the initial guess initial value. Okay so it is going to take the x and y and then 
compute the derivative that is our k1 and then increase the step size by h by 2 using the 
step size which we guessed as an appropriate step size and will compute k2 and it will 
compute k3 and then it would compute k 4 and I will add all of them into y. So that y1 is 
at the end.  

So this is the same as the 4th order Runge Kutta we just look at so once we have the that 
y value this we now here we first loop at, i t is equal to 0 that is the first loop it will 
store that y value as yn and half the step size and reset the x and y values to the initial 
value which we just used so reset the initial value to this and half the step size it goes 
back here again and compute whole things again it will compute twice because i t  equal 
to 1 and then what it does it is this is the i t equal to 0 when i t is equal to 1 it will now 
store the intermediate value in y1 and x1 and starts again. So now it use h by 2 starting 
from x0 y0 and went to x1 y1 it computes that once again.  

Now it goes to h, okay x1 goes to h, y1 is now the initial value at here and it goes back 
and again computes that. Remember, this h by 2 because I put h equal to h by 2 here 
that is my initial value and it does 1 more loop and in these 2 loops completes that h and 
it comes out here, okay and now it has 2y values it has yn and a new y1 and now it 
compute the error y1 minus y1 by y1.  

 



Okay now the error tolerance is error is below tolerance and then it will say that the h 
next to be used 2 times h value of it is greater than the tolerance it will reset the yn value 
and the x1 and y1 value x0 y0 and half the step size further. Okay half the step size again 
and go back and do that again once more it continues this process and comes out with 
the x next, okay so now we will do the same thing here.  

So now we will do same function that is minus 2y, d1 equal to minus 2 y and we will 
run this and see what we get. So we will run this program here and we can compare this 
with our results. Okay, so okay we just use the Runge 4 adaptive dot c will compare the 
so just 1 initial step size we are going from 0 to 2 will use the step size as 1 okay and it 
has d1 something and we will just plot that here is the plot of the blue point  here the 
adaptive step size  we can see that the interval is now not the same all throughout larger 
interval and smaller interval there, so and the right point which you obtained here from 
the Runge Kutta 4 using 5 point integration. 

So here we see that again we got a very high accuracy we just started with step size 1 
which is different from what we use 1 because the whole interval is 2, so we suggested 
use step size 1 and which obviously and not satisfactory and g1 back and chosen a step 
size which is which fits into the accuracy, you want that 10 power of minus 2. So now 
that is the different methods which we have to use for solving a first order Runge Kutta, 
first order differential equation and we have seen that we could use the Euler scheme or 
use the predictor corrector scheme or use 2 different orders of Runge Kutta scheme, 
now that is all for the first order equation.  

So what we have to do a higher order differential equation let us say a second order, 
third order differential equations and then what we will have to do is split that equations 
into many first order equations and then use these schemes and that is what we use the 
same Runge Kutta or predictor corrector scheme that what is we would see in the next 
class.  

 

 


	Numerical Methods and Programming
	P. B. Sunil Kumar
	Department of Physics
	Indian Institute of Technology, Madras
	Lecture - 32
	Solving Ordinary Differential Equations
	Runge Kutta Method
	(Refer Slide time: 15:13)

