
 
Numerical Methods and Programming 

P. B. Sunil Kumar 
Department of Physics 

Indian Institute of Technology, Madras 
Lecture - 13 

Data Fitting: Linear Fit 
 

Today’s discussion on numerical methods and programming, we will focus on the 
modeling data in using a fit. So last time, we discussed modeling data using interpolation.  
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So that is we do, so if, we have a set of  points this is what we did last time, if you have a 
set of points, let us say a function of x, variable x and then if you have a set of points and 
then we would say that if the, we have got some set of points like this is some 
measurement and if you have full confidence on the, on this data that is if you know for 
sure that these data points are reliable all this variations in the data points are actually 
reliable are actual variations and then we would have what is called an interpolation.  
 
So then, we would have an interpolating data which would just go over all this data 
points. So that is what we saw in the last few classes that how to construct a line which 
goes through all these data points but let us say, in many cases we do not have, we do not 
believe that these fluctuation in the data is actually real and all we want is an average line 
which goes through all these points. So in that case, we use what is called data fitting. So 
we have a functional form which we believe represents the correct data and we want to 
just fit that function form into this set of points. 
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So that is what, we would be using we will be discussing in today is lecture, how do one 
do that there are two occasions, one is this data is not very reliable and so all these 
fluctuations may not be real fluctuations there will be some measurement error. So the 
reliability of each of these points has some finite, and an another case is that we know the 
functional form many cases that happens we have the, we know the functional form and 
we want to know, how that data would fit in. So as we saw in the case, that we could 
have for example, if you have some curve like this we could have, if you have a 
polynomial interpolation we would have some curve which goes like that, that would be 
the a polynomial kind of interpolation.  
 
If we believe that our function should go through all this points, that is what we use if 
you actually believe that these fluctuations are real and if you want to evaluate of, if you 
want to know what is the function value at any point in between here or here for example, 
what is the function value and then we would use what is called the interpolation but, as I 
said some cases, we know that this is not supposed to be fluctuating and we know these 
are due to some measurement error or some numerical error, if the data comes from 
simulation or numerical calculation or it is because of some measurement error, if it 
comes from some experiments. So and we believe and all we want is just to get a smooth 
curve which goes through all these points, so here is a smooth curve which goes through 
all these points and that is all we are interested in, we are not actually interested in the 
actual fluctuations of the data. So how do we do that? So that is what we would do with 
the fit.  
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So to summarize, so if you have a given set of discrete, given set of discrete points. so we 
can either interpolate or we could fit. So that is what the two methods are and now we are 
looking at is the fit, we looked at the interpolation and now, we look at the fit and use 
mainly two cases mainly when we do not have full confidence in the accuracy of the data 
given and another case that we know that it should look like a certain function with 
adjustable parameters. So, if you know that the data should actually look like a certain 
function with adjustable parameters then, this f of x let us say, this f of x actually has 
some adjustable parameters a1 a2 a3 etcetera.  
 
These are adjustable parameters of this and then we could actually try to get this curve by 
adjusting this parameters and try to get the best curve which goes through all these points 
or a function which best represent this set of data points. So that is the idea of doing a fit 
to get this function, get a function with adjustable parameters and by adjusting those 
parameters, we want to get the function which fits best to this data, which is the best fit to 
this data, that is what we want to look at and the question is how do we get that and what 
is the quantity which tells us that something this is the best fit. So that is what we would 
be looking at into this lecture. So here is an example, let us say that there is a quantity eta 
which behaves which we know as eta. We know it behaves like some constant times or 
eta is proportional to t to the power of alpha and we only interested in basically what the 
alpha is this is a very common occurrence in science.  
 
So that we have some measurement eta some quantity which behaves which varies with 
time or temperature or whatever some variable as eta to the power of, eta goes as t to the 
power of alpha. So now, if you do a typical measurement for eta or typical simulation 
calculation for eta you would get a very fluctuating curve. So then, from that now, if you 
could plot now from that we need all, we need to do or all we are interested in the 
experiment is to actually extract this alpha. So that is what I said. So you could have as I 
said this function could be some you know a1 x square plus b2, a2 x cube plus a3 x to the 



power of 4 or something like this, some function like this, some polynomial function like 
this and we are interested only in a1, a2 and a3 values.  
 
We know it is a polynomial. Let us say, we know it is a polynomial and all we are 
interested in is a1, a2, a3 values. We were not actually interested in getting the full 
functional form of the, we are not interested in getting the representing the fluctuations 
and another case which I said here is that, we say f of t is equal to, let us say we are 
interested in some a t to the power of alpha. We are interested in that and we are only 
interested in this exponent alpha, we are not interested in this whole variation of this 
quantity. So in that case how do we do this. That is the case which we look at it.  
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So, if you actually do a measurement and what do we find is that in an actual 
measurement this function might look like you know a set of scattered data points. So I 
have taken f of t as or the function which I call eta in that particular case. So I we are 
taking this function eta as a t to the power of alpha then, I am taking the log of that on 
either side. So that would be equal to some log of a plus alpha log of t. So and I am only 
interested so, I know that this goes like if I plot log eta versus log t, so I take log eta 
versus log t then, that is the straight line this is a constant.  
 
So if I take log eta and plot, if I take log eta on the y axis and log t on the x axis, I would 
get it as a straight line that is what I would expect but, in a typical experiment what I 
would get is a set of scattered data points. So I will get a lot of scattered data points and I 
know that it should behave as a straight line. 
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So I try to fit a straight line through this, I try to draw a straight line and then what you 
see is that by visual inspection I cannot do this because there are, I have drawn 3 different 
straight lines which all looks more or less going through this points. So that is not a good 
way to do it. So we should have a correct, some quantitative way of measuring this that 
which is the correct line which goes through this set of points. So that is what we should 
be trying to estimate. So we should try to estimate an error and then we should to 
minimize the error, so some quantity called a fitting parameter a fitting error, so that is 
what we would be looking at. 
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So we will try to now quantify this a bit and then do this. So let us move, let us say that 
we have a set of data points xi and yi.  
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So yi is, so xi is the independent parameter, independent variable and yi is the 
measurement. So it is a function of time, this is a function, this is cubic time temperature 
or something and this is some quantity which we would measure. So then, we need to fit 
some let us say, some curve f of x through this. So the curve which you want to fit is f of 
x, so if everything is true and if what the fit is there is no fluctuation and everything is 
correct then what you would get is, y equal to f of x but, y is equal to f of x is the real 
curve which we expect to get. So, but the measurement or simulation data gave us xi and 
y  so for each, so what we got y of xi, yi is the measurement and xi is the variable which 
we changed and now, we want to fit in a curve through this and let us say we had have 
adjustable parameters ai. 
 
So our adjustable parameters are ai, so that is the, so this is the real function, let us say 
that is the real function and that is the measured value and we have ai are the fitting 
parameters. So a i is the fitting parameter that is what we have so, we have some function, 
some variable set of data points and we want to fit in a function y equal to f of x type 
through this data points and ai are fitting parameters, so the question again to formulate is 
that, what is the values of ai which best represents this data.  
 
The function is given to you, the function is already given to you. So that is nothing to 
determine there except this parameters ai. So what are the values of ai which best 
represents this data or another way the question would be is that, if I write this function 
with a set of ai, what is the probability that the measured values will be close to that 
function that calculated value plus minus delta y? So these are two questions you can ask 
one is given this data points what are the values of ai which best represents this function 
which best represents this set of data points or we could ask that I give you the full 



function with a set of ai and what is the probability that these measured values are yi, 
what is the probability that yi which is f of x plus or minus some given delta y, some 
small delta y what is the distribution of this delta y that is the two questions which we can 
ask that is what we should try to do.  
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So, again to summarize, so we are given a set of n data points xi and yi and we want to fit 
a function f of x through this set of data points, we have some adjustable parameters a i. 
so the question we are asking is, if you are given a set of a i, so there are two questions 
which we could ask, so that is how good is a given choice of ai that is, if I had given this 
functions this values xi and yi and an adjustable parameter a i we choose a set of ai how 
good they are or in another words, what is the ai which best represents this data, if I put it 
inside this function f of x or given a set of ai, if given a set of ai. Suppose that is correct 
set of ai, suppose it is given to you a set of ai then, what is the probability that the data 
passes through the curve given by the function f of x with this set of ai with an error of 
plus or minus delta y. So these are the two precise questions which we can ask. So with 
these two questions we can actually formulate keeping these two questions in mind, we 
can formulate a method of doing a fit and now, this fit would be called chi square fit and 
we will see what that chi square fit means in a few minutes.   
 
So now, so what we are saying is the following that, if we assume that each data point yi 
has an independent random error which is gaussian distributed around the true model f of 
x. So what does it mean, so we have this model, this is a model so which I call real 
function or that why I put it in quotes, it is real function in the sense it is a model this is 
what we believe the correct function is and we now assume that the measured values 
since, this is the real function the measured values that is yi are distributed around y in a 
gaussian manner what I mean by that is, if I take if I actually plot the probability of yi the 
probability of yi and then I plot it as a function of yi for different values of yi. 
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So this is, so that is this axis I plot the probability and then, if I put yi here, y axis and 
then I would get some distribution like this, some distribution like this some distribution 
like that, this is what I would get and the peak of that distribution would be y equal to f of 
x. So that is what I mean by this that is it is gaussian distributed this is what I would 
assume.  
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I would assume that an independent random error is what happens, when I do the 
measurement that is the true function is actually this is the real model for the function 
model for the data and when I, so I should have got for a given xi, I should have got f of 
xi as my yi value but I will not get I will get some value yi and that measured value and 
because it is a random error, by random error it will always be gaussian distributive, that 
is the assumption which we are going to make.  So it is always gaussian distributive or 
normal distributive, that is what we are going to say.  
 
So, remember this is the, what I am plotting here is the distribution of the yi values, if I 
take let us say xi represents temperature and this yi represents some quantity some 
measured, some value which I can compute using conductivity, something resistance 
something. So that is the temperature resistance and then I fix temperature and I make 
many measurements of resistance of some object a wire and I plot the value of resistance 
I get for different, the number of times I obtain a one particular resistance as a function of 
resistance, if I plot that I would get a distribution like this, where the peak is, with the 
peak corresponding to the real value.  
 
So it is distributed around the real value in a symmetric gaussian way, so that is the 
assumption. The reason for this assumption is that, we believe this error in this data is 
some random error and by central limit theorem, what is called central limit theorem, we 
should always get a gaussian distribution if you make enough measurements. So that is 
what the assumption here is that is the first assumption which we make when we go 
ahead and do that the fitting the first assumption that we make is that the error in the 
measurement of yi is a random error and it is gaussian distributed around the true value 
which is f of x.  
 
Now we also assume that, the standard deviation of sigma of these distributions are the 
same at all points for the time being we make this assumption that is, what we are saying 



is now if I change this x of my temperature to some other value and so I would change 
the yi ,if I change xi, I would change yi, if I change xi will change y in the true model also, 
so and the distribution around that value was also similar that is the same width and that 
is also similar that is another assumption we make.  
 
It is not a very hard and fast rule and we do not need to make this assumption and we can 
do without this assumption but to simplify things in the beginning, let us make an 
assumption that this distribution is the same irrespective of what the value of x we 
choose, we choose another value of x the distribution will shift but it is only a shift and 
the functional form will remain the same that is what we assume. So that is what has been 
given here in short, we are saying that this probability for each of this xi, let us forget this 
for the time being each of this xi the probability is simply given by this, so the probability 
that. 
 
So in short, what I am trying to say is that this probability is given by p of y or yi will be 
is equal to exponential minus half, so f of x which I call y minus y of i, so that is what I 
am going to write divided by sigma square, that is what I wanted to say, so that is the 
function value which I wanted to get or the probability that I would find the yi value 
between plus or minus delta y is given by this multiplied by delta y this multiplied by 
delta y will give me the probability that in a given measurement, I would get a value 
which is plus or minus delta y around the true value y that will be given by this.  
 
(Refer Slide Time: 24:02) 
 

 
 

So remember, the question here is i give you a set of, I give you a real model f of x, now 
the probability that my measurements y passes through or is close is within a distance 
delta, plus or minus delta y from the real value f of x is given by this. Now given a set of 
n points the probability that all this n points are within a distance plus or minus delta y 
from the real value f of xi is given by this. So p is equal to, p is proportional to i going 
from one to n of this, so n data points of this. So that is the function.  



 
So now, what we need to do is this f of x as we said, now the full probability is what we 
are writing now here as-, the full probability which we are interested in is p proportional 
to phi, that is the product function phi 1 to n. So I will say this is as f of xi, so that is the 
real value and that is the product which we are interested in and this is what we want to 
minimize. So when I am given this, so now if I am given this data points xi and yi what I 
want to do is I want to now find out this function f as adjustable parameters ai. I want to 
find out those set of values ai such that this is minimal. 
 
So that means I want to, this is the maximum that means I want to maximize the 
probability that it actually goes through the real function yi that is what I wanted to do or 
I want to actually make the negative of this logarithm minimized, negative of this 
function minimized. So, I want to basically make sure that this is maximum that is why, I 
said negative of this logarithm  maximized that is what we want to look at this.  
 
So we want to make sure that this goes through-, the probability that it goes through a 
value plus or minus delta y from the real thing, real function should be maximized that 
means this minus of this quantity in the bracket which I am writing here should be-, we 
want to make it minimum. So that is what we wanted to do, so that is what we have 
written down here so what you want to do is to do this. So, maximum probability would 
mean that this quantity here, this whole quantity which is basically saying that I want to 
make this, whole thing in the bracket a minimum.  
 
So exponential of this quantity with this minus sign here, so when you minimize this this 
function would be maximized, so that is what we wanted to do, so maximum probability 
would mean minimizing this whole quantity so and then we remember this f have all the 
adjustable parameters ai, so what we want to do is we have to take this function, we want 
to take this function and minimize this with respect to the ai this is not a function if ai. So 
basically what we want to do is minimize this particular function that is sigma i going to 
1 to n yi minus f of xi which also contains the ai divided by 2 sigma square. We want to 
minimize this function with respect to ai. So that is the essence of what we call the chi 
square fit.  
 
So now we are going to define the psi square as just that quantity in the bracket so 
basically this is my chi square. So, this quantity is what I am going to call as the chi 
square. So you can see that there is a chi square which I have written here, so it is, that it 
is that, every point xi yi now we could assume, now we could get rid of even the 
particular assumption that we made that each point xi yi had the same error, the same 
standard deviation we can get rid of that and we can say that each point xi and yi had a 
standard deviation sigma i and then I could define this now as yi minus f of xi divided by 
sigma i the whole square i going from 1 to n and that is what my chi square would be, 
what is called the psi square and now what I have to do is minimize this psi square with a 
function of a i and that is called the psi square fit.  
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So we would call that psi square fit and you would see this almost everywhere in science 
and engineering. So now we can minimize this you said I can take this chi square.  
 
(Refer Slide Time: 28:01) 
 

 
 
So what I am going to do is I am going to take this chi square which I defined as f of xi 
minus yi the whole square divided by sigma i square that is what my chi square is now f 
contains all the ai and I am going to minimize this so basically I would do del by del ai of 
chi square is 0 to minimize this function for all ai and I would find out what the ai values 
are. So now and then I find some ai values and I put it back into this function and I can 
calculate this psi square, so how do I know which is, it is a good fit or not what is the 



kind of thumb rule, so the thumb rule is that for a good fit we should have psi square of 
the order of n minus m, where n is the number of data points and m is the number of 
adjustable parameters in the fit, so that is the chi square rule. 
 
So remember, that we if we did not know sigma i and if we only knew, if we knew the 
real function f of xi, f of x and the measured values y of i, yi then we could have actually 
computed the sigma as in this fashion, yi minus f of xi whole square sigma i going from 1 
to n divided by n minus m. So that would be our standard deviation, by standard 
definition. So now the question is, now we want to do this fitting, so we will take a 
particular function and then do this fit, so now we need to know what is the functional 
form of this,  if we want to do this.  
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So we just so far, we said some general model f of x contains some fitting, some function, 
some parameters ai and we can define a chi square like this from the measured value and 
the real function divided by sigma i square and I want to, I can minimize this chi square 
with respect to all the ai, alpha i going from 1 to m. So I could minimize this m is the 
number of fitting parameters which I have and I could write this equation and I could 
solve this equation for the ai and then, I would get a model.  
 
Now, so far we have not said what f of x is so f of x could be a non linear function, a 
linear function it could be any of this. So now we will take a specific example and then 
do this specific set of functions, so first we will do is linear function. So we will assume 
that, f of x is a linear function of x and then we will actually solve this model and see 
what is the, how do determine the a values are.  
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That is what we are going to do now. So basic philosophy is now just this to do this, so 
we have taken here a set of values f of xi, so we have f of x as ax plus b, we took this f of 
x as ax plus b and now we can define the chi square as that and then we can minimize this 
function that’s what we are going to do.   
 
So we said f of x is a x plus b, so that is our function and we can define now the chi 
square would be then equal to yi  minus a x minus b the whole square divided by sigma i 
square that will be our function sigma, actually this two does not matter. So that is what 
you would have and then, we could just minimize this, so we can minimize del psi square 
by del a that is what first thing we should do and then a xi  and then we have to do del chi 
square by, so if you do this we would get sigma yi minus xi divided by  that is not. 
 
That is what we get if I just um minimize with respect to a and then I have another 
function which will be del chi square by del b so that will again sigma i, yi minus sign. So 
that is the quantity which you would get.  
 
So you want to equate these 2 to 0, if you do this and if you can solve this 2 equations, so 
you have to sum over I going from 1 to n all the data points 0 to n minus 1 or 1 to n and 
we want to solve these 2 set of linear equations in it is linear in a and b. So it is the set of 
linear equation we want to solve and we want to get a and b that is what we are going to 
do.  
 
So that is summarized here so we just minimize with respect to a and b and we got these 
functions which is written about here so it is yi minus a, xi minus b by sigma i square into 
xi and this two does not matter actually and then yi minus a, xi minus b by sigma i square 
and then now we will just, what we will do is we would come with some parameters to, 
we have to first compute y minus yi by sigma i square xi by sigma i square and yi into xi 
by sigma i square xi square by sigma i square 1 by sigma i square and we sum each of 



them from 1 to n similarly, here and then we would set, write it in terms of a set of 
parameters on this fashion. 
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So now that is given here, so this equations which we had now are, we will write just 
concentrate on this, so this is, we would come with some new set of parameters which is 
s as sum over i from1to n 1 by sigma i and sx as you know xi by this is sigma I, so we will 
write all this functions here, so we would use yi, so we want to have sigma i xi yi by 
sigma i square. We want to compute that and then, we want to compute sigma i x i square 
by sigma i square and we want to compute sigma i 1 over sigma i square and we want to 
compute sigma i yi by sigma i square, so and sigma i xi by sigma i square.  
 
So all, that finishes all the quantities which we compute, we will first do that that will be 
the algorithm first we will do this xi yi by sigma i square because that are all known to us 
and x is square by sigma i square xi by sigma is square and yi by sigma i square and 1 
over sigma i square and we call this as s xy and we call this sxx and this as s and this as sy 
and this as sx. So now I can rewrite these set of equations in terms of these parameters.  
 
So I can write down I can use these this functions and then plug them in into my main 
equation and write it, put it in this equation and write it in a different fashion. So I will 
just substitute all that and then I will get a set of equations which are given by this. So if I 
just do that in terms of sxy, sxx, sx, sy, ssx and s, I can write it like that also two linear 
equations and I can solve them and get a and b that is the algorithm. So it is easy to 
compute in that way. 
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So for a general linear fit, we can compute it using these two linear equations and I can 
solve for that and then I get a and b as s into sxy minus sx sy divided by s into sxx minus sx 
square and the same denominator here and sx sxy minus sxx sy divided by sx square minus s 
into sxx. So I have defined a and b in that way, so I can solve this equation and then get a 
and b. So then you know once you have this functions a and b then the next question 
would be what is the, how reliable this a and b is and so we need to define what is the 
error or what is the deviation in the a and b itself is so that we would get that would be, 
that is what we would next go into but, before we go into that we will actually see the 
implementation of this particular form of linear fit in a program.  
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So that is what we will do next, we will now look at the implementation of this fitting a 
linear function into a given set of data as we go along we will also pay attention to the 
programming details. 
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So here is the program which would implement the following. So we have a set of 
function values given at xi and yi. So instead of an array this program I am using a pointer 
x and y and then as I said in the case that what we want to fit is a function f of x is equal 
to ax plus b, so we had defined our psi square as y minus ax minus b whole square divided 
by sigma i square and we have to minimize this chi square with respect to a and b and we 



now, and then we get this set of equations and to program this equation, so to write an 
algorithm for this solving this we first define yi by sigma i, 1 over sigma i squares and yi 
by sigma i squares and xi by sigma i square etcetera in this set of functions s, sxy, sxx, syy, 
sxy etcetera.  
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And then, so we want to compute these quantities first so that is what we are trying to do 
first so here is that code so we have defined them as all of them as floating point numbers 
and we set they are all, set equal to 0 to begin with and then, now we want to read this x 
and y the set of points xi and yi from some file data files I call that data file as fit dot data 
and then I can open that file. so I open that file using this function pointer the file pointer 
fp 1 but now I want to read that into an array which is x and y.  
 
So before I can put it into x and y which is a pointer here I had to allocate memory to 
that, memory for that pointers and that is what I am doing here using this malloc function 
so, floating point, so I am allocating memory to that using float star malloc of n, so that is 
what I am doing here. So we have gone through this before, so I am just showing the 
implementation of that in a real program. So here is the x and y being allocated some 
memory and then I use scanf function, the fscanf function after opening this file I use 
scanf function to actually read this the values, so the function values are tabulated in what 
is called fit dot data, so here is in this form I have tabulated this function values the xi and 
yi.  
 
So I have them here. So I am just reading that off in this using this fscanf function, since 
they are floating points I use percentage f to read them to read them into two variables x1 
and y1 which I declared as floating and I store them in this arrays xi and yi which is now I 
store them because, I have allocated memory into that x and y, so that is important we 
need to allocate memory first and then I store them into that, so I just print that out when 
I run the program I just print it out on the screen the xi just to see that everything is all 



right and then  I have the red values and then I again print them the xi and yi here so, just 
to show you that what we have read is exactly the same as what has been put in just to 
help us in debugging the program if there is any bugs.  
 
So now that is a little programming detail then, we go into the calculation of s, sx, sy. So 
we have initialized all of them into 0 then, we compute the sigma in this data given to us 
sigma has not been given, so we assume all the sigma to be 1 all the sigma is the same 
because, we just assume them to be 1. So we could any number in this thing sigma all of 
them are the same. So we assume them to be 1 and then we just-, so i just put them as that 
itself, so we can just put s as s plus 1 s as 1. So I just have to sum over all the i’s, this is 1 
and then we have sx and sy so sx being, since sigma is 1. I just said sx is x of i. So 
remember sx is x of i by sigma i.  
 
So this is sigma I, s x by sigma i but then sigma i is 1. So it is just x sx is x. Similarly, sy is 
yi and sxx is x i into x and syy is yi into yi and sxy is xi into yi. So this is just summing over 
all the points, remember we have to initialize them first before you do this sum and we 
have done in here in the declaration itself. Then we compute the denominator so first we 
need to, this is the solution which we get, we know that we substitute all that we get an 
equation like this and the solution is this. So we compute the denominator of this function 
and then that is first and then we can compute a and b, so I computed the denominator 
here and I can compute a and b like this function so that is what we will do and then we 
will look at the fit of this function.  
 
So that is what we will just run this program now. So we compile that and we run this 
program and we get the a and b values as, so this is just printing out the xi and yi values 
and the a and b values are “3.333” and “.069174” that is the a and b values which we 
have got and we could plot this. So I just plot that now and that is the plot, so this is the 
value and so that is the again the circular points here are the values which are tabulated 
and the straight line going through is my fit for the given value ai bi. So then, we can 
actually, so we have a and b and so we have a straight line.  
 
So given for this spread of values with same sigma i’s, we said all of them are all the 
points here have equal reliability and then we have this straight line which goes through 
this points, which is the best fit to this point, best chi square fit to this point the set of 
points, that is what we have now next question obviously is what is the error and how 
good is my fit, so that is the question which you would ask now we have an estimate for a 
and b we have got a and b, now can we can we try to estimate errors in the parameter a 
and b given, obtained by such a fit. So then, we have to recall something which we 
learned in the beginning lectures that if there is a function which is a function of x, let us 
say and if there is an error in x given by some delta x and then how does that error in x 
propagate to the function value itself. 
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That is something which we learned before and we said that if there is a function of x and 
x is a floating point representation in that context we had learnt that. So there is an error 
in the representation of x which is given by delta x, let us say and then the delta f that is 
the error in the function value f because of the error in x is given delta f is given by delta 
x into derivative of f with respect to x that is what we have seen so same thing which we 
can use here we are looking at what would be the sigma in the function and if given some 
function f given that the variables had an error sigma i and then we would say that it is 
you know sigma f square is sigma f would be given by sigma i into derivative of that 
thing, we are taking square the here but derivative of that so sigma f would be sigma i 
into derivative of that function with respect to i.  
 
so here we are looking at the errors in a and b, a and b obtained now as functions of x i 
and y i that is what it is finally. So the question is what is the spread in the y i how does 
that affect or how does that give us a spread in a that is what will be given by sigma a 
square, so sigma a square is then sigma i square which is the spread in the y i’s multiplied 
by derivative of a with respect to y whole square. Similarly, the spread in the b sigma b 
square would be the spread in the i, a spread in the y which is sigma i square into 
derivative of b with respect to y square. That is what we would get as sigma a square and 
sigma b square. So remember, we can actually if you go and look back, look at this you 
see that a and b are actually represented as s, sxy and sx, sy etcetera are these half functions 
of yi. 
 
So these are functions of yi, so we can actually compute the derivatives of a with respect 
to i and derivative of b with respect to i from these functions and it is possible to compute 
this values of sigma a square and sigma b square. So that is, I am having so because, we 
can actually evaluate derivative of a with respect to i from that expression which we just 
saw and second derivative of b with respect to i and so using this we can actually sigma a 
and sigma b.  
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So now, if you do that computation then we would find that sigma a square is simply 
given by s over delta or delta is that sxx minus sx square which we just saw so and sigma b 
square is sxx by delta. So we can actually not only get estimates for the values for a and b 
we can even make estimates for the error in a and b in sigma a square and sigma b.  
 
Now, what is the implication of this is that if the spread of the data around the line is 
similar in magnitude along the entire range of the data or the distribution of the points 
along the line is normal, now if these two why I have set an, if here is because these two 
have been assumed in our actual derivation of the data.  
 
So this two have been assumed in our actual derivation of the data, so the derivation of 
the, that is the spread is normal the yi is normally distributed that it is gaussian we assume 
that. Then we can define a, now we can define a standard deviation for the regression line 
that is fit for that we can define a standard deviation and it is called the standard error of 
estimate. 
 
So summarize, we see that we can not only compute this a and b, we can also compute 
the errors in a and b, that is sigma a square and sigma b square and we can write them as 
a very simple function of in terms of s and delta as s by delta and sxx by delta and then we 
can define what is called a standard error for the fit and that is given by chi square by n 
minus two. 
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Now that is the definition of the standard error and this error is, we can define that only if 
the y distribution is gaussian that is for a given x value if you make measurements of y 
and if the y distribution is gaussian then we could define a standard error as given by 
sigma s chi square by n minus 2 for the fit. So psi square is something which we get from 
the fit and then the spread in the data, we can then we can define another quantity called a 
spread in the data which is yi minus y average square by n minus i square, y average 
would be for a given x as we said there is a spread which is um gaussian and you take an 
average of that. So that is the yi and yi is one measured value and that gives you the 
measure of the spread.  



So now given these two quantities, so remember sigma d here is the spread which means 
that for a given value of x that is fixed temperature. We make many measurements and 
then we take an average and we will take many measurements we get a spread, we get 
various different values of yi and that yi is we believe are gaussian distributed and that, 
and then we can take an average of that and then the average at y i minus y average whole 
square divided by n minus 1 is what would be what we call the spread in the data.  
 
So yi minus y average square, that is like mean square average, mean square distribution  
mean square y value so given this chi square and sigma d square, we can define another 
quantity called a correlation coefficient and that is given by sigma d square minus psi 
square by sigma d square. So I am just giving you a set of quantities which is computed 
as a standard thing, when you do a fit, so one is a correlation coefficient for which all we 
need to know is the sigma d square and chi square and so then we can compute sigma d 
square minus chi square by sigma d sigma d square and then we can also compute what is 
called a standard error which is chi square by n minus 2 and we can then, we can 
compute the errors in the a and b as sigma a square and sigma b square.  
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This is all apart from just computing a and b itself which is the fit to the given set of data 
for a function f of x f is equal to ax plus b. So we can generalize this idea into a general 
linear fit so now we had just done this particular quantity that f of x as ax plus b, we will 
generalize this fit this algorithm into a general linear fit in the next lecture that is what we 
will be looking at in the next lecture.  
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