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In the last couple of classes we have been looking at the numerical methods to calculate
integrals of a function that is we want to evaluate the integrals of a function which is
between the limits a to b f of x dx and we call that as i of f, that is what we have been
looking at. So we have been looking at a calculation of this quantity f of x dx as of for
any function f. So we looked at various methods for doing such integrals okay and some
of them | will just summarize here is one is the what is called the rectangular rectangle
rule, okay in this rule we wrote, we approximate the function I the integral of the function
by the function evaluated at one point multiplied by the whole interval b minus a,
remember b and a are the limits of this integral. So it is integral a to b and then we
evaluate the function at the first point a and then multiplied by the interval b minus a.

So that is one method which we learnt and then another method again which involve
evaluating the function only at one point which is now in the in between a and b that is a
plus b by 2 and multiplying it by the interval b minus a that is again another
approximation we call that as a midpoint rule. These are the two methods which involve
evaluating the function value at one point and then they were other methods which is |
have involved for evaluating the function at two points and one is trapezoidal rule, in the
trapezoidal rule we approximate the integral of the function in the interval a to b by f of a
plus f of b that is evaluated at the two ends divided by 2 into the interval b minus a.
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So this is 3 methods which we looked at using called the rectangle rule, midpoint rule and
trapezoidal rule these are all of methods which is a polynomial of order 0, approximation
for a polynomial of order 0 and then we looked at this first two methods polynomial of
order 0 and this is 0 th order polynomial, this first order polynomial and then we looked
at the next order polynomial which is the Simpson’s rule. So now, that involves
evaluating the function at 3 different points that is f of a, f of b and f of a plus b by 2.
Now you evaluate the function at the 2 ends and also in the middle and then write the
formula for the integral as b minus a by 6, f of a plus 4 f of a plus b by 2 plus 4b.

So all these methods the common features is once again you can notice is this that it is the
integral become a summation over a few points a function evaluated at a few points
multiplied by some appropriate weight factor ,so all of them actually writes it as some w;
f of X; . So on the first two methods we had only one point and then we had the second
the trapezoidal rule had 2 points and the Simpson’s rule had 3 points these are all. So all
these methods reduces this into have in integral will finally become something like w; f
of x; summed over i. So that is what the method finally would become, so all of them.
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So now we look at some actual a program which actually implements of this rule various
different rules rectangle rule, midpoint rule trapezoidal and Simpson’s rule and compare
get an idea about the accuracy of this methods. So we look at the function of the form f
equal to x squared e to the power of minus 2x, some function of this form and then we
will evaluate the integral the I of f will be interested in is integral limits 0 to 1, 0 to 1, x
squared e to the power of minus 2 x dx.
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Okay that is what we our interest would be to calculate this. So let us first plot this
function and then look at, so here is | am just trying to plot this function between the
interval 0 to 1, x squared e to the exponential of minus 2x. Okay between the interval 0 to
1 okay that is what | am going to plot. So that is the plot the function is like this, so that is
my functional form so you have some form like this I will draw that here again.
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So you have x, this is f of x and we have from 0 tolthis integral and it goes like
something like this. Okay that is what it is that is the form of that that function



approximately it is this way. So now we want to integrate the function from 0 to 1 and
using one of the methods which we have just seen.
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So we will go back to that, so we are going to use one of these methods. So let us first
start with the trapezoidal rule so that is saying | of f is b minus a into f of a, okay so in the
first rule we are going to use is trapezoidal rule in which we would write itas | of fas b
minus a approximate | of f by b minus a into f of a. So now as | said earlier that it is this
if you this is actually approximating the area under this curve by just a rectangle right as
we can see evaluate f of a and b minus a.

So fof ais 0 here. So if you evaluate just only at this point and then take this integral you
will get obviously you completely a wrong answer that this integral will be O right
because, the function is this so it is evaluated at a equal to 0 because our interval is now a
is 0 and b is 1. So if | evaluate this function at a equal to 0 then at x equal to x equal to a
then you are going to get O then we are getting obviously a wrong answer, okay and we
know the area under the curve is not 0.

So and so what we going to do is to break the limit, the trivial limit that is where we take
the whole interval 0 to 1 as just 1 we just mark this as one the whole interval 0 to 1 as just
one quantity and then and then evaluate this integral gives us a wrong answer. So then we
shall look we can split this into 2 for 2 equal intervals, let us say we have split this into b
minus a by 2 and then do this separately.

So that we can do right, so that is we split this interval a to b as 2 intervals and then apply
the rectangular rule for each of this interval that is | would write 1 of f now, okay | of f |
will now write as one goes from a plus b by 2 to f. So | will have this going from a plus b
by 2 to a so that is a plus b by 2 minus a that is the first interval and the function



evaluated at a and then I have b minus a plus b by 2 and the function evaluated at a plus b
by 2.

So that this trapezoidal, this rectangular rule is splitted into 2, okay one so 2 intervals and
then I will get now I can see that again this part will be 0 because f of a is 0 but this part
would be this part would be non zero which would be the area of this it will be area of
this rectangle.

So again there is error because obviously this whole area is left out so you have this error
but then we can improve the accuracy by splitting of this into more and more intervals
that is what we are going to look at. So we look at how the limit as in what limit or how
many intervals we need to get a realistic answer to this integral that is i of 0 to 1, X
squared e to the power of minus x dx. So the question to ask is that if | use simple
rectangular rule okay and evaluate this integral how many intervals | need means how
many breakups | should do for this whole interval 0 to 1, how many breakups | should do
to get a realistic answer, the realistic answer turns “.80831”. So we know the actual
answer is “.80831” to this. So we will see how we would how many points which we
have to use to get that answer.
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Okay that is something at which we would be looking at. So look at the program which
implements that rectangular rule, okay here is a is a small program which, so this
program has this program actually has for it has some it tabulates the points at x is our
number of points which we | am which we are going to evaluate the function that means
its equal to that the dimension of that should be equal to the interval a to b divided by the
number of points which number of divisions which we want. Okay that many points we
are going to evaluate this function.
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dinclode <stdio.h>
finclode <stdlib. h>
#include <math.h>
maini )

FILE *fpl;
int i,j,Mpoints,n;

float "'H,:tp,uppl*r_ lmt=1.0, lower_lmt=0.0

char foname[20];

printf{"n Here, upper limit=%f; lower 1
imit=%n" ,upper_lmt, lower_lmt);

printf{"“\n Enter no of pts you want:");
8,9-16 Top

So we are going to take the whole interval a to b and we are going to split up that into
some number of divisions and then use the rectangular rule for each of this divisions. So
that is the method we should be looking at, okay so this program to be given in an upper
limit to the integral and a lower limit to the integral we have given that as O and one
already. So here in the declaration of the variables | have already fixed this values, these
values are already been given. Okay they are floating points and but also given the
values. So upper limit is 1 and lower limit is 0 and then x is in a pointer as here and it is
going to be an our array. So to before I put in the variables into that | need to locate some
memory to that, so I use this malloc function to allocate memory to that that is here. So x



is been allocated some memory using this malloc function. So let us going to a detail of
that here okay.
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So I will have I am just splitting up the upper limit and lower limit here. So ignore this
particular statement we just printing out the upper limit and lower limit okay and then
here it ask this program as for the number of points you want to use, that is the number of
divisions you want to use, so number of points at which you evaluate the function, so you
enter that here okay.
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FILE “fpl:
int 1,],Npoints,n;
float “x,xp,upper_lmt=1.0, lower_lmt=0.0

char fname[20];

printf{"n Here, upper limit=%f; lower 1
imit=%"n", upper_lnt, lower_lmt);

printf(“n Enter no of pts you want:");
scanf("%d"” , &Npoints);
x=(float *)malloc{{Npointa+d)*sizect(fl

oat));

== INSERT --




So that minus 1 will be the number of divisions. So the number of points you want to
evaluate the function at and that will read off from the screen as the number of end
points, end points is the number of points at which we want to evaluate the function.
Okay that is in this interval we would be just splitting into many intervals.

Let us say right each of this interval, so now | will label this as x;’s okay so Xi, Xo, X1, X2,
X3 etcetera. Okay that is the number of points which | want to evaluate, so in this
particular graph now I have drawn that 1, 2, 3, 4, 5 points at which | am evaluating this.
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So that is the number of points and once you given the number of points that many points
I have to store in the x variable right, the x is my array which has this X, Xo X1 X, etcetera
but x is declared as a pointer. So | need to now allocate memory to that before | put in
some values into it, so that is here. Okay so number of points plus 2 into size of float is
the memory | had to because x is the floating point, so | need to allocate memory to that.
We have seen this malloc function here is the use of that malloc function to allocate
memory to this X, okay so then now the x, is my interval. So | have dividing this into
equal intervals okay this inter this whole this whole distance 0 to 1, I am going to divide
them into equal intervals.

Okay so | am just going to say that it is the interval distance is the upper limit minus the
lower limit divided by the number of points that is the interval then we have x; values, X;
values are then lower limit plus i, i goes from 0 to n points i lower limit x of i plus x of i
is equal to lower limit plus i times the interval right, when 1 is equal to 0 x of i is 0 x of i
starts from 0 and when i is n points that is i is the number of points and then this equal to
the upper limit right, because x, is upper limit minus lower limit by n points.

So if | substitute that here you see that at n points it is upper limit and i equal to n points
it is the upper limit and I equal to O it is the lower limit. So x of i was from lower limit to



the upper limit in n point in X, interval using n points. Okay so that is what it is and now
up to this it should this part of the program this whole code up to this it should be
common for all methods we are going to mention here that is the rectangular rule, the
midpoint rule, the trapezoidal and the Simpson’s rule, all of these we will use the same
part same program for all this except the last part where we actually compute the integral,
that is this part when we actually compute this part we would change the part. Okay now
here let us say we are putting n points equal to 1, okay that is only one whole the whole
thing is just evaluated at only one point okay then this will be basically 0 right because x
of i is 0 and we know that it is this integral will be O because f of a will be 0.

So we will see what the accuracy is we will run this program. So you can see that here
what | am doing is | am just writing X, that is the interval okay now if my n points is one
the X, is just whole of my b minus a, otherwise its b minus a by n points. Okay each
interval this this this is the length of each interval multiplied by the function, the function
is X square this power by using the power function which is built in the program built in
the function in the math library that is it calculates the x to the power 2 and exponential
another built in function that is minus 2 into x;. Okay x squared exponential minus 2x;
that is what 1 am computing here okay and | just summed up, sum up all these quantities
okay.
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n=Npoints;

xp={upper_lat-lower_lst) /Npoints;
for{isd;i<=MNpoints;i++)

{

x[i]=lower_lmt+i*xp;

}

5=0.0;

for{i=0;i<=Npoints-1;i++)

{ SweS+xppow(x[i],2)%exp(-2.0%x[1]);}

printf{“%d %f'n" Npoints,5);
3
&
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So | basically reduce that into this sum, so b minus a is now split into b minus a by n
points and f of a is evaluated at 8 of that starting points then it become a sum okay so it
becomes w; f of x; kind of sum. Okay so it will become a sum like this that is what | have
done where w; being just b minus a is a simple weight, the weight is simply b minus a
divided by the number of points, okay that is the weight w; in this case okay that is what
we see here and then | just print out the answer at the end. So this this the row which
computes that sum is over here and then I just print out the answer here, okay that is the
program is okay.
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So let us look at this program and just run this and then this is rectangular rule and minus
Im because | am using all those math library functions like exponential and power. So |
need that, so | run let us compile and run the program so now upper limit is 1 printing out
that here the upper limit is 1and the lower limit is 0. Okay that is what it is printing out
and its asking for the number of points you want to evaluate number of intervals basically
number of points you want that is the splitting you want, let us put it as, let us say 5 okay.
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[sunil@dali lect30)3

[sunil@ddali lect30)s

[sunil@dali lect30]3

[sunil@dali lect30]3

[sunil@dali lect3i0]$ gcc rectangular.c -lm
[sunil@®dali lect30]$ ./ a.out

¢, upper limit=1,000000;: lower limdit=0,0000

Enter no of pts you want:5
5 0.067270
[sunil@ddali lect30]3

So we get the answer to be “.067270” so 5 values which we have evaluated the function
and we are getting it as “.067270” while we know the correct answer is “.80831” okay



you can do this analytically you can see that this “.80831” is the correct answer to this
equation to this integral.

Okay so we have to obviously have to increase the number of points okay we just
increase it to be 10, okay so we go from “.067” to “.74” and we go into 20. So we get
“.77* we go onto 100 points and then get “.801” so we are slowly approaching the correct
answer but we already split this whole interval into 100 sub intervals to get the, to reach
that answer. We have still an error in the second third decimal places so we need to get
“.808” we are still at “.801” at 100 sub intervals so we go something like 200 we still
have an error in the 3rd decimal place in this here okay this “.804” *.0804” 4 decimal
place “.0804” well the answer is “.80 the answer is “.08” that is what the answer which
we should get.

(Refer Slide Time: 18:44)

[sunil@dali lect30]$ ./ a.out

Here, upper limit=1.000000; lower limit=0.0000
oo

Enter no of pts you want:100
100 0.080154
[sunil@ddali lect30]$ ./ a.out

Here, upper limit=1.000000; lower Limdtw=D.0000
[1]1]

Enter no of pts you want:200
200 0O, 080493
[sunil@dili lect30]$

So we saw that if we the simple rectangular, rectangle rule and split this interval even if
even into 100 sub intervals, we still are very far from the actual answer to this interval
which integral, which should be “.080831” so it will take it takes us lot of function
evaluations and the sum to get this integral correctly and if we use a simple rectangle
rule. Okay now let us do the same thing okay using a midpoint rule okay now we will use
b minus a into f plus f into a plus b by 2.

So again | will use the next one that is will use function value evaluated at f plus a, b by
2. Okay that is what we are going to use in the in the midpoint rule. So that means now
we going to evaluate for each sub interval the function evaluated is middle of that interval
okay and then we will exactly do the same calculation then will see what happens.
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Okay so now here is the program which we would use midpoint rule, so it is the same
program now not a different the top part is exactly the same okay and only now the as I
said where we exactly actually calculate the sum that is where the change is s equal to 0
before the loop and inside the loop you will take the number of points then evaluate the
sum of all the function products. So that is x, multiplied by the function values now the
function value, now there is a change here the function value is not evaluated as x of i
now.
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n=Npoints;

xp=(upper_lmt-lower_lmt) Npoints;

for({is0;i<=Mpoints;i++)

i

x[i]=lower_lmt+i“xp;

}

§=0.0:

for{i=0;i<=Npoints-1;i++)

{ SeS+xppow((x[i]+x[i+1]),/2.0,2)"exp(
=2.0*(x[i)+x[i+1])/2.00;}

printf("%d %fn" Npoints,5);

24 ,23-30 Bot




Okay now | am taking x of i as x of i plus 1 by 2, so | want to keep this thing as constant
that is what we give is the number of points at which the function is evaluated okay.

So when | say n points that is the number of points at which the function is evaluated that
is what we are going to give. Okay and then we are going to use this rule, okay so now
when | so again | evaluated lets say at 5 points, okay now | am going to take this as an
interval and that as another interval because | need to evaluate this f plus f of a plus b by
2. So | am going to do this as an interval and that as another interval, so actually when |
again | need, 1 calculate the function at 0 X1,Xo, X1, X2, X3, X4 Okay and then | will
evaluate the function at very alternate points.

(Refer Slide Time: 22:25)

Okay that is what | am going to here. Okay so | have evaluated x of i plus x of i plus 1 by
2 okay so in the middle of every interval, okay so | take this interval and | evaluate the
function at this in the middle of that interval okay. So when | say here the number of
intervals is 10 is actually we are evaluating the function only at 5 different points.

Okay so now let us look at this this points, so that is f of a so that is interval b minus a
that is for each interval that is X, now that is b minus a divided by n points and the
function evaluated here at the midpoint that is x of i plus x of i plus 1by 2 power 2 right
that is x squared exponential minus 2x of i plus x of i plus 1 by 2. Okay that is | have
written it that way, okay that is exactly this if | write this in this form | have writing this
function now as this way. So the function is x; plus Xx; plus 1 by 2 it is see it. So it is X;
plus x; plus 1 by 2 the whole squared right that is x squared and e to the power of minus
2, X;i plus x; pluslby 2 that is x of i.
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n=Npoints;
xp={upper_lmt-lower_lmt)/Npoints;
for(i=0;i<=Mpoints;i++)

{

x[i]=lower_lmt+i*xp;

}

5=0.0;

for(i=0;i<=Npoints-1;i++)

{ S-5+xp*nnn{{rli]t:§itlJ}fI,ﬂ.I}*expE
=2.0%(x[i)+x[i+1])/2.0); }

printf{"%d %f'n" Npoints, 5);

24,23-30 Bot
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So that is, so that is what | am evaluating here, I have written like that okay. You could
cancel this two and two but just for clarity just we show you that this actually evaluated
at the midpoint between this intervals i and i plus 1 that is where |1 am evaluating the
function. So we will run this program, so before we do that we will make two different
output files as we compile the a rectangular method, the method we were using
rectangular method. So that program we will compile as and store it as RAC.

So that so when you run RAC then | am running a rectangular method. Okay now
similarly, 1 will do the midpoint method and then when you compile that and keep as



MID. Okay so if I run dot rec then that means | am running the rectangular method and
so if I run dot mid then I am running the midpoint method. So if run dot RAC I run it
with five points | get the answer as “.067270” where | should be getting as we have seen
that “.8, .08, .3 08031831” that is what the answer should be.

(Refer Slide Time: 24:00)

[sunil@dali lect30]3 goc rectangular.c -1m -o F
[ i

[sunil@dali lecti0]$ gec mid-point.c -1m -o mid
[sunil@dali lecti0]3

[sunil@dali lect30]$

[sunil@dali lect30]$

[sunil@dali lect30]$ .. /rec

Here, upper Llimit=1.000000; lower limit=0.0000
oo

Enter no of pts you want:5
5 0.067270
[sunil@édali lect3o]$ |

So and then we will now run the midpoint program which is again we will use the 5
points actually when you are saying 5 points here. We are evaluating the function
actually at less than 5points here but we use the same thing here 5 points and then we get
an accuracy much better than the rectangular rule. So you can see that simply by going to
midpoint rule, we have a much higher accuracy and we have seen the reason for this this
is actually of order, the second derivative of the function this accurate error in the
midpoint rule okay.

So if you run RAC up to 100 in the 100 points then we get “.0801” we should get “.0808”
“.0808” is the answer we are getting *“.0801” while just running 5 points using the
midpoint we are already at “ .0808” so there is tremendous improvement in the, in this
accuracy by just going to a midpoint method and now for this particular function, and
now we look at the next method that is the trapezoidal rule in which we now use 2points
at which the function is evaluated. So we now use b minus a by 2 into f of a plus f of b by
2f of a plus f of b. So now we are going to evaluate the function at 2 points again 2points
in each interval, so again I will split this function into I will split this function into many
intervals and at each interval | will evaluate it at two points this thing that is what it is
going to be the trapezoidal rule implementation. So let us look at that again.
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[sunilédali lect30]3 ./ mid

Here, upper limit=1.000000; lower limit=0.0000
L]

Enter no of pts you want:5
5 0.0D80855
[sunil@ddali lect30]3 ./ rec

Here, upper limit=1.000000; lower limitw{.0000
[1]1]

Enter no of pts you want:100
1000 0,0801 54
[sunil@dali lect30]3

(Refer Slide Time: 26:25)
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So here is the program which does that a trapezoidal, so that is so this program again the
initial part have the same here n points at which it has to be evaluated the number of
intervals etcetera so now here | change this now | need to evaluate for each interval xp
right and xp by 2. So the end of this setting | have it by 2 here setting so you can see that
here | divide that by two the function. So I have now xp multiplied by the function value
at x; and then plus the function value at x; plus 1 so the 2 into 2 function values. So 1 is at
Xj and the other is at x; plusl.
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n=Npoints;
xp=(upper_lmt-lower_lmt)/Npoints;
for{i=0;i<=Npoints;i++)

i

x[i]=lower_lmt+i*xp;

i

5:{1_{1:

for{i=0;i<=Npoints-1;1i++)
{ S=S+xp*(pow(x[i],2)*exp(-2.0%x[1])+
pow(x[i+1],2) exp(-2.0%"x[1+1] )
)E.0;}

printf({“%d %f'n" Npoints,5);

26,1-8 Baot

So you change this thing a little bit, so | would now write this in the case of trapezoidal
rule now | am going to write this the program what it does is to compute the f the | as i of
f is now computed as sigma I, x; squared f exponential of minus 2 x; plus x; plus
1squared exponential minus 2 x; plus 1 inter interval x; plus 1 minus x; by 2 that is our
trapezoidal rule. Okay that is going to be our trapezoidal rule that is that we are going to
use and each of this for many intervals x;. Okay so that is what is said here.

(Refer Slide Time: 28:42)

So you have this function evaluated at x; and x; plus 1 and multiplied by the d x,, by 2 xp
is Xj plus Iminus X, X; and divided by 2 is here. Okay that is what we are going to run let



us run this, okay let us call that when we, when you compile that now. So let us call that
as trap okay so that will be we run trap that is we are running trapezoidal okay let us run
that and we get we will use again 5 points so we get “.80803” so compare that with
midpoint for 5 points and we get “.80855”. So this is comparable okay so we see that we
are not getting much higher accuracy by going to trapezoidal rule and using the same 5
points integration.

(Refer Slide Time: 28:44)

[sunil@dali lect30]i ./ trap

Here, upper limit=1.000000; lower limit=0,0000
111}

Enter no of pts you want:5
5 0.080803
[sunil@ddali lect30]% ./ mid

Here, wpper limit=1.000000; lower Limdtw=0.0000
(i 11]

Enter no of pts you want:5
> D.0D80855
[sunilédali lect3o]s

So far we looked at 3 different methods that is rectangular rule, midpoint rule and
trapezoidal rule. So now we look at the Simpson’s rule so that is that way we have
3function values. So we have f of x; and f of x; plus x; plus 1 by 2 and f of x; plus 1. So
now we will use 3 function values, okay and they have different weights now so now this
is it is the first time we are actually using function with different weights. So here again
we use function values at 2 points but both of them have the same weight but now here,
we have this function this function value this point has a different weight this is 4times b
minus a by 6while this is b minus a by 6 while this weight is b minus a by 6.

Okay now that is the program which does the Simpson’s rule is here again similar to this
one okay, except for the last part. Okay here is the part now we have to evaluate the
function at x; that is the first part here. Okay so xp by 6 here that is xp by 3, so that is this
is the function evaluated at x; and then the function evaluated at x; plus 1that is, and then
you have a function evaluated at x; plus 2 that is what | am using so Xx;.
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Simpsons rule

So now what | am going to do is I am going to split this interval like this okay and I am
say that this is one interval and | evaluate the function at 0, X, and X1, Xo, X1and X; like
that instead of using the x; plus 1, x; minus 2, I am just using 0 x; and X, kind of 3points
in need to evaluate the function at 3 points I do that as x; plus 1 and x; plus 2 okay that is
splitting this into 3 different in 3 different points at which we have to evaluate the
function. So remember the quantity the point is this is f of a plus 4 f of a plus b by 2 and f
of b that is b minus a by 6. Okay, so now | my interval has become 2 now here that is
why | have here x of i, | put in here divide by 3 because my actual interval divide this is
actually x of i m; x of i plus 2minus x of i.
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n=Npoints;

xp=(upper_lmt-lower_lst) /Npoints;
for{i=0;i<=Npoints;i++)

i

x[i]=lower_lmt+i*xp;

H

S5=0.0;

for{i=0;i<=Npoints-2:1i=1+2)

{ S=S+xp*(p@wi(x[i],2)*exp{-2.0*x[1i])+
4.0 (pow(x[i+l],2) exp(-2.0"x[i+1]]})
+pow{x[i+2],2) exp(-2.0"x[i+2]33/3.0;}

printf("%d % n" Npoints,5);
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¥
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Okay so that is while xp is x of i plus 1 minus x of i so i have to put divide multiply this
divide that, by multiply that by 2 that is what it is become 3. Okay so let me write that
here this what | am going to do here i of f is now is evaluated in the following form.

I am writing it as x of I, so | need an interval, so it is x of i plus 2 minus x of i that is my
interval I am using and then | am evaluating the function at f of x; and then | have here 4
times f of x; plus 1 and then | have evaluating it at x; plus 2. Okay that is the Simpson’s
rule that | am using here okay, where f where f is given by each point given by this okay
this x so while my d my the dx which I was using was x; plus 1 minus x; okay this is
actually 2 times dx, so actually this is divided by 6, so this is 2 times dx by 6 that is dx by
3, okay that is what I put it in here.
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This program this xp here | divide it by 3, okay so now let us run this. Okay so when | say
now here again the number of points at which the function is evaluated is what we are
going to give in the program. Okay so and then we are going to run this here will now
compile this program we call it simp, we will run simp ,we will run with 5 points okay
and you have an accuracy of “.0454” okay now Simpson’s rule does not seem to gives us
very high accuracy but the number of interval is of course small. So let us run it with ten
points and we get 10 points reasonable accuracy, so now this again a 5 intervals okay.

So when | say 10 points it is actually 5 intervals because this is one interval for now but
the number of functions, number of points at which the function is evaluated is 10. Okay
but the intervals is 5, so you see that in terms of the number of points at which the
function is evaluated this, for this particular function this does not seem to give us much
more accuracy than the trapezoidal rule but if you together interval then it is as good as
the trapezoidal rule which we get for 10 points and we get “.80” “.0808”.0Okay that is the
simpler methods where we actually split the function into the various interval and then



evaluated this function value and multiplied them by the distance between those intervals
that is what all these methods rely on okay.
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[sunil@dali lect3d])3 ./ simp

Here, upper limit=1.000000; lower limit=0.0000
oo

Enter no of pts you want:5
5 0.054265
[sunil@ddali lecti0]$ ./ /simp

Here, upper limit=1.000000; lower LimdtwD.0000
[1]1]

Enter no of pts you want:10
10 0. 080838
[sunil@dali lect3o]$ |

So now let us go into the next set of rules which are the Gaussian rules right. So now this
something which we discussed detail in the last class that is we now evaluate the function
i of f, now this is slightly different from the earlier methods because we now evaluate the
function i of f by writing i, i of f as this again we use the similar, we use the similar
finally the interval, integral reduce into this but the technique here is writing i of f as now
instead of f of x dx we are going to write it as a to b g of x, w of x dx right. That is what
IS so weight function here w of x this and then to distinguish this from this we call it a;
here a of x; okay.

So now this is some weight function now depending upon this weight function and this
limits we had different orthogonality properties and so of the polynomial and so we said
that we discussed that in the last class and we said, we can have Legendary polynomial if
it is minus 1 to plus 1 chebyshev if it is minus 1 to plus but we have a weight function
one minus x squared here the weight function is 1 and Laguarre if it is O to infinity and
Hermite minus infinity to plus infinity etcetera.

All these methods the idea is to approximate the function by a polynomial okay and then
do the integral and finally the integral will then reduce to this form okay that is the g
function evaluated at x; multiplied by this particular polynomial and this is transform for
the polynomial approximation. So we write that in the Lagrange form and then multiplied
by g of x; to if | said what we are going to do this we are going to approximate g by a
polynomial. So in this method g is approximated by px of x okay and which is given by a
sum over i going from 0 to k sum product j going from 0 to k; not equal to i right X minus
X; divided by x; minus X; into g of x; okay that is what the approximation.
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So g here we write the integral in this form and then choose the appropriate w for limiting
upon the limits. Okay and we write the polynomial this is approximated by a polynomial
p okay which is given buy this quantity and that was the basic idea of this integral and
then the weights and then we can write that as a; g of x; and the weights given by the
integral of this part right now the g of x; comes out of this integral because integral over
dx. Okay it is only the function of x integral over x the function this is the only part
which is the function of x. So we can take that out so then we can write this in this form
with a of i given by this quantity.
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Okay so now we have seen that the weight do go about this is because of the
orthogonality properties of the matrices that if you want to get very high accuracy using
this that is if | choose the kth order polynomial | can get accuracy up to 2k plus lorders in
derivative provided. | choose these points right this point x;’s at which the function is
tabulated okay now the function has to be tabulated at some values and that tabulated
points if | choose them as the 0s of a polynomial I depending up on what the limits and
the w is okay.
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So for example if it is the limits were minus 1 to plus 1and my weight function was here
was 1then | would use the tabulated points as a Os of the legendary polynomial, okay and
similarly for other cases. Okay so that is the method so first part in this thing would be to
write the integral which we want to evaluate into this form into one of this form. Okay we
have to change the limits such that the limits are minus 1 to plus land we write that in
this form. So that is what we had seen in this particular example.

For example when you want to these are particular function of interest right now, we just
want to evaluate this integral that is x squared e to the power of minus 2x. Okay and then
I have to change the limits of the integration from 0 to 1 from Oto 1 to minus 1 to plus 1
and that do by changing the variable from x to t by going from minus 1 to from x to t that
is t equal to minus 1 plus 2x and then I can write the integral now i as 1 by 4 integral
minus 1 to plus 1 plus t whole squared e to the power of minus 1 plus t dt.

Okay and then evaluate the function and now this function is evaluated at various values
of t and those values of t are the Os of the legendary polynomial because of my limit and
my weight is one so that is the idea, so now | hope this is clear. so we want to use the
Gauss Legendary method then this function this integral is first converted into minus 1 to
plus 1by change of variable and then this function here 1 plus t squared e to the power of
minus 1 plus t is tabulated at different values of at the Os of the Legendary polynomial,



okay and appropriate weight functions are calculated using for example, this value. We
do not use this value actually 1 will come to that later.
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Okay but so that is we appropriate weight functions are calculated and the functions are
evaluated at that point and we do a sum of all those functions. Okay now here is for
example 1 summed over 4 points that is Xo, X1, X2 and X4, So this Xg, X1, X2 and x4 should
be the first 4, Os of the fourth order Lagrange,a Lagrange polynomial Legendary
polynomial. Okay in the in this particular gauss Legendary integration which is f of x
integral minus 1 to plus 1 f of x dx with w equal to 1.
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Example 1: Evaluabe the intiegral

four point Gaussian quadrature
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So it is just f of x dx or f of t dt in this particular case because that is what we want to
look at, so remember that is we can so you cal also incorporate that change of variable
into the program itself and now you want to evaluate in the program in terms of x itself
then what do you could do is instead of tabulate the t’s as the Os of the legendary
polynomial and then evaluate this function at 1plus xo by 2, 1plus x; by 2, 1 plus x, by 2
because the relation between x and t was t equal to 1 minus 1plus 2 x or x equal to 1 plus
t by 2 is that is also possible.

So that is what we have to do, okay so now we come to the computation of the weight
okay we know where to choose the x to be okay so now the functions are evaluated
tabulated at the Os of the Legendary polynomial in this particular case because again |
repeat because you are going to use minus 1 to plus 1 interval and the weight is one here
of the function.

So now the question is how do | how am | going to compute this this weight because this
weight itself involves an integral over minus 1 to plus 1. Okay so if I use this form this is
not very convenient because | can | have to integrate this from minus 1 to plus 1. So this
weight itself involves an integral I will not gain much advantage but it is not so
complicated because what we can do is, we can actually write this particular function in
terms of the legendary polynomial itself okay and then we write the w as in this form.
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So what we seen so far is that we have to write in this we can write it in this form and we
said a; is now given by integral a to b right and or in the particular in this case suppose, if
it is converted in the limits etcetera then it is minus 1 to plus 1. Okay so for each of this
and phi j going from 0 to k; not equal to i, x minus x; divided by x; minus x;. Okay so that
is actually the weight which we have to compute, okay dx that is what the weight which
we have to compute. Okay now this involves integration that is not something which we
want to do because our idea is to actually do another integral.



So it does not make sense to compute the weights by doing integration and then doing a
sum so we have to change this form. Okay and it turns out that this can be actually
written as in terms of the legendary polynomial whose Os we have used here to tabulate
the function value. Okay or this f of x; here actually tabulated at the Os of this polynomial
of this Legendary polynomial and in terms of this legendary polynomial we can write this
weight and this that turns out to be 2 divided by 1 minus X; squared into px prime pg plus
1prime of X; pk plus 1 prime of x; whole squared okay now that is the derivative of the k
plus 1th order Legendary polynomial.

So | should say one more thing, so that actually if we choose this this there order
difference between these two because, these are now tabulated values the x; are the
tabulated Os of the legendary polynomial. So this goes from 0 to k plus 1 k so that is of
order k plus 1so I am using that polynomial legendary polynomial here okay.

So | can write this | do not go into the details here of how we go from this to this but you
can write the weight as the weight at i a of x; at as 2 divided by 1 minus X; squared into
the derivative of the k plus 1th order polynomial at x; evaluated at x; squared. So now this
is this the form which we are going to use for this computation. So once we know the Os
and the corresponding weights then we can simply compute the sum and then we get the
integral so that is what something which we would look at okay.
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So now the question is how do | compute this derivative and how do | evaluate the
function at various points, how do | find the compute the weights is the question and how
do I know the Os of this polynomial. Okay, so | said that | need the Os of the Legendary
polynomial here as the that is where | am going to tab tabulate it and | need the derivative
of the Legendary polynomial. Okay, now these two things are required to actually
compute this quantity okay but remember, both of those does not depend on the actual



function value itself so once you can actually construct a table of this quantity and keep
it and you can use it for different values of the function okay the only the thing we have
to change rescale the variables at every different functions different limits and that is the
only thing which we have to change but these a;’s and the x;’s are independent of the
function values. So we can actually compute that.

Okay so now the question is how do we evaluate the derivatives and the and the Os, okay
so to evaluate the Os of course we will use we have seen in the earlier methods we can
use something like Newton Raphson, okay to find the Os of the polynomial. Okay so if |
know how to evaluate the derivatives of the polynomial and then | can use Newton
Raphson to use the | get the Os of the polynomial. So I just make a guess value for the 0
and then | write p of x plus delta x as p of x, okay p being the polynomial of some order
plus p prime of x right into some delta x and then | say that this should be my 0. Okay

so and then | get delta x as minus p of x divided by p prime of x and then I add the next
point would be so | would | start with a guess value for x and then | go into the next
iteration X plus delta x as my guess value and | repeat this quantity till the p goes to 0, so
that is Newton Raphson, simple Newton Raphson scheme.
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So | have all the tools | know the Newton Raphson to get the Os of the polynomial and so
once when if I know how to compute the derivative of the polynomial and how to
evaluate the polynomial at that particular value of x then I can compute this integral here
right. Okay because I can find the zeros using Newton Raphson and but only thing which
I now need is the evaluation of the function p of x and its derivative and for that we again
use some properties of the Legendary polynomial or the recursion relations which tells us
that j the relation between the jth order polynomial the jth order polynomial and the j plus
1th order polynomial. Okay the recursion relations connect a polynomials of different
order by a simple linear relations that is what we are going to use. So we are going to use
the fact that the recursion relation j plus 1 and p; plus 1 is equal to 2 j plus 1 times X p;



minus j p; minus 1 that is what recursion relation is. So it connects the jth order
polynomial in j plus 1th order j minus 1th order polynomial okay.

So that is this the relation which we can use and we know that p of 1 is 1 okay, so that is
also something which we will use okay and then we start from this and then compute at a
any polynomial of any order you want at any value of x. Okay so p of 1 is 1 for all x
values so now if | want to evaluate a polynomial pio then | will start from p of 1 and then
I will just keep on doing the recursion relation and | obtain the, | use the recursion
relation to obtain the next higher order polynomial values. Okay that is what the thing
which | can use and then | have this relation the p; prime is given by j into X p; minus pj
plus 1 divided by x squared minus 1.

So this is another quantity which I can use okay, so I have basically the recursion relation
to compute the p values, okay and another recursion another relation which connects the
derivative of the jth order polynomial to the polynomial jth order polynomial and the j
plus 1th order polynomial. Okay so | know how and this is connected to this through the
recursion relation , so I can actually I can compute all these quantities and then and once |
have the p and the p prime I can actually get the Os of the polynomial and once | have the
Os of the polynomial and the derivative | can compute the weights and once | have the
weights | can compute the integral, okay that is the whole scheme.
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Okay so now we will just see the implementation of this in a in a program. So that is
slightly more complicated simple code, okay now this is the program here. Okay so
again, so the first part of this is the same that it actually asks you how many number of
points you want etcetera and then this function um locates memory for different functions
like weights now we need to we need to store the weights and the weights this x is the
function values and xp is again the values at which we have to tabulate the function.



Okay so once we have that we just call a program now you see as | said this independent
of the function right. So the weights and the points at which it has to be tabulated is
independent of the function. Okay so I the beginning of this program 1 just call a function
another function called gauss Legendary, okay and | supply the lower limit and upper
limit okay and then that this program would then return to me the x values and the
weights at the number of points which I have given, | asked the program to do it.

So what we need to actually find out is how do we compute the x and w’s that is the
points at which the 0s of the polynomial and rescale it appropriately because | given the
limits as this and then weights of the function at that. So if you know how to compute at
it between minus 1 and plus 1 then we know by simple scaling we know that we can
write it as in this fashion this is the Os of the polynomial then I know where the functions
has to be evaluated by this simple a plus b by 2 minus a minus b by 2 into Xx; . So that is
not a that is not a big problem which we have to find out is the Os of the polynomial.
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n=Npoints;
for{i=0;i<=Npoints;i++)
i
x[1]=0.0; wli]=0.0; xp[i]=0.0;
H

gauleg( lower_lmt , upper_ ]ml,a, W, Npoints)

sprintf(fname, “gauslegid.dat” Npoints);
fpl=fopen(foame, "w'");
for(i=1;i<=Mpoints;i++)

{

Okay so that is the what this gauss legendary actually does, okay so | do the series
computation of the Os of the polynomial by simply using the this method that this is
Newton Raphson. So first you have to evaluate p of x and then | evaluate p prime of x, so
p prime of x is given by that first | have to get the p of x for any order I given order is
what the number of points | am going to ask for it is so if | say the number of points is 4 |
have to do a 4th order gauss legendary that is | need four points etcetera. Okay so now
this is what this part is doing, so | just it has a simple guess value for a0 so it has a guess
value for a0 which is cos of phi into i minus this is the ith 0 is guess into phi minus 1 by
four divided by n plus half this is simply a good guess value where it actually works and
there are better methods of actually guessing the Os of a of a Legendary polynomial.
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We will not go into those details, so we are making some guess values of z okay and then
we come down and then we just compute then now here so | am adjusting p;. So | just
start with p; equal to 1 that I know and p, equal to 0 which | do not know what it is okay
and so just put p, equal to 0. So p; is 1 that is something which | know that first order
polynomial is 1. Okay and then p, equal to O, I start with i initialize p, equal to 0 and
then | compute as a in a loop all the way up to n where n is the number of points at which
I want to the now the order of the polynomial that is the order of the polynomial is n, that
IS n points is taken as n here and then I just use this recursion relation you can see this
recursion relation here. Okay that is the recursion relation I am using so 2 times j minus 1
into the guess values x that is | am using that that recursion relation which | have written
down here.

To compute p; plus 1to p; , so that is what | am using here. Okay so that recursion
relation is used here to compute the value and I know this loop till | reach the order of the
polynomial | want to evaluate okay, so n is the number of points | want to evaluate | want
to evaluate the function n okay I do this till the order of the polynomial is reached then I
use this the derivative of the function here. So this is the derivative of the polynomial
which is computed again using that formula which I had which I had just written down
because | use this formula to compute the derivative of the polynomial because I already
used the recursion relation to compute p; and p; that is the then I can get the p;prime or
if i use 4th order I can get p4 prime from psand ps, okay and | can compute ps starting
using this starting from p; equal to 1and using the recursion relation.
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z=cos(3. 141592654 (1-0.25)/ (n+0

do {

pl=1.0;
pi=0.0;
for (j=1;j<=m;je+) {
pi3=pi;
pi=pl;
pl=((2.0%j-1.0)*z*p2-(j-1.0)*p3)/j;
i
pp=n*{z*pl-p2)/(z*z-1.0

Zl=x:
z=zl-pl/pp;
B ,12-33
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That is all it is and then i improve on the z by using this Newton Raphson here. So |
compute z;, z; minus piby pp. So pp is the derivative and p; is the function is the
derivative, is the polynomial of the desired order | wanted, okay | am just using p; but it
is the polynomial of the desired order | want because | gone through this loops n times in
the recursion relation and | obtain the p; is now my order of the polynomial, | wanted to

get and then | can use this to get my Os okay, so now the Os are tabulated here for
different values.
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pi=pl;
pi=pl;
pl=((2.0%j-1.0)*z*p2-(j-1.0)*p3)/j;
i
ppen*{z*pl-p2)/(z¥z-1.

zl=x;

z=zl-pl/pp;
1 while (fabs(z-zl) > EPS);
x[1]=xm=-xl%z;
x[m+l=i]=xm+xl*z;
wli]®z.0x1/((1.0-z*2)*pp pp);
win+l-1]=w[i];
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Okay and the corresponding weights are then calculated using this formula that is 2 by 1
minus X squared into p prime, once | get the p prime in the p this is pretty simple, okay
once | got the zeros and the function and the polynomial derivative in that form then this
is extremely simple | can write that down as the weights and then at this program just
returns that that weight into the main program. So then I will just compute them as a and
then I just simply sum over the weights into the function evaluated at that x; values. Okay
now as | see that this x; values are actually rescaled by here, okay | rescale them okay so
X values | get is values which are re scaled okay X, into the rescaled values that is what |
am getting. In the actual derivative, in the actual interval a to b, so we just run this



program now, okay so g okay, so we will just run it between the limits say we just run a
four points Gauss Legendary we just run a, points and you can see that we get amazing
accuracy we get “.80830” by running a4 point Gauss Legendary.
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Enter no of pts you want:10

10 0. 0B8E3E

[sunil@dali lect30]$

[sunil@dali lect30]$

[sunil@dali lect30]3

[sunil@dali lect30]3

[sunilédali lect30]3 goc gaus_leg.c -1m

[suniléddali lect30]3 ./ a.out

Here, opper limitel.000000; lower limitsd.0000
[1]1]

Enter no of gausleg pts you want:4d
4 0,.080830
[sunil@dali lect3n]$ ./a.out]]
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Here, upper limit=1. : lower limit=0.0000
oo

Enter no of gausleg pts you want:4
4 0.080830
[sunil@dali lect30]$ ./ a.out

Here, upper limit=1.000000; lower limit=0.0000
111}

Enter no of gausleg pts you want:3
3 0.080772

[sunil@ddali lect30]3
[sunil@dali lect3o]$ |

So we could we could get even very good accuracy by 3 to 4 is tremendous improvement
so by 4 points we are getting a tremendous improvement that is the actual value
remember is “.080831” okay that is the actual value we have already got up to a 6
decimal place by doing a 4 point Gauss Legendary. So you can see that this method is the



most accurate okay provided you can tabulate your function the points at which you want
to use okay so we stop that here.

So we could actually compute this this for different functions and see how the compare
this with the Gauss Legendary with other simpler methods and then and compare the
accuracy you obtain in the next lecture. We look at the how to solve differential equations
the next step is to actually look at differential equations. So we will look at that in the
next lectures.



