
Numerical Methods and Programming
P. B. Sunil Kumar

Department of Physics
Indian Institute of Technology, Madras

Lecture - 22
Solving Non-Linear Equations

Newton Raphson Method

We were discussing methods to solve non-linear equations, so that is solution is to non-
linear equations in one dimensions that is what we were discussing. So just briefly go
over the methods which we discussed in the last class and also some of the
implementations of these methods in the form of programs. So that is what we will be
looking at today. So you remember that such numerical solutions are necessary, because
you cannot always get close form solutions to non-linear equations just as in the case of a
quadratic equation.

(Refer Slide Time: 01:22)

So numerical methods to solve them are absolutely required and we said that there are 4
different methods to solve or achieve this goal and they are basically graphical methods
of successive bisection, Newton Raphson method and iterative method, iterative method
Newton Raphson iterative method and secant method

In fact all these methods are iterative except this graphical method and which you could
simply plot a function and then look at the 0s, a word they cross the x axis in the case of
one dimensional function which you are discussing here this is rather useful to get a
rough estimate and that we looked at method of successive bisection and this bisection
methods which we looked at basically the fixed points iteration and then we also looked
at the mean value problem.

(Refer Slide Time: 02:00)

Okay, so we look at the 2 methods of doing this and that is what the implementation of
that we will see in a few minutes.

(Refer Slide Time: 02:12)

So one in the in the bisection method actually the 2,1 is bisection method, so 2 iterative
methods in this one is bisection methods, we looked at and which we said that we choose
or we make 2 guesses that is x0 and x1 as the 0 of the function or the where the function
crosses the x axis to be and we will choose x0 and x1 such that it is on the either side of
the root right and we then take the mean of this as a new iteration point okay and then
look at the function value at this point and in the function value at this point is negative

then we replace x0 by this point and the function value at this point is that is f of x2 is
positive and we will replace x1 value by this point and that is what we saw because we
would chosen x0 and x1 such that f of x0 is less than 0 and f of x1 is greater than 0,that is
if you actually go look at this function of this form.

(Refer Slide Time: 03:28)

So let us say we look at the function of this form that is 1 minus x square minus plus log
10 of 1 plus x. Okay we had some function of this form plotted from 0 to 2 and we will
plot 0 axis on that that is a now that is a x axis right so that is 0 line.

(Refer Slide Time: 04:43)

So we want to get this point were this function crosses this axis right, so that is what we
want to get. So basically we want to get this point where this function crosses the x axis,
okay and then it turns out that the one way to do that uses bisection method. So we will
make a guess of where this is, this crossing point is and that is taken as x0 and x1, so we
are chosen such that x0 is on the side were the function is negative and x1 is on the side
were the function is positive. So we have to choose make our initial guesses on either
side of this crossing point that is a drawback of this particular method that we need to
have an idea were the function the 0 of the function, the 0 of the function is and then we
have um to choose x on either or initial guesses to be on either side on this point. So let
us look at an implementation of this code first and then we will go and look at other
methods.

(Refer Slide Time: 05:31)

So here is the code which would the midpoint or bisection method, okay so here is the
code which does that so what I have done here is to right the code in such a way that the
2 function calls in this code. So that is the midpoint is our method, so midpoint method is
been put into a function. So the main program here simply makes takes an initial guesses
it asks you to feed in 2 initial guesses and you have to feed in this 2 initial guesses x0 and
x1 such that f of x0 is negative and f of x1 is positive that it is on either side of the desired
root.

So there are many roots in this program in this program assumed only one root, there are
many roots we have to make many calls depending upon how many roots the function
has. So we need to have an idea about how many roots the function has, before you make
a call like this a program like this. Okay so, we this scanf function will as you know we
have seen it before just reads it x0 and x1, okay from the screen and then it feeds that into
this function and call midpoint which is been defined, which returns the solution. So,
since this midpoint function returns a solution we need to define the other way the what
variable type it returns this and it returns the floating point and hence I have defined here

declared this midpoint to be a float okay and now this midpoint function which finds the
0 using this bisection method or the midpoint method and that function need to know
what is the function or of which it is defined the root right.

So that is a user defined function, so that has been passed that is returned in another
function called func here and this program need to know what that is so you note this
here so I have called, so I am passing this variable here so this function is declared here,
okay as external okay this is declared external some this again a float this is a variable
type we will see why it is so. So this is a function, so this returns the function value at any
point like this func basically has my function which or whose 0, I need to find whose 0, I
need to find.

So that is applied in another function okay that is called func and that function is a, that
pointer to that function is passed to that midpoint. So this main program itself does not
call this func it is called by this function called midpoint. So, that the idea, so it needs to
know what that function is and that is been passed here. Okay so now when this midpoint
function takes it as function you could give any name here but it takes it as function and
then it calls it as function.

So that is idea. So let us look at the structure again, so we have 2 functions here one is
midpoint that is the method now this is going to be general structure this is going to be 1
or 2 programs we going to look at here we have a function called now one function which
tells you the solution to the order 0 or of your equation and there could be midpoint
method or fixed point iteration method or it could be Newton Raphson method or it could
be secant method any method which you are going to look at of the different methods
will be different functions.

So this main program simply calls one of those functions here, passing the initial guesses
okay and a pointer to a function which contains my f, f of x for which I need to find the 0
so this is the passing pointer to that we have seen this in the initial part programming part
that how to pass a pointer to a function to another function again that is what it says we
are just passing a pointer to that function.

So now here is the midpoint function and again I told you that this is supposed to return a
floating point variable. So I type casted it as float and similarly this midpoint is suppose
to return that floating point variable which is a0. So again I declare it as floating point
okay then this is the main thing this is very simple you know that all you need to do is to
use this function, all you need to do is to take x2 as x1 plus x0 by 2. So that is our method
right, so we have initial guesses x0 and x1 which is passed on to this and this is, okay now
this pointer to this function the one which gives you the function value. Now, this
program here it could give any name it does not matter right and you have to just called
this is a pointer which is passed on to this okay.

So here it would give any name that is an idea if you have a package if your are writing
for a package find the roots of the equation then you can give any name here the user
need not know that what you give your name here we just have to the user has to defined

a some sub routine called function whatever this case func and pass a pointer to that okay
so then this function returns a float and it takes an argument which is float. So that is
what it is and then what have I derived is some error to my the error estimate here start
with initialize with 1 and then I say that you do this loop till this error is some user
defined tolerance which I given as “.001” 10 power minus 4.

So this error is defined as if you remember is the initial guess minus the new guess
divided by the new guess the absolute value that is the error that we have declared here
for example it could be x0 minus x2 by x2 or x1 minus x2 by x2 depending upon after the
first iteration we are going to replace x0 or x1 by x2. So x0 and x1 are our initial guesses
and we come here and we compute x2 as the mean the mean midpoint x0 and x1 x0 and
x1 and then I compute the function value now I look in the function call in the function
here f of x function x2 the function x2 when I called look at the function x2, the function
is when I say function here it actually calls func because the function is a pointer to the
function it called func with an argument float x that is a value x value which you want to
evaluate the function and the function is evaluated at that point,1 minus x square plus log
to the base 10, 1 plus x that is our function. The function we just now saw, that is 1 minus
square plus log to base 10 of 1 plus x.

So it just computes the function value at that point and returns it that is what it doing. So
this function whenever you called function from this program, from this subroutine call
midpoint and it actually calling func because we have passed a pointer to a func this
function to this program. Okay so it computes that, we determine the new x2 value
midpoint between the x 0 and x 1, it computes the function values at that point it
evaluates it looks it less than 0 if it is less than 0 then the x0 is replace by x2 right because
f of x0 is negative if f of x2 is negative and x0 is replace by x2 and so the error would be
x0 by x2 on the other hand if function f of x f2 is greater than 0 then we will replace x1 by
x2 because f of x1 was positive. So we will replace by x1 by x2 the new x1 value will
given by x2 and the error is x1 minus x2 by x2.

Okay so, at each iteration step okay I print out the error the new x2 value and the function
value at x2 and then once it once it satisfies the error condition, that error is now less than
or equal to “.00001”. Okay it returns that 2 value and comes out of the program and it
goes here that is our answer and the 0 and it the main program lets print out the 0 of the
function is a function as whatever it get as x here that is the idea. Okay let us see that how
it works, so we will just compile this and again compute it i called it midpoint c minus lm
because I am using log 10 it needs the math library.

So we will run this program now, so that is we will say that dot slash a dot out okay now
program is waiting for 2 inputs let us go back and see, so it is waiting for this function
here at this variable x0 and x1 and you remember f of x0 is negative and f of x1 is positive
that is what we need to give. So f of x0 is negative f of x1 is positive because we are
going to replace whenever the function value is negative, we are going to replace by x0
by that and function value is positive, we are going to replace by x1 by that x0 f of x0 is
negative and if you plot this function we have seen that in earlier cases the 0 is around

between 1 and 2 and also we have to give it as 2 and 1 initial guesses the 2 f of 2 is
negative 1 is positive, so that is what the output iteration step.

So we have the initial iteration step is given as initial value 1 and 2 and the initial
iteration would be the first step should be “1.15” this was the initial midpoint rule is and
the function value there is negative. So we will replace f of x0 by x0 by “1.5”. So we had
x0 as 2 that we are going to replace as “1.5” and then we will evaluate the function again
in the second step and the function value is still negative now we are going to replace by
x0 by x2 “1.25” and then iteration the function value is positive. So the function value is
positive, so now we are going to replace x1 that is 1 by “1.125” that is a way the iteration
proceeds and you can see that the error which in this case it was x2 minus x0 by x2 in this
case x2 minus x1 by x2 is decreasing monotonically.

(Refer Slide Time: 06:36)

So the function value itself is also going towards 0 and then, thus we will converge pretty
fast monotonically in to the value “1.154724” as it is 0 of the function, okay that is the
midpoint rule implementation another method which we looked at that time was the
method of false position iteration after this we looked at the iteration the false point
iteration we had slightly a different idea to find the 0 that is again we have guesses x0 and
x1 such that f of x0 is less than 0 f of x1 is greater than 0.

So that was the same as the bisection or midpoint method, we just looked at, but we do
not here at the mean x0and x1 instead what we are trying to do here is was draw a line
from x0, f of x0, to f1, f of x1 and find a point which crosses the 0 axis and then we
replace that as new x1 value and that is what we are doing.

(Refer Slide Time: 19:04)

So we had we will just look at the method the false position method, the summary of
false position method let us say that the f of x like this okay then we will pick up new
trail points which encloses the root right then we will evaluate the function f of x0 and f
of x1 make sure that the error on either side of the 0.

(Refer Slide Time: 20:03)

Okay and then what we did was like this we have a function like this, some function like
this and then we just picked up x0 and x1 values, that is just some guess we made sure
that f of x0 is positive in this is positive, is on either side of the 0 in the program we
taking this x0 of the x0 and then we draw a line from this point to this point, okay we just

draw a line like this, we will just draw a line and that line, where that line crosses the if
you have line here that line crosses the x axis that is somewhere here. Okay that would be
my next guess now, if this value this is my x2 ground value my x2 value will be here
were it crosses the 0 axis and that x2 replace that x1 because for that x2 value the function
is here in the case is negative that is a, that is a method which we are going to look at now
we will just look at an implementation of the code here and that is called the false
position method.

(Refer Slide Time: 20:18)

We will have program here the false position in the false position method again we have
exactly the same structure that is what I said in the earlier program. So we are going to
do, the only thing we are going to do to replace this function which we are called as
midpoint method, okay we are going to just simply replace the method by false position
by another function called false position and again past to this program the pointer to our
user defined function which is again we take as 1 minus x square plus log to the base 10
or 1 plus x. So we will minimize the same program, the same function, we will find the 0
of same function as what we did in the midpoint method but we will use a new function
called false position.

That is what we are going to do, so in this function what we do now again here is again,
we written it as floating point this type cast as float here okay and so x0 and x1 it reads
out also need 2 guesses both this midpoint and also the false position needs 2 guesses. So
we will give x0 and x1 on either side we again we choose one f of x0 to be negative and f
of x1 to be positive like in the other case. Now this function is here, so it gets the new x
value as now this is by solving the equation of line connecting these 2 points which we
just now saw.

(Refer Slide Time: 21:26)

We saw the equation of a line connecting this 2 points with the x axis, so we know how
to right an equation of line connecting 2 points and find where the crossing point of that y
equal to 0 line which is the x axis. So that gives this particular formula okay that gives
this formula for the new value x2 as x1 plus f of x0 into x0 minus x1 by f of x this is
actually f of x1 into x minus x1, x1 minus f of x0 this is our formula okay in this case I
had taken f of x1 as positive f of x1 as negative.

(Refer Slide Time: 23:03)

(Refer Slide Time: 23:23)

That is the formula which you put in here. Okay and then that function value and again
the function value is negative, if the function value is negative then we will replace x0 by
that and the error is x2 minus x2 of this midpoint none of the this is has been changed, if f
of x if the function value is positive we will replace by x1 by x2 and then find the error as
x1 minus x2 by x2 print out again the error the new x value in the function value the new
x2 not changed the function is the same one minus x square plus log base to 10, 1 plus x
okay

So the idea is that we could use the same we will replace this program here and pass the
pointer to that function user defined function now if I want to minimize some other
function. I do not want to change anything in this program the only thing I have to change
is defined a new function instead of this func that you could see here, if I have a new
function um and then pass the point to the next function to this program. So we will see
how we could, what we get from this okay so we will now compile that false position. So
we will compile this program here, now we will run this the program and again as in the
earlier cases it just waiting for this two initial guesses x0 and x1 x0 on the negative side
and x one on the positive side of the function.

So again I will make an initial guesses 2 and 1 and you can see that of the method of the
false position that converges pretty fast so when we ran the midpoint method it have to go
the many iterations but here the convergence is much faster, okay even though both have
linear convergences which we will see so, this particular method converges much faster
and we of course we will get the same answer. So again this is monotonic the converges
the error the decrease monotonically the function value goes to 0 monotonically and we
have the 0 as “1.154694”.

(Refer Slide Time: 23:46)

So that is the second method which we saw this thing and then we will look at some of
the methods that is the fixed point iteration so we will look at that something we again
saw in the earlier lecturer. So the fixed point iteration we will just go throw that
summarize what we saw in the last lecturer once again before we look at the program.

(Refer Slide Time: 26:16)

So in this method we want to right the function f of x equal to 0 which you have to solve
or you have to find the 0s of function of f of x, we want to replace that by function an
equation of this form x equal to gx basically what it says is, I should be able to right f of x

as x minus g x and I will say x equal to gx. So this I will use get to my iteration the
iterative step that is we start with the 1 guess now I do not need two guess as we saw one
problem with having a midpoint or false position method was that you need to have two
initial guess on either side of the 0 that is more difficult to do.

So we will now looking at the methods which we need one guess and it can be on either
side of 0 we saw that um this is fixed point iteration is 1 such method and were, we just
make one initial guess and use this form and this kind of mapping okay and then we will
use this form to generate a new value. If x the guess is actually the 0 of the function f of x
then x should be equal to g of x right because, now we will replace the function f of x by
g of x minus x.

So if x is actually 0 of the function f of x then x should be equal to g of x the iteration
stop we will again look at the error in the same step as one before x old minus x new
divided by or xi minus xi plus 1 divided xi plus 1by mod as our criterion for error. So
error is defined as that that as to go the value which we defined that is the thing which we
will again, so that is the method we will implement here then we will look at code here.

(Refer Slide Time: 26:29)

So similar structure, we will look at fixed point iteration that is this program okay again
here not done not change anything expect changing this function name now to this fixed
point so I just replace each time I want to it replace it by different method, I replaces this
particular program, this particular function which is my fixed point which is now fixed
point iteration and some slides changes we now need only one initial guess, so we do not
need two initial guesses and we have to passed only that this function the fixed point turn
to be a solution you be print out here. So gain we have to pass the pointer to the function
which you want to look at or we want to find the 0 of that is func same as before that 1
minus x square plus log to the base 10 x but now we need to right that this a the x minus

g of x. So what this function should now return is g of x, okay let us some changes, let we
go through this to once again.

We have the main program which called this method as fixed point and it passes one
initial guess and a pointer to a function which now returns g of x is not f of x. Okay so
now it will go to fixed point that function, now this function we initialize the error to be
one and we demand the error to be as same less than 10 to the power of 4 for this criteria
to be satisfied. Okay so now, we use x equal to g of x here x2 equal to a function of x1
and our initial guess.

So that is this function g of x that means so I need to write 1 minus square log 10 of x in
the form of x minus g of x and then write g of x that is what I have done here. So now I
have written it as here 1 plus log10 of 1 of x1 plus x divide by x that is my g of x you can
see that this minus x is my f of x right, so this minus x equal to 0 is my old f of x equal to
0 equation that is this function here 1 plus log to the base 10 or 1 plus x by x minus x
equal to 0 is the same as the f of x equal to 0. So my g of x1 plus log to the base 10 into 1
plus x whole divided by x divides the starting from here to here. Okay that is the function
okay now we will use this mapping that is x2 function is x1 and now we do not have we
just replace all the new functions now we do not check whether the function is negative
or positive before we replace of whole value because of the only one guess here.

Okay so the error is very simple x1 minus x2 by x2 that is what we have to do and we will
printout the error the new x2 value and the function value x2, and then remember that
now we called x2 as x1 and I compute the error and I have to replace x1 by x2 now
because the next round when I have to go I have to called new x1, so I had initial guess
the initial guess now replace by x2 here this is the next guess that is return by the function
that is the fixed point iteration in short it is just writing xi plus g of xi checking whether
actual 0 or not if not I will replace xi this value by this let we continue with the iteration
lets run this code again, so like before we run this code so now this is fixed okay we now
have to make one guess let us gave it as 1 okay it goes through and gives as the this 0.

So we need to give only one guess I could also give the guess as 2 or anything. So it
gives still the same as 0, so I just doing this iteration, so now remember this will not work
all the time it worked in this particular case but we know that it may not work all the time
and as you can see that much faster than the, it is not much faster than the this function it
is not much faster than the false position method which we looked at, it have to go
through many iteration before it reaches that. But the advantage of course is that we need
only one guess that is the big advantage when it comes to the functions whose graphical
form which will be not able to see of the function itself it will return some other program
okay we do not know about 0.

(Refer Slide Time: 28:33)

So we cannot bracket it in that particular case this is definitely a great advantage this is to
have an guess one point instead of 2 point guess but remember that it is an drawback the
drawback being in that cases where it is a slope is greater than 1, okay if the function like
this which has 20, let us say this particular case it will converges to that but when it is
somewhere here we have to find this point it will not converge very easily.

(Refer Slide Time: 33:35)

So remember that what we have doing is by fixed point iteration is actually solving
finding the intersection two lines that is y equal to g of x and y equal to x that is equal to
x equal to g of x in the intersection point of these 2 lines, this y equal to x, y equal to g of

x, we basically have an equation that x equal to g of x that is what we want to solve for it
right. But we find that when you have intersection points like this were the slope of this g
greater than the 1, we saw in the last lecturer that this will not converge okay it will not
this is not guarantee to give a solution all the time that is the method which we looked at
last time okay and then we briefly saw okay some other methods. So we will now go into
another method which also again uses the same on the one initial guess that is Newton
Raphson iterative scheme.

So in the Newton Raphson iterative scheme, we again make only one guess, okay let us
say x0 we took it also what we going to do is here is to actually draw a tangent at this
point that is the basic idea of Newton Raphson method make you one guess and draw a
tangent at that point to this line okay that is means we need to find tangent to this line that
is the derivative of the function at that point extend the tangent all the way on to the x
axis and find the point at which the tangent meets the x axis okay.

So that and then take that as your new guess that x value as next guess that is the function
will be some were here then right and then you draw a another tangent okay find it where
it meet the x axis and then you find the function value there and you draw the another
tangent etcetera till you reach the 0. Okay that is the basic essence of Newton Raphson
method.

(Refer Slide Time: 35:41)

Okay that is again summarized here. so we will determine some we will first make some
initial guess here determine the slope the tangent of the function at that point x equal to
x0 let us called that f prime of x and then we will get the next root there okay by using
this formula that is we will actually finding the point at which that tangent meets the x
axis. So that is what the equation results from okay, so x1 equal to x0 minus f of x0 by f
prime of x basically what we trying to do is we are expanding the function f of x using a
tailors series and keeping it up only up to order 1and then saying that my f of x plus delta

x is f of x plus f prime of x is derivative of x at x into delta x and saying that f of x plus
delta x is now 0 or we assuming that or we are solving that or finding the intersection of
this line, this tangent line with the x axis that will result in the formula x1 equal to x0
minus f of x0 by f prime of x0.

(Refer Slide Time: 36:51)

 (Refer Slide Time: 38:17)

Okay that is the general form, so in general we will right it as in the xi plus 1 in the
iteration scheme we will right it as xi plus 1 is given by the previous guess xi minus the
function value at xi divided by the derivative of function at xi. Okay and there of course
as before the iterative cycle is stopped when xi plus 1 and xi are of the same or f of xi

vanishes f of xi is 0 xi plus 1 equal to xi the iteration stop okay now we could see the
implementation of this okay.

(Refer Slide Time: 39:07)

(Refer Slide Time: 39:25)

So in a in a quote, so as I said that the essence of this is that we will say that f of xi plus 1
is actually f of xi plus h, h is the delta x change in x which is the expanded tailor series
right and then I terminated here and I say that it goes to 0, so by my error in this
particular case of this order and then I will solve for this that is what I am doing. So there
are cases again in which this function, this will not work okay and we will see that
particular case implemented and then the use of that okay. So before we look at the

disadvantage of Newton Raphson method we will just see one case where it is
implementing.

Okay that is let you show you one program here its called Newton, okay so here is the
function okay, so again I use the same structure I have the main program which will
taking one guess again we need one guess here just like in the fixed point iteration. Okay
and I called this function here pass this, call this function Newton here and pass that by
initial guess and a pointer to my function that is to be whose 0 I need to be find. So now
what is this program do this Newton this part which it uses an Newton Raphson method
to find the 0 of the function okay, so now it call the function okay it is now this function
which is to this pointer we have passed on to the function as again here that is been called
here, so now we called that function.

Now this unlike the earlier case where the function was returning just the value of the
function now we also need the derivative okay for the time being you forget this two lines
I will come to this later we are now using the function of the form x minus exponential
minus 2 star x. We are trying to find the solution of this equation that is x minus
exponential minus 2 star x equal to 0 that is what we are trying to find the function is to
0s of find is x minus exponential minus 2 star x.

We will not use 1 minus x square plus log 1 plus x at this point, we will find the solution
and 0 of different function and now we need the derivative of the function so the
derivative is given as one plus 2 derivative of this 1 plus 2 exponential minus 2 star x.
Okay so now this function is called as slightly different, let me explain this. So this
function this new func which we have the in this particular case okay is not returning
anything okay its void it does not return any value. So it is unlike a previous case we
have declared as float because it was returning a floating point number which is a
function value.

So this particular function does not return any value it takes 3 arguments okay one
floating point and two pointers and two floating point that what is it take argument, okay
that is what it been declared here also this is also function, this is a function, this
something called as function that is the three arguments that is float star and float star
okay so the 3 arguments x1 what I passed in to that function okay and f the function value
at x1 and the derivative of function x1 it return through this thing.

Okay it replaces f by the function value at x1 and replaces derive by the derivative of the
function f at x1 that is what this thing can doing you can see that here is the pointer, so
these are see this y derive are pointers such why star y aster xy equal to x minus
exponential minus 2 x it guess the x value and it gives this computes this y and derive at
this point okay and replaces this here and then it goes back. So when it goes back to this
function now when it makes call here comes with new f value at x1 and derivative value
at x1.

So I uses that to find the new x2 x values x1 minus the function value by derivative note
that asterisk f because this is pointers okay now I have the error as absolute value of the x

1 minus x2 by x2 and I am just printing it out and I replace by x1 by x2 just like the fixed
point iteration scheme. So the difference between the fixed point iteration scheme this
only the this step here that is here the new x2 value is x1 minus star f plus, star f divided
by that is aster f because of the point derivative f by derivative of f that is what short it is
and then I computed the derivative the new error and I print out the iteration scheme
continue till the error less than “.001”, we will run this code here okay.

Again it needs a guess, so you will guess we will need now this is the different function
we should plot the function and to see okay so our function was if you remember the one
which your trying to solve was x minus exponential of minus 2 x because we will plot
that function between 0 and 2 let say we plot it the function is like that, okay so we will
draw the 0 axis that the function you have we expect the solution to be some were less
than “.5” that is the x axis somewhere here is the solution is less than .5 that is what we
trying to do find. So we will ran that solution to be point 042 “0.42” and notice that I am
printing out more than 1 variable here okay.

(Refer Slide Time: 39:45)

So I am printing out here the error the new x1, x2 value the x1 value, so this is the old
guess this is the new guess the function value and the derivatives that is what we have
printed out here. So the function value goes to 0 and the error goes to value which is less
than the tolerance which we have defined in just 4 steps, so this is definitely much very
faster, the really fast way of computing the zeros okay and then most often used method
than anything else okay because it need only guess, okay the only one guess to be given
of that 0 of that guess can be the anywhere and it converges very fast when it converges
that is the advantage of this this is very fast only one guess now there are some
disadvantages that is what we have to look at here that you can do at an endless cycle
okay or even it diverges in cases that is we will look at some the pathological cases like
this in this program. So here is the case where it can actually get in to an endless loop.

So let us say we want to find this we our initial guess happened to be here we want to go
here, okay we want to find a 0 which its here and we do not know the functional form, so
we just made an initial guess which is here. So what is that method, the method is to draw
a tangent and that is what a blue line is showing you I have to draw a tangent and the
tangent you look at it meet the x axis here right when I draw a tangent at this point here
and it meet the x axis here and then I take the take the x value to be that okay then I draw
a tangent here that that meet the x axis here. So but it then goes back here and draw it is x
axis here so it keeps jump iterating between these two points.

(Refer Slide Time: 46:44)

So we can get to an endless loop in this particular case another case happens can happen
in which for example we will look at this another function so we will look at the whole
function which we called as which we had 1 minus x square log of 1 plus x. Let us look
at this function. Okay so we will look at this in this particular case, okay now if I make an
initial guess let us say here okay and then also I can get in to trouble because if I, if I
make an initial guess now that is the very large value somewhere very down there. Okay
so the tangent here the tangent here meet the x axis somewhere very much down okay
and then that is one case we can actually diverge if you if you for an example make a
make a guess some were close to this okay then the value at which you are going to get
the where the tangent going to meet the x axis that is going to be extremely large number.

Okay and then we can get in to that okay so there are two cases so you will see if 1 minus
x square plus log x if I try to run this and it does not converges so there are two
pathological cases which I can tell you that initial guesses are somewhere close to were
the second derivative vanishes and okay then you can have very small f prime get in to an
error because remember our function our method requires f by f minus f prime to be form
right. So that that can gives large error that is one reason were you can get this when you
go here.

(Refer Slide Time: 48:01)

(Refer Slide Time: 49:27)

Okay so we will see here that is the formula you are using if f prime is very small okay
then also we can get large error in this we can diverge we can go to large value and then
things diverge that is one case where it can go, it can go get into trouble another case
which we saw get in to an infinite an do loop so it is an another case. So in the case for
example if you take this particular function one minus x square we will actually have
trouble using Newton Raphson method but other methods will work.

(Refer Slide Time: 49:50)

(Refer Slide Time: 50:15)

So another way to is, another disadvantage of this program, this program of having is
using Newton Raphson is we need to compute f prime of x that is the derivative of x. So
when the derivative of f of x is not available, okay we will again have problem with this
method because this function value might be return by some other program and we do not
know what the derivative is. So in that case, we may have to make an approximation
derivative by what is called difference method, okay a differences approximation to a
derivative.

We will see more of this later when we look at differentiation and integration, so here for
the time being let us take this formula which known to most of us, that derivative we will
replace by what is called backward difference formula that is we take f of xi minus f of xi
minus 1 divide by f of xi minus f of xi minus 1. So now this formula is backward
difference method, if difference formula if xi minus 1 is some were value which is less
than xi okay and then we will call the backward difference formula but in this particular
case in this iterative scheme xi minus xi minus 1 are simply just two guess, two
iterations, two guesses in the i th and i minus 1 iterative steps but this is the formula
which we can use, so the f of xi is the 1 value xi and xi minus 1 is another value. So we
will make two guess here so to start with xi and xi minus 1 and then we will find this
function this derivative f of f prime as xi f of xi minus 1 divided by xi minus xi minus 1
and we will use Newton Raphson formula again as xi plus 1 as xi minus f by f prime.

(Refer Slide Time: 50:25)

Okay so the idea is that we will not find f prime exactly like in an function but we will
simply replace that f prime by this particular formula f of xi minus f of xi minus 1
divided by xi minus xi minus 1 where we start with xi and xi minus 1 are our guesses,
now what is is the difference this and the false position method, that false position
method we made two guesses and we did something exactly like this, this is again going
to be the line connecting xi, f xi f of xi and x i plus 1 f of xi plus 1 line connecting these
function this point xi f of xi, f xi plus minus 1 f of xi minus 1 and this line where does it
meet the x axis that is the point going to be new iteration point that is in the false position
we made two guesses that is x0 and x1 and we said f of x0 the line connecting x0 f of x0
and x1 f of x1 where it meet the x axis is the our new x value, and this is exactly same
that sense that we are again going to use two guess values okay x0 and x1 and let us say
and we are going to draw a line connecting this two okay and we are going to take the
point at which that meets x axis as our new guess, what is the difference between then
these new method which we called the secant method and that the false position method

is that these two guesses x0 and x1 does not have to be either side of 0 it can be anywhere
and hence it also has a disadvantage that it might not converges.

So it can just get into same kind of 0 and it will not may converge that is what the
disadvantage of this again we will details here. So okay its similar to bracketing method
but we do not bracket here so the advantage is that we do not have where the 0s, so we do
not worry about actually bracketing it on other hand it has disadvantage that may not
converge while the bracketing methods are granted to converge.

(Refer Slide Time: 54:13)

So here is the formula which going to use in this particular case that has been graphically
shown here okay so you make some guesses here xi minus xi okay does it have to be on
either side of 0 in this particular case it is, but it does not have to be on either side of 0.
So we will draw this line here okay where it meet the x axis okay and now one more
differences from the false position method is that, this xi plus 1 now will replace xi and x
i so now xi minus 1 now go to xi and xi plus 1 go to x1 if xi minus goes x1 xi plus 1 will
go to x 1 okay.

So we will always replace the last one that is the in the case of false position we the new
point on the negative side that below the x axis, then we always we will replace x0 with
the x axis but here is nothing like this. So these first these two points were taken right and
then then these two points this will be taken okay and then we will found the new
intersection point right and we will take now these two points etc we will continue like
that okay.

So now we will draw a line like this and will go here and then we will draw a line like
this, in this case it will converge but in the false position method remember that we will
always replace if the new iterative method that is the point in which it meet the x axis if
this is less than 0 less than 0 that is function value is less than 0 it will replace x0 if it is

more than 0 then replace x1, but here we do not do that we always replace the last point
with the new one okay. So the irrespective of whether it is this less than 0 or greater than
0, we are going to say that the next line we are going to draw is between xi and xi plus 1
and the next line would be between xi plus 1 and xi plus 2 etcetera, okay that is the
method.

(Refer Slide Time: 54:51)

Okay and we will see an implementation of this cases, the pathological cases both this
and the Newton Raphson method where it does not work in the next lecturer and also we
will do an more analysis of how what is the convergences rate of this three, of this
methods which we looked at so far in the bracketing methods and Newton Raphson
secant method we will see in the next lecturer.

