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Lecture - 31
Solving Ordinary
Differential Equations: Eulers Scheme

In the last few classes we have been talking about finding the integral of a function a
numerical, so today we will discuss finding the solution of a differential equation. So
what you mean by that is, if you have an equation of the form that is dy the simple
equation of this form the dy by dx is equal to f of x and you want to find out the solution
to this what |1 mean by that is to find out what is Y as a function of x. Okay that is what
you want to show.
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Okay now this is a simple ordinary differential equation of order 1. So in general we
could have our differential equation of this form d to the power n that is d x" there is the
nth or the differential, the nth order derivative equal to some function of the derivative of
order n minus 1 to, that is dy dx d squared y by dx square is the function of all of these
and d" minus 1 y by dx" minus 1 y,. Okay see in general it could be a function of all of
these guantities now we want to solve the equation which means that we want to find out
what is y of x and what is y dy by dx as a function of x and d squared y by dx squared as
a function of x etcetera, all the way up to d" minus 1 by dx power n minus 1. So that as a
function of x. So all find all this quantities and also y of x and all it derivatives. So if you
solve this equation what do you meant by solution would be that to find all this
quantities.



So that is what we meant by s solving a differential equation and there are many ways
doing this now what we are interested here in here is to find the, use some numerical
methods of solving such differential equation, such ordinary differential equations. So
ordinary in the sense these are the functions of one variable this is only derivative with
respect to x ordinary differential equation as a postscript partial differential equation and
the right hand side of the function could be linear or non-linear. So methods are generate
for this, so it could be linear function or it could be non-linear function it could be a
function of x and y are x squared y squared or for any power of x or any non linear
function of x and y from the right hand side. So it could be a function of x and y.

So start with, we will look at a simple equations of simple equation of this form that is
first order differential equation. So the power on this is tells the order of the differential
equation, this is a first order differential equation and we will start with that the first or
differential equation then we will see that all first higher order differential equation can
be in can be written as a series of first order differential equation. So numerically it is
enough to know a method to solve first order ordinary differential equation and then we
can generalize that higher order higher order equations. So that is what we you would be
looking at.
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Okay so it summarize this is the, this is what we want to do that we look at some methods
solving ordinary differential equations. So todays lecture, we look at a few methods how
to solve ordinary differential equations. So now as | said that we will looking at first
order equation to start with, so now how do we solve this to solve that we need boundary
conditions to be specified is now that is another criteria. So if you have a differential
equation of this form then you would say it is a nth order differential equation. So now if
we solve the nth order differential equation we need n boundary conditions. So boundary
conditions are the value of the function y and derivative specified at the boundary, so we
need that to solve this equation. Okay if you want to solve an nth order differential



equation we need n boundary condition. So here for example, we need 1 boundary
condition, so you could have we want to go in this solution has to be written from
starting, some starting x value from some ending x value.
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So X to x; okay this what would be solving this equations to, okay so you have to solve
all this equation first from starting from x value from some end x value and now if some
of the conditions specified, boundary conditions of the values of these has been specified,
some conditions can be specified at the beginning and some special conditions can be
specified at the end that is for example you want to know what is y of x it starting from x
IS equal to xg to x is equal to x; let say and then some of the boundary conditions can be
specified at Xy and some can be at x;.

So in general when you solve an nth order equation of this type and if all the boundary
conditions that is n boundary conditions as specified at x is equal to X, that is the
beginning value starting value then we call that an initial value problem and if some of
them are specified here and some of them was specified at the other end then we would
call that a boundary value problem. So there are two different kinds of a differential
equation, ordinary differential equations then the methods if we adopt for this as slightly
different. So you could have a repeat all the boundary conditions specified at x is equal to
Xo and then it is a initial value problem and if some of them specified here and some has
specified at the other end then it is called a boundary value problem. So what we are
looking at this few lectures would be a boundary value, so initial value problem that is all
the boundary conditions as specified here at the at the beginning that is a initial value
problem that is what we will be looking at.
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So it is summarize here, so we need to solve a differential equation of order n, we need n
boundary conditions. So now if all the boundary conditions are specified at the one point
that is a starting value of course not necessary that the starting value has to be the higher
value of x then the however it can be anywhere but one for ever we start the integration
and that point if all the values are specified then it is called an initial value problem, if the
if m of the boundary condition are specified at the starting value x is equal to xo and the
rest of them that n minus m where n is the order of the equation for the other boundary
then it is called a boundary value problem. So I guess this is clear.



So what will be looking at in this few lectures would be solving equations of this form
that is general, first general nth order ordinary differential equations, so linear and non-
linear with all the boundary condition specified at x equal to Xo. So we will have the
boundary conditions in this particular case the boundary case would be when you want to
solve these equations the boundary conditions are. So we call them as BC conditions
should be y at X, right and y prime at x,. So what do you mean by y prime is the first
derivative of y and y double prime at xg all the way up to y, minus 1 prime Xo.

(Refer Slide time: 9:25)

So this has to be specified to solve this equation as an initial value problem. So we
starting from Xxg to X3, so all the values of that function and its derivatives as specified at
X equal to xo. So we need that that is a that boundary condition is required to, so there are
n boundary conditions here. Okay now this is a notation which is going to adopt that is
prime means derivative with respect to x and for higher order derivative, we put them in
bracket if it is if a power is put in bracket that means the derivatives that many times. So
this is n minus 1 derivative of the function y evaluated at x equal to xo. So that is a
notation if you going to follow. Okay so in the in the past few lectures we had seen very
simple ways, some ways of integrating the function.

So we can use something similar, okay to find the solutions of a differential equations at
to so we will start with a very simple scheme to solve an equation of this type, you just
check to first order equation. So for the time being we are going to take the first order
equation and then we will come to the higher order equations later. So we are going to
solve the equations of this form y of x dy by dx is equal to f of xo using some simple
scheme for solving this equations to start with and we will go to little more sophisticated
schemes in the coming lectures sophisticated but more accurate and faster.

So here what do you want to find is y of x if I all values of x starting from Xq, X1 and we
have given y of X, as yo, okay now that is a boundary condition given to us the boundary



condition y of X, is equal to y that X, is yo we need onlyl boundary condition because it
is a first order equations so how do we solve such equation.
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So that is a dy by dx is now written as a y prime and the right hand side is the function of
x and y. So we will start an equation of this form, so now we need to desecrates thus
function this is at is all numerical methods for solving differential equations require at
that that is just like what we did for the case of integration, we need to desecrates these
function that is evaluate this function at discrete value of resultant value of x, and y, not



necessarily equally spaced but some discrete values of x, and y,. So what is again the
notation please, note the notation as even | say y, itisy at x of n, Xp.
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So what you going to do is, you going to split thus interval from X, to x; as X;, so we
have x values as Xq, X1 up to X, this X, being equal to x what ever the end value is x equal
to Xo, X start to x end. So that is being split into n different values when before we call us
yn is y of X, is evaluated, y evaluate x, is y of n that so we want to solve and what we
know is yq is y of Xo that is what start with and then | can drive write this function and
this derivative this equation | can solve as and say that I can solve it like that I can say y
as Xo plus x.
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So method is we start with the same y as Xo which we know and X, plus another value h
that is equal to y of xo plus dy by dx at X, the tailors series expansion into h and
something of the order d square y by dx square that is y double prime which is left on in
to x square. Okay right if something of the order by double prime h square is left off, that
is the error in this approximation if you now this looks familiar.

(Refer Slide time: 14:33)

Okay so we now what dy by dx is thus f of xy, so | can write this as y at xo plus f of xy f
at Xo that is yp into h. Now h is the interval between distance between X, and Xi, SO in
general I can write this as y; plus 1 is equal to y; plus f at X; y; into h, | hope that is clear
that we have, we can take any point and then tailor expander on that point and cutoff the



series at the first derivative and then I have the error of the order of h square h being the
distance between X, and x and then next sound which are taken desecrates here and then |
can say that y at xo y of xo plus h is y of X plus y of x; and y evaluated at X, y of X into
h is the function of that because dy by dx is f.

Okay in general | can do this expansion around any point. So if | know the x; value why
it is x; and then I can find y at x; plus 1 which is y x; plus h which is y; plus 1. So when
you write this again. So let us this is same as writing y at x; plus h equal to y of x; the
notation y at x; plus f of x; y at x; right. Now this is the same as that this is the general
formula which are going to use, okay if | know y at i equal to 0 then I can yo, if I know y,
and then | can continue and build up the function value the y value we go along. So the
idea service start from some point there is a initial value which we given to us and then
we built up using the local tangents. So what we are doing is that you have given x versus
y which we want to solve also and we have given the y value at x equal to X, some y
value given let take it as the and then we can given the local slope that is is the derivative
and then we have use that and then use we know the slope so we go there.

Okay using the slope and then we know the slope at that point and so we keep going in a
in some using some interval. So that is the general scheme, so we can we can do this this
way you can find out the points of all the function for y of x we can so that let me
summaries that again here.
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So that is called as the Eulers method is now what we describe this called Eulers method
the simplest way to solve a ordinary differential equation of order 1. So that is a
following that a we write a point notation x; plus 1 equal to x; plus h and we will taylor
expand y of x around that point and we write as y of x; plus h as y of x; plus h f of x; y;
now once we have that and then you start with y of X, and then we keep building the
function one after the other that different points in a serial manner.

So we will write it as y, plus 1 is y, plus h, f of X, y, plus some error term which is the
order h square y double prime evaluated using some mean value theorem. Okay so now
this is as you can see is extremely easy to program but not quite accurate and we would
introduced extremely small interval of h to actually get this function value you want to
use very small interval of h to get the accurate results for using this particular method. So
we will just see thus in a in a program it is a very easy to program, so you will as well
program this so we call Euler method.
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fFinclude <stdio. h»
fFincluds <otdlib . k>
fincluwde <math.bhs>
maind ]
|
FILE *fpl;
int i,J;Mpoints,mj
flsat “x,°y,Xxp,apper_lmt=2.0,lower_lmt=
.05
char fmame] 0] ;

priatf{™un lere, upper limit-%F; lower 1
imit=%f'\n"  upper_lInt, Lower_lImt]);

pristf{'""wn Enter no of pts you wamet:");

10, 9-1 Top

So the program is similar to the integration program which we had we shall seen in
earlier lectures that is we need a upper limit and a lower limit and we need to tabulate the
function to the x values, okay in our idea is to obtain to the y values. Okay so that is what
the summary we need to, we have the x values stipulated between the limits X, that is the
upper limit and the lower limit and the y values we need to get the y values x and y are
pointers here, okay so now we first give some, locate some memory to that points x and y
and then we can put in the x value, so we put in the x values here.
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int 1,],8points,n;

flaat ¢, ®p wp oppar_let=2. 0, lower_ |mt=
0.0,5;

char faase] 20 ;

priati{"™wn Here, upper limit=%f: lower 1
i t=if'\n" , upper_lnt; Lower_Imt];

|J-'I.'11'Ei": “Wn Enter mo of PLE Fou WART: )
wennf( 4" Epadnta)
w={ float *)malloc]{Npoints+:)* siceaf (]
oatll:
y=[float *}malloc{{Fpoints+1)*sizeni{f]
cat)}:

16, -1

(Refer Slide time: 20:07)

pria ':I.':_ “4n Epoter mo of pts you want: J;
pcan ] “Ed" | kNpainte)
a={fleat *)malloc]{Npoints+l) sizeal(l]
aatl):
yolf float *ymalloc{Fpoints+2 ) sicen (]
oat)):

ﬂ:.‘ipl'.'l'I.TIEEl:
wp={upper_lwt-lower_lat) Npeints;
for{i=0;i<=Hpoints; i++)

i

xli)l=lower_lmt+i*xp;

So this is now the lower limit at equal interval. Okay this is exactly same as what we did
for integration in the last class. So we have the x of i given by lower limit plus i into xp
being the interval are called h and the and the discussion just now this is the tabulated
values of x we obtain, so now we have a boundary conditions. So now trying to solve
what are we trying to solve, we trying to solve an equation of this form.
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xfi]=lower Imt+i=xp;
}

y[8]=1.0;

fpl=fopen( "Euler-solutioa.dat™ "™},
fprint£{ fpl ,"of Fa" x[8],v[0]);

for{i=0;1<=Npoints-1;i++)
{ ylist)=y[i]-xp*2.0*y[i];
fpriotf fpl ,"%f %™, x[i+1]),;y[i+1])

}
felase(fpl);

(Refer Slide time: 20:45)

So well and safe, you want to solve, so we trying to solve y prime is equal to minus 2y,
okay that is what we are going to solve, dy by dx is equal to minus 2 y that is a equation
that we are going to solve. Okay with the boundary condition that y of 0 y at x is equal to
0 that is y at x is equal to O is equal to 1. Okay that is all boundary condition, so we know
what is the solution to this analytically, so we can compare solution we know that y of x
is equal to exponential minus 2x right. So that will be the solution to this equation we
know that, so which satisfy the boundary condition that why at x is equal to 0 is 1. So
now we can solve this numerically that is what we then compare this results.
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A i]=lower Imt+i=xp:
I

y[8]=1.0;

fpi=fopen( " Euler-solutioa.dat™ ,"w");
fprint £ fpl ,"Sf CFR", x[8], y[0]);

for{i=0; 1<=Npoints-1;1i++)
{ ylist]=y[i]-xp*2.0*y[i];
fpriotf fpl ,"%f %™, x[i+1]),;7[i+1])

}
felese(fpl);

So we are using Eulers method remember, so my boundary condition is y of 0 is 1 and
then 1 go from 0 to n point minus 1 that is a interval, that is a n point is the number if
intervals of going to give which is read off here.
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priatf{“yn Here, upper limit=%f; Lower 1
imi =4\ n" npper_lnt, lower_Imt];:

pristl{™wn En%:r no ef pLs you wamt:");

era:!f“id“,&ﬁinin-e}

ol float *ymalloc{Hpoints+2 ) siceal (]
oat)):

y={float *)malloc({Npointe+l)*sireaf(f]
oat)):

n=Hpoints;

wp={ upper_lat- lower lat) 'Npeints:
for{i=0; i<=Mpoints; i++)

i

w[i]=lower_ lmtedi®up;

1&; el

So it would read of here, last few how many points you want to put in between the upper
limit and lower limit and then it reads that of in the screen and | will locate at memory
according to how many points, | wanted x and y and then | divided by interval 2n points
by using this. So xp is usually upper limit by the lower limit divided by n point that is the
interval and then I look of tabulated all the x value and then I go here and say that y plus i
plus 1 is as the equal interval okay y at i plus 1 is y; plus the derivative.
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yo[float *)malloc({Npoints+i)"sizeof{{]

n=NpolnEs;

A= UpfEE, Lat - lowes ].I.l.}-"H'Fn i,.-|lai
for{i=0; i<=Npoints; :Hﬂ

{

x[1)=lower_lmt+l"Xp;

1

yid)=1.0;

fpl=fopen(“Euler-solutioa.dat™ ,"¥"™);
tprimtf( fpl " SEe" x[0], v00]);
19, 2d=31 TO%

aps{ upper_Lat-lover_lat) Npoints;
for{i=0; ic=Npointe: i)

i

w[i]=]ower_lmtsd " um:

|

yL@]=1.0;

fpl=Ffopan(“Eul er-ealutios . dat™ , "w"™);
fpriotf fpl ,"5f SHe"™, x[2], v[0]);
tori{i=0:1<=Npoints-1 : 1++)
i yli+lj=yla]-ap*2.0%y[1]i

fprintfi fpl ,“Sf ".t"-,:n"l:l i+1]), vli+1]}

3, 16-33 §3%



So the derivative the function f is y;, so what we have we are going to use as the formula
y at i plus 1 isy; plus finto h. So f is minus 2 y is the y; minus 2 into h is what we are
going to use that is what here and just we print out this then we know the actual solution
if just run this and then see what will be get.
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for{1s; 1<=Npolnts; 1++ )
{
x[i}=lower_lmr+i*xp:

¥i0)=1.0;

fpl=fopen{ Euler-solutios.dat” "W )|
fprintf( fpl “5f SPe" x[@], y[0]D;
for(i=0; i<=Hpodnts-1;i++)
i yli+l]=y[il-ap*Z.0%y[i]:

fprin 'rf'-:fpl o R B =[i+1], pld+1])

50, L3-20
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Here, upper lisit=7.000000; Lower limit=0.0000
(1]

Enter no af peks you want: 10
[sunil@dali lectin]s ||

So this is Euler method, so we run this program and so we just run it for let say about 20
points in between 0 and 2 that is a each interval being “.1” h being “.1” so then we will
plot that thing if you the program we writing the result into a file called Eulers solution
dot dat that what I am writing the Xx; and y;-s again writing that into this this file. So we
can plot that value.
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shla From
ot inflo/ Tag,

T hl.'!ll L
it . sourcefoTge

d mls to
vte . msurceforgs

ferminal type set to 'xl1°
gouplets plot "Eular-solutien.dat” pt 3 ps 4
gnuplot:>

So with, we plot this this Euler solution dot dat. Okay here is my plot of the Eulers
solutions, we will compare that with the actual solution that is we know that it is

exponential of minus “2.*” x that is a actual solution we know that because we will just
compare that with this is what we will get.
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Okay so, we can see the solution this this obstetric which we see here. Okay is the points
which we obtain using this Eulers key and the green line which we see here is the one
which we obtain the actual solution, the real solution is exponential minus 2x is that we
have used 20 point to evaluate this integrant we can see that we have not quite on to the
line. We are half here by this line, so let see how many points will require to get to that
actual value. So we can run this program again if here now let us run it with some 50
points in between and then go back and plot that think again.
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Termipal Type 581 To X1l

gnuplats plot "Fuler=solutisn.dat® pt 3 ps
gouplet: plot "Euler-solution.datr” pr I ps
pl -2 0%x)

Hj:|1.|pt|.'-'tl pEu'I. "Buler-solutlen. dat " Ft 3 pa
pl-2.0%5) 1w 4

gnuplets 1. /&, owt

Hera, upper lisit=2. 000000; loswsr lisdit-=0.0000
L1

Enter no of pta you want: 30

I

gouplets plot "Euler-solutien.dat' pt 3 ps
pL-2.¢*c) 1w 4
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So now we are increasing the number of points. So we are getting better, so we can see
thus we increase in number of points, we go more close and close to them actual solution
we need to have a large number of point, so we use 50 points within 0 and 2 we get at
reasonable accuracy here of course depends on what accuracy you need to get again but |
can see that the simple method is not quite accurate we need large number of function
evaluation and very small intervals which can lead to other problems like round of errors
etcetera in our computation.
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So we are using such part of some other computation, so this large number of function
evaluate small intervals could also leads to other numerical errors typing in. So even
though extremely simple Euler method is not quite efficient, so we will try to improves



this methods slightly, we will try to device the scheme which will improve it around this
simple scheme and that is a what we call the predictor, corrector.
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The next method which is called the predictor, corrector method. So this is in different
from the Eulers scheme it just using the Eulers scheme but now we use an iterative
scheme which involves two steps, the first step you would evaluate just like in the Eulers
scheme y at x; plus h that is y; plus 1 as y as x; plus h times f of x; y; is that the Eulers
scheme right. We call that as the predictor equation, okay that predicts what is the y value
at x; plus h; so to distinguish it from the true solution you put a simple y,. Okay so it
does not mean that it is a O derivative it just yo just show that it is the predictor it is now
the actual solution. Okay so then the corrector okay the corrector is then what we do is
now instead of using just one derivative at the function at x; y;, now we will use an
average derivative of the function at the 2 at the 1 is the initial value and the other is the
predicted value, at the predicted value and then use that the average value as the
derivative and get the corrected y of x; plus h.

So graphically this means the following, so let me just write that now here we are doing
the same problem with boundary condition initial condition etcetera given. Okay and then
what we are going to do is to write y; plus 1as | set the predictor which is y; plus function
value f of x; y; into h. So function being the this derivative, so now that is like saying
that and then I use this quantity is the y; plus 1 and evaluate the derivative at that point y;
plus 1, okay graphically it something like this. So this is my y and this is my x; start from
somewhere here okay | have my slope there now the slope is let say like this and then that
is my distance h, if I go to this point using the slope, along the slope let I start from here
and | go to along using the slope along the slope | goat to this point by using the predictor
key and then | evaluate thus slope there. So | would now the next step would be after this
may be to evaluate y f at X; plus h comma y; plus 1c. So I will evaluate at that point.
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Okay so that is what | should I will do okay and then that is evaluating the slope at this
point and then | would takes as let the slope as somewhat like this point slope is like that
okay | take this function value the slope here and the slope here, okay and take the
average of that slope and the average of that slope okay and then use that to go from here
to here. So | will replace this segment here by average slope which | get which will be
now like that. So let me draw this little bigger, so I hope this point and then I choose this
is slope at that point. So then | would have an average slope which is like that okay then |
use that average slope go to the next point.

Okay that is what the scheme that is the corrector scheme is to say that y; plus 1 actual y;
plus 1 is then equal to y; plus let me call the two function that is h by 2 now at f value
evaluated at x; y; and plus f value evaluated at x; plus 1, f value evaluated at x; plus 1, y;
plusl 0. So now use the average value to go to that, so now this may not give me the
correct answer at so there will be difference between this predicted value and a corrected
value, okay then what I do is I will again go back here okay | will now substitute my y;
plusl, O as y; plus 1 obtain from here.

Okay and then evaluate this function f right that is the derivative at x; plus h, y; plus 1
and then | use that average derivative to compute y; plus 1 and now if there is a
difference between y; plus 1 and y; plus 1, O then I replace y; plus 1, 0 by y; plus 1 and |
go back here again and again compute this again come back here and check is there any
difference between y; plus 1 and y; plus 1, 0. So | do this as do this iteration again and
again till the difference vanishes difference between y; plus 1 and yx power | can define
an error epsilon as y; power 1 minus, so eliminate to the next step to be achieved look at
the difference that is epsilon as y; plus 1 minus y; plus 1, 0 divided by y; plus 1 module.
So now if epsilon is not equal to 0 and then | will go back just saying y; plus 1 is 0 is y;
plus 1 and then I go back to here to here. So that is what | will starts from here and
evaluate y; plus 1 using this mean derivative and look at the difference and if it does not



if the difference is not in this epsilon is not satisfactorily 0 something less than the
predetermine value and then I will replace y; plus 1 to y; plus 1and go back here and then
again do the step till left the epsilon is sufficiently small.

So now this method is called the predictor character method. So we can see this how this
would improve the simple Eulers scheme of just doing this one, you can have a simple
predictor character method also just do this one and do this again ones again it has
another scheme but the iterative scheme would be do this repeatedly till we get y; plus 1
till the epsilon below some predetermine accuracy. So it is smaller than predetermined for
satisfies our accuracy conditions, so we look at that implementation of this number.
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tor{1s; 1<=Npoints; i++)
{
x[i)=lower_lmr+i*xXp;

¥0)=1.0;
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fprintf( fpl “5f SPe", x[8], y[0]);
for(i=0;i<=Hpodnts-1;i++)
{ yli+ll=yli]-ap*2. 0%y[L];

fprintf{ fpl "5 0™, x[i+1],vl[i+1])
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So here is which would which implements it is that is a predictor collector code and then
again earlier the part of thing is the same you have the x values y values in the upper
limits etcetera specified. Okay now this x notifies this program little more general so |
have some subroutine here or function here | call this function. So this subroutine will
actually returns to me every time | call this one return with arguments returns to me the
function value and derivative value at that point. So | have design some more arrays here
which is xx yy dy dx and dy dx1. So that is this is a derivatives this is now | need a define
2 derivatives here because | want to distinguish between the actual derivative at x; y; and
this is the derivative at x; plus 1 and y; plus 1, predicted value. So that is dy dx and dy
dx1 the 2 derivatives, okay and this is the value which we are going to evaluate the
function xx and yy that is X; V.
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So then we reallocate some memory here using the malloc function for the x and y as
before we also allocate memory now to a xx, yy and dy dx dy dx; etcetera. Okay so we
need that and then we will compute this what we will do is again we have a initial
condition we have divided this interval between the upper limit and the lower limits
divided by n points. So that is xp is the intervals and equal intervals.

Okay | have tabulated the function though the function values into this value the x values
into this array call x, in equal intervals xp. Okay so now start with the boundary
conditions which is y of 0 is 1, so right now we will do that so we will first write this x of
0 y of 0 that is our initial values which is given to us that is written to this file called
predictor collector solution of that. Okay now you will write all this solution into solution
into this particular file. So now I start with error is equal to 1 to this solution at every
point starting from 1, i is equal to 1.

So at every i plus 1 point | need to solve, so if | start the first point put the error is equal
to one and | doing the xx and yy at x of i and y of i that is x of 0, y of 0 its the starting
value now | evaluate the function here | evaluate the function here. So I will get the
derivative at that point, so if | pass to this function the x value and the y value I return the
derivatives this is general. So if | want to do this program for a different differential
equation right now | am doing it for dy by dx is equal to minus 2 y but I do this for a
different differential equation in that case of | would replace this function.

(Refer Slide time: 36:58)



ey li+l];
printf(“Lfn™, are);
1
fprintf fpl “%F SFn" x[i+1]).p[i+1])

[

i
|

vold fumction (float® xx, [loat® ¥, Il
aat® dyds)

{

sdydus—.0° C*yy)

So this function here is simply here is simply returning minus 2 yy minus 2y. So
remember this are all of them are pointers. So I return them as that is why as an xy is
coming okay this dy by dx is minus 2y that is what it returns. Okay so | can, | will start
with that. So that | have a predicator equation here.
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for(is); i<sNpoints=-1;1i++)
{ err=1.0;

xx=x[1];:
function{xx, ¥y, dydxl ) ;

yn=y[i]+xp*(*dydxl);

while{err>1l.0e-4)
{

fxx=x[i+l];

So before here it is starting, so in this loop so this particular i value given that i value, |
can impute the next y value at the next point y, is the y next that y at i plus 1 predicted
value that is is y; plus the interval multiplied by the derivative, if the derivative is written
by this function dy dx1. So | have the function value written there correct, okay so then |
now go into the corrector loop.
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ynuy[i]+xp®( *dydxl);

while{err>1.0e-4)

i
"xxmx[i1+1];
"yy=ym;
functinﬂf::.yyldpd:};

¥li+1]=y[i]+ap* ({*dydx)+{*dydxl})/

err=fabs((y[i+1]-yn)/y[i+1]);
47 ,21-28

Okay now this is my corrector loop, so this is being predicted okay I then go into the
corrector loop under the corrector loop is operates still my error is less than 10 to the
power of minus 4. So that is a scheme here, so this is my predictor okay | just predicted
the value to the next value as y, is equal to y; plus xp time dy dx and then | go into do the
corrector here that is xx now is x; plus 1.

(Refer Slide time: 39:30)

Here, upper limitsZ.000000; lower Limdtw=d.0000
[1]i]

Enter no of pts you want:50
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gnuplot> plot "Euler-solution.dat’ pt 3 ps 4,ex
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gnuplot> !goe pr-cr.c -1lm
!

gouploat> !./ a.out

Here, wpper limit=3Z,000000; lower limditw={.0000
00

Enter no of pts you want: lﬂ

So next value and yy is y, the next value and then | call the function again | get the
derivative here. Right now | got the derivative and then I go to the next function value.
So now this is the corrected function value it is y of i plus the average of this 2



derivatives that is why dy by dx plus dy dx1 by 2 remember dy by dx is evaluated at i
plus 1 and the predicted y value and this is evaluated at i and y of I, then | compute the
error here as y; plus 1 minus y; divided by y; absolute value of that and then put the y
next now the next predicted value as this value which you obtain from here is the next
predicted value and will continue this loop till thus error is less than 10 power of minus 4.
So let us write this program here again so | would run this again as okay now we will run
this program we will run it again with ten points let us run it with 10 points. Okay and
now that is the now plotting that what you get from the predictor collector alone and we
will compare that with value which we get from compare that with actual value.

(Refer Slide time: 40:00)

So this the green line here is the value which is obtain from exponential minus 2i that is
the real solution and the red squares here are the 1 which obtain from the predictor
corrector equations. So we can see that the accuracies but we high let you the 10 points
and we can get this accuracy remember in the Eulers scheme a simple Eulers scheme, we
need to go to very large values of point that is where to use 50 point to get this kind of
accuracy. So the predictor corrector scheme definitely is much better compare to the
Eulers scheme but here again we are doing this similar technique that is we are actually
evaluating the function value at many times to get the to get the correct solutions even
though we have used only 10 points but you evaluate the function point at function value
at different many time each of the character loop, this character loop evaluated many
times to get the correct results, so it could also have the same type of numeric accuracy
problem you too round of errors as that the Eulers scheme but this is much better scheme
to that simple Eulers scheme. So we will go now to a slightly more sophisticated way of
doing this that is using what is called the Runge Kutta scheme.
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So now this is again a general method for solving first order differential equations, initial
value problems and this method is specifically for first order initial value problem and
higher order method derivatives can of course be split into the higher order differential
equations can be split into first order equation and same methods can be used to solve. So
I will just concentrate on the first order equation here so that it definitely provides the
much greater accuracy and now the same time we will not do any we will not do any
higher derivatives so something.
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So we just again going to use something similar to this actually work with the first order
derivative that is to evaluate the function evaluate i plus 1, | will be using only the first
order derivatives of course we can got the point here that is, that we can improve the
accuracy of this method by going to higher order derivative for function which is the this
may not be available to us. So we may have to compute them numerically etcetera but we
will not do that we will just stick to this first order derivative and then try to improve the
accuracy of this scheme. So that is 1 of those methods is what this is Runge Kutta
method.
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Now there are very there are different orders of Runge Kutta. So we will be first looking
at a second order Runge kutta to actually explain the basics idea behind this self method



and then but normally all the standard routines which we would see they will be using a
fourth order runga kutta, | will just explain what that it means actually in a few minutes.
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In a second order Runge - Kuila method, a formula
of the following form is sought

| {h bk

So let us look at a differential equation of this form as we have doing this and then write
the solution in this form that is we will write the solution that is y and plus 1 y and plus
ak; plus bk that is the basic idea of the Runga Kultta.
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So we want to write the solution that is y X; y, plus 1 that is y, plus 1 isy X, plus h as y,
plus some coefficient time a function k; plus another coefficient times the function ks, so



the case k; is equal to 0, k; is equal to f of X, y, we are back to the Eulers scheme which
is right. So that is the Eulers scheme, so that is so this method is ax you can see is
generalization about that k; is equal to this a is equal to h, a equal to 1 okay or a equal to
1 and k; equal to h times f of x and y introduces the Eulers scheme.

So you want to write this as slightly differently you want to say that this is ky is h times f
of x and y and so we will we are going to write this in this fashion k;is h times f of x,, y;
and we say k; is h times f of x,, we are going to write that x, plus h, y, plus beta times
ki. So that is want to we want to write is a alpha times h and so, x, times X, into X, plus
alpha time h and then y, plus beta time kjthat is the scheme we are going to discuss and
then our idea would be to determine thus alpha beta and a and b, if you remember in the
limit a goes to 1 b goes to 0, a goes to 1 and b goes to 0 that is enough then we have
enough to determine k. So and then k; is equal to h times f all x,, y, it is Eulers scheme
for that is equivalent to say in that alpha is 1, ais 1 and b is 0. So then we have the Eulers
scheme and in the case, the general case to the second orders Runge Kutta in the second
order Runge kultta.

So we are going to write y, plus 1 the next value of y as y, plus ak; plus bk, with k; as a
function of this form h is the interval between x, plus 1 and Xx,. So you remember h is x,
plus 1 minus X, and then the function value at x,, y, and Kk is h times function value now
evaluated at x, plus alpha h plus y, plus beta kj.
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So again you can see then you have choose the appropriate value of alpha, beta and you
can recover the predictor character from this. So we have only evaluating the first
derivative we are not going to any higher order derivatives so now the question is what is
what is the ab alpha beta. So we have to now determine this context such that gives you
the correct solution of good aquatics. Okay that is a scheme we have to find out okay how
do we determine ab alpha and beta. So what we have to do is the tailors expand the



function the function y at x, plus 1 that is what we called y, plus 1 you will tailor expand
that function that is just a while we do that here.
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Okay so what we are going to do here is, we are going to write y at n plus 1 as y, plus y,
prime that is derivative evaluated at that function times h right and then we can write at
the y, double prime at h square by 2 etcetera right. So now y, prime is f and y, double
prime, so y prime is f the function f, so y double prime is you know this is function of x
and y this 1 is okay, we have two terms one is fx that is derivative of this function with
respect to x and other term would be f times fy. So | am going to write this as y double



prime as a f prime as del f by del x as got 1 and del f by del y into del y by del x, fis a
function of both x and y remember right. So that is now fx is a notation for that and this
notation is fy that is f. So these two terms | can substitute that here, okay and then | have
some order h cube term in this equation. So we can write this as at the up to order h
square would be y, plus 1 as y, plus f times y, prime that is h plus fx plus fy into f and h
square by 2 similarly, I can write the next term which is of the order h cube term, okay
that is today way summarized here.

So you can write this in a derive expansion and can have the order h square term and
order h cube term. So the order h square term and order h cube term, so okay order h
square term is this one that is y and hf, h square by 2 and then I can again find the
derivative of this with respect to x. So | get a second derivative of f with respect of x and
then | have the derivative of the this terms, a second derivative of this with respect to x
that is fx and then I have fx, f xy into f and similarly, this expansion. So | have to find out
derivative before the third derivative, okay so that gives as a more complicated equation
you have f of x to 2 f, so 1, 2, 3, 4, 5 terms we can give this we can gives as and then
what we can do is so we have this equation here is a let keep this equations here.
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Okay some terms of the order h cube and then what we can do is we can take this k;
terms, okay now we have this y and plus 1 here and then what we can do is we will
expand this k, term around x and y, and substitute that here and then compare this 2
equations now this is a simple tailors expansion of this function this y, plus 1 then I will
now similarly expand this equation by expanding k, around that point let us do that here.
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So k, remember is awe have this equation with k, given as h into f of at x plus alpha h, y
plus beta k; so now | can expand this and then write this as h times f of x, y that is f. So f
of x, y called as f therefore f is here fx del x by del y that is fx times alpha h plus fy times
beta k right that I am expanding around x and y and then | have the second derivatives
that is | would have the second derivative function. So that will have f of x at alpha h
squared by 2 and then the higher terms. So | can write it is in full series so | would get the
series like that.
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Okay I can expand this k, around the whole function value in this fashion. So | have beta
k f of X, yn that is called f right and then | have the next term is the derivative of the
function with respect to x into alpha h and then the derivative of this function with
respect to y into beta k; and then the second derivative of this function with respect to x
is alpha square h square 2 and then the derivative of second derivative of this function
with respect to y that is fyy into beta square k; square by 2 and the cross derivative which
is alpha h beta ki fyy.

So that is all I have written here, complete that, that is fy, into beta ki whole square by 2
and then | have 2 cross derivative that is fy, that is derivative of this function with respect
to x and y and multiplied by alpha h, beta k; and then higher values. So that is what |
have so now what | will do is | have this equation and | can substitute that here right so
then I will get y, plus 1 now from this as y, and plus aki, k; is this f remember k; was
just x times f, so | have k hf because k; is h times f and plus b times k, now K in this. So
b times hf plus alpha h into fx plus beta k; into fy plus alpha square h square by 2 times
fxx plus beta square k; square by 2 times fyy plus alpha beta hf. So thus ky is f ky is just f,
we can write f there. So this is f times fy ky is f

So f times as alpha beta h now this term that is the alpha, beta h k; is f into fxy higher
terms. Okay so now | have 1 equation which comes straight from the tailors expansion of
y and plus 1 and then | have another equation which comes from the tailor expansion of
k> which is all f and x plus alpha h plus y plus beta k;. So now I get this two equation 1
and 2 compare this 2 equations okay | compare this equation with respect to this equation
so | will compare this equation which | obtain equation number one.
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Okay which I can write here again so and then | have the equation which obtain from n
plus 1 this is okay now | have compare this one with this. So let me write this equation
here again this is 1 equation no one and another equation would be obtain from that y,
plus 1 is equal to y, plus f times h plus fx plus f times fy f times fy times h squared by 2
plus higher value.
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So | can compare order h term with in this and order h square terms within this 2
equations 1 and 2 so remember this comes from the expansion of the k, term and this
equations comes straight from the tailors expansion of y and plus 1 and | can compare
this two terms and then fix the value of the a and alpha this two equations and the same.
So that is what the method is basically.
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So | can compare | can write this equation in this form of x square and order h and then |
can compare this with the simple tailors expansion of y, plus 1 this equation actually
comes from the expansion of k.
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So if I do that | would get the following equations a plus b is equal to 1 beta alpha b alpha
b beta equal to half, so now this is the two equation I will get now | have a 4 nodes, 2
equations so | have some freedom here to choose. So what we will do is we choose a
equal to b equal to half and alpha beta is equal to 1, okay we will make a choice like that
which satisfies this equations okay and that gives as what is called a second order Runge
Kutta equations. Okay we will see the application of this into a simple to solve a
differential equations which we just now solve that is dy by dx is equal to minus y and
compare that with others schemes which we have just done and then we will also go into
the next order, write down the equation for the next order Runge Kutta scheme that is
what we will do in the next class.



