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Today, we will continue to you are looking at the last class that is is a general non linear 

models and its implementation. 
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So, we saw that, a non linear function if you want to fit, then non linear function to a 

certain data points given to you. Then, we would declare as we have done for the case of 

a linear function, a chi square which is the difference between function values with the 

data points with the data given to you, a difference square divided by divided by sigma i 

square. 

There is a function, the non-linear function we mean non linear in the parameters a. So, 

we saw and also in the parameters x, we saw that earlier when this function is non-linear 

in parameters in the variable x; but not in the parameter a then we could still use a linear 



effect. And our idea here was to find out this non-linear parameters a by minimizing the 

chi square that is where we stop in the last lecture. 

So, we said that we have a set of parameters a a a i’s, here is a a I, a 1 to a n. And we 

which you would represent by a column vector a, and then we have a chi square a. And 

so, instead of straight a way minimizing thus and trying to find the solution to that set of 

non-linear equations which we can do; if you write down a chi square, if (( )) full 

functional form, we could differentiate chi square with each of this a a i’s (( )) equations 

non-linear equations, because f is non-linear now. And you could find the solution to the 

set of (( )) non-linear equations that is what to do. 

So, one method of doing that in way is to actually do a iterative procedure instead of 

doing a straight forward solution, we do a iterative procedure. There is we would assume 

a value of a or set of values for all the a’s, that is call vector a 0 now; that is a 0, a 0 1, a 

0 2 up to a 0, n where n is the number of parameters. And then, we would expand the chi 

square around that value, the chi square of a 0 minus Taylor expansion (( )) because, this 

a is a column vector; so, you have d is now vector containing all the derivatives of chi 

square with respect to a k. So, that is with respect to a’s, that is the vector d. 

And then you have matrix D, which is the second derivative, which is second derivative 

of chi square with respect to two values, a k and a j. So, that is a Taylor expansion for chi 

square. So, what is a idea here is that, if a 0 is a good assumption for the solution of this 

minimization; and then, if I expand chi square around that a 0, this derivative should be 

very small, because if it is a 0 actual minima then, all the derivatives should vanish. 

And if it is not an actual minima, (( )) close to the minima then, this will be a small 

value. So, I can actually expand it around that point and also by expanding this way, I 

can go to the actual minima. So, that was the idea right. So, we go to the by expanding 

chi squared around values which we assume to start with for a 0, we can go to the actual 

minima. 

So, as mean this chi square a we assume here what we get the chi square a is actual 

minima; that is the derivative of chi square a with respect to a is should be 0. So, to 

summarize, we are not writing down the chi squared here, we are not minimizing this chi 

square straight away with respect to a and finding the solution; instead of that, we 

assume a set of values a naught values for a, call a naught expand chi square around that 



a naught; and then say that, this new chi square that is the value del a delta a, (( )) from a 

naught is the actual minima. So, then I minimize, I find the derivative of this chi square 

with respect to a, and equate that to 0 and solve for delta a and thus go to correct minima. 

So, that is what we were doing. 
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And delta a thus obtained and from which we can get the a, delta a is obtained may not 

be the correct one again. Because, we are going to say that, we are going to first of all 

ignore higher terms here in the Taylor expansion, we kept only up to a second derivative. 

So, that is going to be an assumption. So, what the delta a we have to get from this 

solution, will still not be a correct solution. 

So, what we have done in the process is to minimize it produces non-linear problem that 

is a set of non-linear equation, which we would get if I differentiate this with respect to a 

to a set of linear equations n delta a to solve. But, this delta a set of linear equation which 

you obtained also because when approximation in the Taylor expansion we made. So, the 

a naught the new a value we get we know may not be the actual minima of chi square, it 

will not this new set a is may not minimize chi square. 
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So, what we do now? We take that as a new a naught and go back and then, continue this 

loop that is what we saw. And we saw a sample program which implements this too. And 

we said that, this D’s elements of D’s which I call alpha k l here; and elements of this d 

which I call beta k, beta here and thus the first derivatives and second derivatives. And 

these elements again have to be determined as a second derivative of the of the chi 

square and the first derivative the chi square. 

So, we will again assume the second derivative of the chi square, which as actually we 

saw yesterday were two terms, that is the second derivative of the function f with respect 

to (( )) and (( )) a k and a l. And the product of the first derivative’s of chi square with 

respect to (( )) and with respect to a l. So, here again make an assumption that we will 

not actually do a second derivative of the function. We just use the product of the two 

first derivatives as elements of this. 

This is something which we saw yesterday. And with that, we can actually solve for we 

make that assumption, because any way we have making another assumption that, the 

Taylor expansion can be (( )) beyond the second derivative; and we are doing a iterative 

scheme. And after all the correct solution should be something which should make the 

first derivative (( )). So, we could make the effort to make this assumption. 
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And then solve for this thing. So, again the problem was that, if you not make the correct 

initial assumption, then we may not get go to the correct solution. There is again there is 

a, we are making an assumption here that, we make an approximation for a, and as a 

naught. And we do this a iterative scheme, and we get a hope that we know we go to the 

correct minimum, that is the chi square will get minimized; or the this iterative scheme 

will lead to a, which would give me the first derivative as 0; or minimum in the chi 

square, the chi square will reduced and go to a minimum that is that is our assumption. 

But, that may not true if we choose a delta a a a value, which is far away from the 

minima of the chi square. If you are, if you have a choose a new value, the value a was 

far away from the values of chi square; then the new value we obtain, may not be 

guarantee to be smaller than the previous one. So, that is something which can occur in 

that kind of situation, instead of solving an equation using the second derivatives in this 

form. 

One would like to actually go to a either a new assumption for a naught or multiply this a 

naught with the constants M go to new value. So, that is what we (( )) one possibility of 

going to new set of a’s or we could multiply the set of a’s with a constant value and then, 

go to new new value, that is the two possibilities. 

And second one, where we take the delta a 1 we will take the constant multiplied by d 1 

that is a you go to a new set of values which are constant times multiplied by the d 1 this 



is the first derivative So, if you change in delta a 1 instead of solving that matrix times d 

1 we would simply multiplied by constant, the first derivative and go to a delta a 1. So, if 

you look at this, it is saying that basically saying in our Taylor expansion we would be 

even ignore the second term and we will just keep this this term (Refer Slide Time: 

10:40), that is what we are trying to say. So, we will just go to a new delta a value by 

simply multiplying the present delta a value by as a present d value the derivative by a 

constant. So, that is what we are going to do. 

So then, the question arises that what is the value of a which you would choose, what 

was the constant value which you would choose. So, then if (( )) the a is in the in the 

function could have difference scale or different different dimension. So, we cannot take 

the same constant for all the d values. So, the correct thing to do would be take the 

second derivative in the second derivative (( )) only the diagonal element, because  they 

are if you look at the diagonal elements of of this matrix delta k l; so, which is now will 

be del f by del a k in del f by del k l. So, that is what this D k l would be this matrix. 

So, if the diagonal elements of that is del f by del k into del f by del k. So, that would 

have a correct scale for each of the a’s. So, we could use the instead of giving using the 

full matrix which obtained from the second derivative, we could modify that matrix and 

give the diagonal elements a little more weightage. So, that is the idea behind this 

Levenberg- Marquardt method. 
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So, that is what we would implement here. So, that is to say that we will take the matrix 

elements and we will take the diagonal elements and multiply it by quantity called 1 plus 

lambda and then, get a new diagonal element values. So, we will modify only the only 

the the diagonal elements, the half diagonal elements when i naught equal to j is left as it 

is in this matrix. 

Remember, this matrix is actually the second derivative of the functions of the chi 

square, there is approximated as product of the first derivative of the function f which we 

want to fit in. 
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So, now then what we would say is that, if we make an assumption a naught and in the 

first step if the chi squares the new chi square we obtain from the new a values; by 

obtained by solving that linear equation is less than the chi square in a previous step, then 

we will continue with this matrix. Or if it is greater than that is going in the opposite 

direction to the minima that we are not going down the value in chi square, but we are 

going up; and in that case, what we would do is we would increase the value of lambda 

and thus give more (( )) to the diagonal elements. That is what we would like to 

implement. 

That is in short a program for non-linear fit will now look like this. We will choose apart 

from the a assumption a moderate value for lambda, which is the weightage which are 

going to give for the diagonal elements. And then we will compute the matrix matrices D 



and d that is the first derivative and second derivative the Hessian matrix. And we solve 

the equation, equation 1 which is the equation which says that d times, delta a a is the (( 

)) d and evaluate the matrix a. We solve a set of linear equations and solve evaluate a 

new value of a that is and we would evaluate chi square at the new value at a naught plus 

delta a. 

And then will look compare this chi square with the whole chi square which we had at 

chi square a naught or chi square. And then we would see, if the if this chi square is 

increasing, then the (( )) if chi square a new chi square values greater than the whole chi 

square, then we would increase lambda by a factor of 10; that is this lambda is now 

increased by a factor of 10. But, if it is less than, the new chi square is less than whole 

chi square, then we will decrease it by a factor of 10. 

And eventually, the lambda could go to 0 and so, diagonal elements would be just since 

it is multiplied by 1 plus lambda it will remain as the Hessian the true Hessian. So, that is 

that is a idea here that we will choose a moderate value of lambda and we will increase 

the lambda if it is going away from the minima, and we will decrease the lambda if it is 

going towards the minima. And then we go back to the step 2 and repeat the procedure 

till d is small enough; that we will go back sure and then again continue this thing and till 

the first derivative is small enough, the tolerance value specified by us. 

Remember, this is an important procedure in numerical method, because it is only just a 

fit a non-linear function, we could also use this to for any non-linear function 

minimization. So, this is a general technique for minimizing a non-linear function, a 

function of non-linear function of many variables. You could use this particular method, 

this Levenberg method to minimize that that functions with respect to this parameters, 

that is what we would be looking at. 

So, we will now see an implementation of this scheme this lambda scheme which is very 

important and before we go in to the more general idea for solving a linear set of linear 

equations. Remember that, we have to actually solve this equation if you want to get the 

a’s, we have to set this we have to solve a set of linear equations, there is this particular 

equation for we have to solve basically (( )) get the a new we have to do this quantity; 

that is what the idea is. 



And this we can do very simply if our case, because we are find the D inverse, we can 

simply do this in the case of 2 by 2 matrix matrix; that is, if the number of parameters are 

only 2, then we can very easily do this, that is what we would be we will check as a 

program (( )). 
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So, here is a program for that which we part of it which we saw in the last class, that is 

we have the data points stored in the x and y; and we had a matrix a 2 by 2 matrix and 

we have the first derivative and second derivative the Hessian here and first first 

derivative in this matrix. And we have only two parameters to determine a 1 and a 2. So, 

all of them are floating points and I have declared them as the floating points. 
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So, this is the array for x and y, which x i and y i, here is matrix of the second derivative 

matrix and here is the first derivative and here the two parameters, a 1 and a 2. And then 

we need to state this chi square and chi square whole, because every time which change 

the a we go through 1 step in the iteration, we need to store whole old chi square value, 

because you want to compare to change the lambda. So, we will also have to have a 

lambda, which I call L here; and this would be the determinant of this D matrix which 

we would need to find its inverse. 
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So, we will open a file and then using this file pointer which I have declared as here file 

pointer f p 1 and I will use this to you should be now very familiar with this that is (( )) 

use the open the file using the f open command and then it is for reading that file so r. 

And I will read using this while statement, while till the end of file statement to read the 

all the elements in that file. And we will just compute the number of points in that 

number of lines in that file, which is now non-linear dot data. 
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So, having obtained that data in to x i and y i, remember the way to read as use the 

ampersand sign, it is pointing to that particular memory location; and we read of that x i 

and y i. Once you have that now, once you have data points when read off, then you now 

need the initial guess for a 1 and a 2 and way this is simple program, which is have only 

two functions that two values. 
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And the functional form we are going to fit is this one that is exponential a 1 x of i plus 3 

times exponential a 2 x of i. So, that is my f of x i, exponential a 1 x of i plus 3 times a 1 

x of i that is my functional form. So, it is very simple function, only two parameters a 1 

and a 2 (( )). So, that we can do this we can find the inverse very easy. 
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So now, we have to we need a initial guess for a 1 and a 2 which you have to type in, so 

they will read off using this scanf function. And now you just remember this is scanf 

function, while this was reading from the file using fscanf, so this is reading from the 



terminal that is (( )) screen. So, that is it will read both a1 and a 2, both of the floating 

point. And I will set chi square equal to 0 and then go through all the points (( )) from 0 

to n to compute 0 to n is a number of data points which we have we will compute that 

and obtain the chi square value. So, we are computing that basically f minus y that is f of 

x i it is exponential a 1 x i plus 3 times exponential a 2 x i minus y of i; and the product 

of square of that, so I multiplied by twice it is a product of x 2 again. So, it is basically 

exponential a of x i plus 3 times exponential a 2 of x i minus y of i whole square y i y i 

whole square, that is what my chi square is. 
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Sigma here is divided by sigma i square which we put it equal to 1. So, sigma i square is 

1, because all data points are equally reliable that is what the assumption here. And then 

I now need to compute the matrix elements, there is a next element, the next part of the 

program; and I need to do this till my first derivative which has stored in the (( )) the (( )) 

0 and (( )) 1 goes to 0. 
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So, until the first derivative are 0 that means I have put a tolerance of 0.01 here, till this 

elements of the d vector that is d of 0 and d of 1 the absolute value of that, that is mod of 

that value d of 0 and d of 1 sum sum of these two; so, that is define as the error or that 

should be that should be less than my tolerance, which is 0.01. So, if it is a less than this, 

then it will stop program. So, till that it will continue the iteration. 

So, initialize my d of 0 and d of 1 to 1, and lambda to 1 and then I go back here. So, I can 

I can do that here. So, I do the D of 0 0 all the all the initialization is done here sorry all 

the initialization of the vectors have done here. And then, I actually compute I compute 

the second derivative; you can see the second derivative is computed as the product of 

the 2 first derivative of the function. 

So, the first derivative with respect to a 1, a’s x of i exponential a 1 x i, and the first 

derivative with respect to a 1 again, because this is D 0 0; so, this is the product of the 

first derivative with respect to a 1. Now, this is the diagonal element of the matrix, it is D 

0 0 is it diagonal element of my second derivative matrix; so there as we multiplied by 1 

plus lambda which is 1 plus L. 

So, there is doing exactly what we are saying here. So, we will use this idea that all the 

diagonal elements will be multiplied by 1 plus lambda (Refer Slide Time: 23:09). So, 

multiplied by 1 plus lambda here, and this is the half diagonal elements, so that is not 

been multiplied by lambda; so, just the same as the product of the 2 first derivatives 



exponential a 1 x i and exponential a 2 x i (( )) 3 times x of i into 2 times x of i. So, that 

is that is half diagonal element. 
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Everything has 2, because we have absorbed one 2 into this derivative second derivative 

here. 
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So now, then we have the d matrices which are y of i minus that is the function the y of i 

minus the function times the derivative of the functions. So, that is what is been given 

here, so that is been put in here. And then we have the, so that d of 0 and d of 1 is being 



computed which we saw (( )); no change in this from the previous simple iteration 

scheme, change comes here only the diagonal elements, where you put 1 plus lambda. 
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And then, now I just find this step is actually to find the (Refer Slide Time: 24:19), if this 

step is just to find the the determinant, so that is the determinant of this function (( )) the 

matrix D. And then I am just printing out the values of all the elements here matrix 

elements here. Now, this is the solution of the equation that is the this is the this is the 

inverse of the matrix, inverse of matrix times d that is what the particular expression is. 



So, so inverse of the d matrix multiplied by D minus a 1 is my new a 1 value. So, new a 

1 and a 2 is thus obtained, I can compute now the new chi square value, now  I  have the 

new a 1 and a 2; so, I store the old chi square which I had into a think called chi square 

old. And I set chi square equal to 0 again, and compute the new chi square here. So, this 

simple and same as what we been doing. 

So, I compute the chi square again here and now I say that, if chi square new that is chi 

square is greater than or equal to old chi square, and then I will increase the L by a factor 

of 10. On the other hand, if it is less then I will reduce it by a factor of 10 that is 

multiplied by 0.1. So, that is the idea. 

I print out the chi squared, the standard error and the chi square and the standard error we 

print out that that is what (( )) in this program. Because, we can run this program and 

then we can see what we actually get. So, here again I am printing out in this point I am 

printing out a 1 once I get the new a 1 a 2 values, I will print out the a 1 a 2 values and 

also the the new L value. So, a 1 and a 2 and L I am printing out. And at the end, once 

the loop is over, so this is where the this is where the while loop ends (( )). 
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So, this loop will continue from here to calculation of the new chi square and changing 

the L up to that, till I have achieved this particular accuracy (Refer Slide Time: 26:26), 

which I have demanding (( )) a demanding here. There is the d the sum of the d elements 

has to go is to be less than 0.01. So, once I have done that I will print out this value and 



the chi square and the standard error, (( )).  So, that is what we we will be seeing here. 

So, I will compile this program here (Refer Slide Time: 26:46), and then I run this. 
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So, it is (( )) very initial value I gives some initial value let me give as minus 0.5 and 0.8 

that that see, this particular case that is seem to work, because (( )) going to any it did not 

(( )) it all it is just (( )) whole program. So, we will have to give some initial another 

initial value minus 0.5 minus 0.2. So, this seems to converge, so again this program does 

not seem to converge for all values that is something which we should we discussing in 

the next section. So, why does not the program converge; so we will discuss that in next 

section. 

So, now here this particular value it did converge and then, we went to values of minus 

1.86 and minus 1.132 these are a 1 a 2 values we have obtained. And I got a reasonable 

chi square and reasonable standard error. And you can see, if you look at the L value, the 

L values are (( )) to 0, because it was converging; and if it was not, then it would (( )) to 

some last number. And then, we would program would eventually x L, because number 

is (( )) large. 

So now, we could do this program here, because we could do this program here because, 

we had used only two parameters. So, two parameters were easy to implement, because 

we could actually compute the inverse by hand. So, but now let us say we have a 

function with larger number of parameters, n parameters; and then how do we how do 



we solve this. So, we we need to have a method to solve. So, now in this in this program 

I need to go I need to put in something here, I have computed here the inverse of the 

matrix by hand; but here, I need now a program a function, which would which would 

tell me what the inverse of the matrix or what is solution of this equation is; that is my 

set of linear equation, which I have obtained by finding the derivatives of the Tailor 

expansion with respect to a. 

So, what the solution of that equation is, I need (( )) function to do that and then, I would 

call this function from here. So, that is what I am going to do. So, that is what we will 

see the next section and then, we will see what what case we can get the solution of that 

and where we will that kind of such an equation could fail that is what we should look at. 
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So, in in short you could have a set of linear equations like this. So, we would have some 

many parameters let us say now this x 1, x 2, x 3 are unknown, so the x n unknown; and 

a 1 1, a 1 2, a 1 n here are coefficients. And now, I need to solve the set of linear 

equation. So, now in 1 or 2 class will discussed detailed, how do we go about solving 

such an equation a numerically. And we have n equations and we have n unknowns 

linear and so, and now we want to solve this linear equation. 

We can see that, if I write it in this form which in the previous case problem of 

minimizing the the chi square or fitting a non-linear function to a set of data, we would 

get by finding the derivative of the Tailor expansion (( )) square. Or in general, we could 



have a set of linear equation and you want to solve them, there are many situations, 

where this kind of problem arises. One example being which are what we just now 

solved. So, our idea would be that to develop an algorithm for solving a set of linear 

equation like this, and then put that back into our equation for finding the parameters 

parameters of the non-linear function. 

So, more than two parameters you should put this incorporate this program into that into 

that function and I get a general program for either minimizing a set of non-linear 

equations or fitting a set of non-linear function of many parameters into (( )) set of data 

points. So, here is the matrix for that then we have this linear set of linear equations. And 

we we can write this linear equations in a in a matrix form right. So, we write this in a 

matrix form. 
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So, that is the first step to identify it is simple to see. That we have a set of linear 

equations like this (Refer Slide Time: 31:22) and we can I can simplify write this as a 1 

1, a matrix which contains a 1 1 and a 1 2, a 1 n, a 2 1, a 2 2, a 2 n etcetera to a n 1, a n 2, 

a n n multiplied by the column vector x 1, x 2, x 3, x n, x 1, x 2, x 3 up to x n which 

gives you b 1, b 2, b 3, b n as a column vector. 
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So, that is what we have here. So now, we have to invert this matrix and then, multiplied 

by both side of equation by the inverse of this matrix a, then we could get the solution A 

x that is what (( )). So, basically idea would be either to find the inverse of this matrix or 

some way solves this equation. So, that is what, so we will do. 
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So, the first way to do that it is the simplest way is to use a very simple elimination 

method, we actually saw that already in our function minimization sorry in our in our 

data fitting the data the function, which we actually solved. When we are doing just for a 



set of linear equations in the case of fitting a data fitting a function through a set of data 

points, we (( )) this elimination method in in practice. So, here we will do a in general 

case what I mean by that is, if you look at this matrix equation, and if I can make this 

into a upper diagonal matrix all the diagonal element, all the elements below the diagonal 

element diagonal matrix. 

If I make if I could make this diagonal all the elements below this diagonal matrix to 0 

without changing the actual value without changing this equations or altering this 

equations without changing its result; if I could do that and then, I can see that if I have 

only this elements non-zero only upper diagonal elements upper diagonal elements non-

zero; and then, the last equation would simply read a n n and x n equal to b n, because 

everything to the left of that will be 0 right. 

So, last equation is simply a n n x n equal to b n. And then, I could solve x n as b n by a n 

n. So, if I have a matrix here which is only the upper diagonal elements and (( )) below 

the diagonal element, then the last equation be simply a n n x n equal to b n. And that 

means x n equal to b n by a n n, once I obtained x n then I can go back to the equation 

above that which will have a n minus 1, a n minus 1 and then a n minus 1 n; and that will 

be contain that equation will contain x n minus 1 and x n. But, I know x n already, so I 

can solve that for that. So, that is called back substitution. 

Once we could if we could make this matrix such that all the element below its diagonal 

element are 0, then I could solve it from the bottom that is by back substitution, I can 

solve for all the x values. So, that is the idea of a simple elimination scheme; and that 

relies on the fact that, if we multiply or divide any row by a number, equation does not 

change, the solution of the equation does not change. That is if I could divide any row by 

a number multiply or divide any row by a number with the solution of the equation do 

not change. 

Or if we exchange the rows on either side of the equation; so there are many things with 

the three things we can do, we can either multiply or divide each row by a number. Or 

we could exchange the rows on either side, the right and left hand side of the equation, 

where is a simply making the 1 st equation to the n th equation or n minus 1 th equation 

to the n minus 2 equations etcetera, we are just shifting the equation. So, there will not 

change the solution we know (( )). 



We also know that, we have an equation f of x equal to a, then if I multiply either side by 

a number it is not going to change the solutions. So, that is (( )) as the first thing. Or we 

could replace one of the equations by a linear combination of other equations that is next 

method. What we will do? Take one of the equations and replace it by a linear 

combination of the equations that will also not change either the solution. So, that is the 

idea here. 
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So, that is been summarized here in terms of what happens to each of the elements. So, 

so these operations that is multiplied or divided by number or exchange each rows by an 

either side of the equation or replace one of the equation by linear combination of 

equation is, that is what we going to implement in this thing. So, what I mean is that, 

what I am going to say is that (( )) equation again. 

See, if I look at equation again (Refer Slide Time: 36:13), now if I want to make this 

element 0 this particular element 0, what I could do is? I could take this I could subtract 

from this row; I could subtract form this whole row of this row, this particular row 

divided by the first element and multiplied by this element; that is what I am trying to 

says. 

If I take this row and divide this row by a 1 1; so every element in this row get divide by 

a 1 1, b 1 also divided by a 1 1 that does not change my equation, and does not change 



the solution of my equation. So, I could take this first row, first row of the matrix and 

divide it by the first element of that matrix and that will not change my equation. 

And then I multiplied that by this a 2 1, now I divide by this row by a 1 1 and I 

multiplied by multiplied by a 2 1, so what what will happen is this will become this a 2 

1; and then I subtract from this element are from this row this row, if I subtract if I do a 

linear combination of rows, the solution does not change we know that. 

So, the linear combination of this row this this row 1 and row 2, so I replace row 2 by a 

linear combination of row 1 and row 2 (( )) what I do as, I take the row 2 and replace it 

by a row 2 plus a constant multiplied by row 1. And what is that constant? That constant 

is a 2 1 by a 1 1. So, I take a 2 1 the whole row a 2 a 2 1 up to a 2 n, and subtract from 

that this row a 1 1 up to a 1 n and multiplied by a 2 1 and divided by a 1 1. So, all 

elements of this row multiplied by a 2 1 divided by a 1 1 subtracted from this will give 

me a 0 here and all this element will change. So, I replace this row by a linear 

combination of these two. 

And I continue for the next row next row again I will do that. So, the factor which I have 

to multiplied will now become a 3 1 by a 1 1 and then I subtract from this; so, then this 

will become 0 and by this procedure I could make all the all the elements below this a 1 

1 go to 0. And then, I could repeat this process for the next element a 2 2. So, I could 

make them again go to 0 that is idea of elimination method. So, that is what we have 

done here. 

So, j here is the is the row index and i is the column index. So, the first element would be 

j equal to 1 and i going from 1 to n, (( )) 0 to n minus 1. So, let us take to the index as 1 

to n as we mark the columns in a program it would actually go from 0 to n minus 1. So a 

j i, so a 1 1 is the first element and a 1 2 is a second element of the first row. So, j is the 

row index and i is the column index. Remember this, j is the row index and i is the 

column index. 

So, what I am trying to what I am doing here is now, I take a j i the first in the first step I 

will take all j’s which are below which below the first row all columns and I subtract 

from the I replace that row by each element of the row, there is i going from 1 to n i 

going from 1 to n for all j greater than 1 I do this operation. That is I take a j i and 

subtract from that a j 1 that is the element of the row above that in the corresponding 



column and then, multiplied by a 1 i and subtract by a 1 1. So, a 1 i is the element in the 

first row in the column i and you divided by a 1 1, there is the first element and 

multiplied it by a j 1 that is the first element of (( )) column j. By this procedure, you can 

see that, if for i equal to 1 for any j, i equal to 1 this would mean by a j 1 will go to 0. So, 

that will happen for all all rows below 1 that is what I just show you before. 

And the similar thing has to be done on the right hand side too, because (( )) equation 

would change (( )) prevent the equation from changing. So, we would the solution from 

changing we have also do the on the right hand side. That is the exact same operation is 

done on the right hand side. That is we subtract from b j for all j values greater than 1, a j 

1 by a 1 1 into b 1. Hope this process is clear that is what we doing is a taking the first in 

the first step we are taking making the first column below the first row to be 0; all the 

elements of the first column below the first row goes to 0. That is what this step would 

do. 

I guess this is clear for j greater than 1, j is the row index for all j greater than 1 all 

elements i, we subtract from that the first row is the first row that is a 1 j i. The elements 

of the first row multiplied by a j 1 by a 1 1 in this process I could make all the row 

elements same. 

Now, I could do this for the next element in this way that is instead of now 1 (( )) to 2. 

And then, now I will start from the second element right, because the first element of the 

first second row is already 0. So now, I do the second element and I go down all the 

elements; and that process I will eliminate all the (( )) second row into 0. 

So, in this if I continue this phases, I can make all the elements below the diagonal to 0, a 

simple elimination scheme. So, that is what we are doing. So, we take the first row 

divide the elements by its first element that is the diagonal elements; and second term 

second step will do the second diagonal element divided by second diagonal element. 

The second row we divided by this diagonal element and multiply it by the the element 

below that is j greater than 2 this is be done for j greater than 2 the element below and 

then subtract it from the column. 

So, let me summarize that here. So, what we will be doing is. So, first once we make all 

of them 0 and then, we come to this one and then we will take this column and divided 

by a 2 2 multiplied by a 3 1 and subtract from this, now this will goes to 0, this will goes 



to 0 etcetera. So, once we have done that (Refer Slide Time: 43:11), we have the 

diagonal matrix and then, so in general that is what we will do as this this subtraction for 

all elements. 

And then we have an upper diagonal matrix. As we can see, this procedure will not work 

if any of these diagonal elements go to 0. So, that is one example over it is bound to fail. 

In this process of elimination, if any of the diagonal elements go to 0 then we will not get 

a solution to this, because this will (( )) and we will not be able to work with this. So, 

already there is a there is an if there we have to make sure that, diagonal elements are 

non-zero. 

(Refer Slide Time: 43:48) 

 

So, if you succeed in doing this without any diagonal element going to 0 and then we 

have a matrix like this in set of equation of like this, is the matrix would be you can see 

the corresponding matrix for this would be 0 below the diagonal and non-zero above the 

diagonal (( )) you have this equation. Now, you can see as I said before, we can solve 

this equation here x n as b n minus 1 divided by a n n, b n divided by a n n; now this this 

upper index here to show that this has being changed n minus 1 times. 

Each time we do a elimination, all the elements below that particular row gets changed. 

So, the last row gets changed n minus 1 times by this elimination process, that is what 

meant by this index (( )). (( )) changed once and this will be changed n minus 1 times. 

So, similarly on the right hand side too. 
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So, now we can solve this equation by back substitution. As I said, we can see written 

the way previous one that x n as b n by a n n. Similarly, x n minus 1 is now b n minus 1 

minus a n minus 1 x n by a n minus 1 n minus 1 (( )). But, now we know x n from the 

previous solution, so we can substitute that back here. 
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So, we can write general formula for this and as x k is equal to b k k minus 1 minus sum 

over j going to be 0 to n a k j k minus 1 x j by a k k. So, we can do this. We have to start 

from k equal to n we have to we can do this solution starting from the (( )). So, again will 



it always work; obviously not, when you have the diagonal elements going to 0. So, we 

will see and implementation of this thing. 
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So, one of the let us take the matrix a set of equations like this, and then we could solve 

this equation. And see, how do we what is the solution we get, this is also various special 

equation that is why we shown here. That this equation this whole process also not work, 

if one of the diagonal elements are goes to very small value. So, there is also a (( )). 

In the elimination process, we may not make any elements 0 diagonal element, but the 

diagonal element could be go to very small value compared to other elements in the row. 

So, we could have other elements in the row much very large, but one of the diagonal 

element it could be very small; in that case, also we will have a lot of error (( )) we get a 

solution, where solution could be very (( )). 

So, we could have lot of errors in the problem and (( )) matrix called ill condition 

matrices. And if we cannot eliminate that, there are ways of eliminating as such such 

situations that is diagonal element going to very small value. But, we will discuss that 

little later. First let us let us see the implementation of what we are discussed so far, that 

is simple elimination scheme and to solve this equation. So, that is what we would just 

look at now. 
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So, we have a program here which would do that job. So, we have a 3 by 3 matrix right. 

So, we have a 3 set 3 unknowns x 1, x 2 and x 3 and we have 3 linear equations. So, we 

have 3 by 3 matrix; so, 3 1 4 6 2 1 1 4 2 is the elements of the matrix. That is what (( )) 

in here 3 2 1 6 2 6 2 1 and 1 4 2 are the elements of my matrix, it is a 3 by 3 matrix. And 

the right hand side is 7.65, 13.5 and 16. So, that is what this equation is (Refer Slide 

Time: 47:45), so that this equation this is what I am trying to solve. 



So, we have that equations here and I am just printing out the matrix here, so that we can 

see the matrix, in the matrix form and then I do the I do the elimination scheme here. So, 

now here is what I am starting the elimination scheme. Remember, I go from index k to 0 

to n, so that is n now in my cases 2, because this is program is goes from 0 to n minus 1, 

so n is 2 here. 

So, there 3 by 3 goes from 0 to 2 and I take all the all the rows. So, I take the first row 

here that is 0, first first iteration in the elimination I will have 3 rounds to do, the first 

round it was 0 and then I take. So, whatever the k value is start to elimination I have to 

make all the rows which were below thus below this to 0, all the the elements of that 

column go to 0. 

So, if it is 0 and then, all elements of this 0 th column which are below this k should go 

to 0, that is (( )) k minus k plus 1 onwards, I want to make them to 0. So, I defined this D 

j k by D k k; so, I take the diagonal elements of that particular k value for the k row, the 

k th row. So, I take the k th row and I take all the rows below the k th row and my idea is 

to make all the columns start elements in the column the k the column go to 0; all the 

elements of the k th column below the k the row should go to 0. So, this is the 

elimination process. 

So, I have I have defined a parameter x here have which would be D j k divided by D k 

k. So, I am doing exactly what is here, so my idea is to do this. So, I am doing that that 

process here, so I have the D j k divided by D k k (( )) call d j l divided by a l l; a l l a j l 

by a l l this is a is matrix here and d is the matrix in this program. So, that is what it is 

here. 

And as I multiply D k i by that is the whole elements of that row by this quantity and 

subtracted from (( )) the value the whole element all element of the j th row right. So, 

what we can see x into D k i would simply mean that, I take the i th element i th column 

element of the k th row right multiply it by D j k that is the element the j th row the j th 

row k th row column element that is what it is. 

So and I would subtract it from this one. So, I am changing the j th row all the element of 

the j th row by this process. And and you can see that, when i equal to k this will go to 0, 

for i equal to k this will go to 0, because will D j k minus D j k divided by D k k into D k 



k right. So, this will be x will be for the i equal to k for this x would be simply D j k 

divided by D k k into D k k that is will go to 0 that is that is the idea. 

And then I have to change the right hand side of the equations also. Then I will print out 

the (( )) for every step I will print out this matrix. Just to see that, how each row by 

column by column how do I change this. So, once I have all the matrix elements going to 

0 below the column going to 0. So, we will see that first here. 
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Let us let us look at this column by column. So, this is the 3 iteration (( )) 3 by 3 matrix I 

have 3 iterations. So, first iteration we can see that elements below the first row as gone 

to 0. And the second iteration, the element below the second row as gone to 0. And the 

third iteration, I have the element below the third row gone to 0. So, that is the procedure 

that is idea I will do. 

So, now this is the this is the procedure, so by this (( )) I kept (( )) this is only 3 by 3 

matrix. So, I already have here a a diagonal an upper diagonal matrix I have upper 

diagonal matrix and all the elements below that as 0, so it only (( )) do here. So, upper 

diagonal matrix and I have only the elements of the diagonal and the upper diagonal 

elements being non-zero. 

And similarly, I would make the changes on the right hand side also, right hand this is 

the this this what is printed here is the right hand side of my linear equations. And then I 



do a back substitution and I get the solutions of this form. And I am just showing there, if 

I substitute this back solution, back into the equation I am getting the same answer that is 

what I should be getting expected to get. This is actually the finding the solution of this 

equation. 

So, back substitution is implemented here as I go from now starting from bottom. So, I 

start from n to 0, so I go from n to 0 to find the solutions again steps of minus 1 that is 

the back substitution and I am using I am using this formula here which we have. Then I 

just simply use this formula to get the to get my equation in this is general formula 

written here (Refer Slide Time: 53:33). (( )) take the formula and I I will go back I will 

get the solutions here. That is the idea of the implementation of a simple elimination 

scheme. 

So, let us try to summarize what we done before we go into what are all the different 

problems which can have. I will try to summarize what we have done, so in this courses. 
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So, here it is, so you want to solve such an equation of this form, some equation of this 

form linear equation which has x 1 x 2 x 3 are unknown; and we have 3 3 linear 

equations I have to solve. 
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And then, what we do? We write this equation in the form of a matrix equation. So, we 

have this equation can be written in a matrix form the associated matrix should be this, 

this multiplied by x 1 x 2 x 3 would give me this solution. 
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And then I will do this this operation that is I will subtract from this row, this row 

multiplied by multiplied by find (( )) divide by 3, so that will make you all of them 0. So, 

that you that you will make all of my elements in the first element row, the first column 

elements below the first row to 0. And then I repeat that, so that matrix would go in to 



this, my equation is going in to this. And then I repeat that process again for the second 

row. So, that would make my equations change to that form and equation change to this 

form and my matrix change this form. 

Now, I can solve for x 3 from here we can see and then, I can substitute that x 3 into this 

and solve for a x 2 and once I have a x 2 and x 3 I can solve for x 1. So, that is my back 

substitution process, so you can you get an idea. Then, so from this I can solve for x 3. 

So, once I have that x 3 value I could just now solve for x 2 (( )) from this equation, but I 

have x 2 equation. So, I know the x 3 value I substitute that here and get the x 2 equation. 

And then once I have the x 1 x 2 x 2 and x 3 then I take the first equation which has x 1 x 

2 x 3 and I substitute for x 2 and x 3 and I get the x 1 values. So, that will be the 

summary of the process, which we just follow. So, there are many many cases where it 

can actually fail. So, that is what been listed here. So, there are many cases, where it can 

actually fail this equation, this solution. 
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So, we could have round off errors coming on the way in our in our multiplication and 

division; or it could have ill conditioned systems, where one of the elements is going to 

be one of the diagonal element is going to very small value; whatever we do, we could 

get one of the elements going to be a small value. So, in this kind of situations we we 

have to do we have be little more clever and then change the change equations change 

the set of equations appropriately. And that is using some technique called (( )) we can 



actually set the we can inter change the rows such that, the diagonal elements are always 

very large and that is something which you would discuss in the in the next class. 


