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Today we are going to discuss error in the interpolating polynomial. Remember, we were 
discussing a polynomial that interpolates a given a set of data points. So, today we will 
discuss, what will be the error in this polynomial that is, what is the difference between 
the value this polynomial gives and the actual function value that is what we will be 
looking at today. So, we saw this yesterday that the polynomial, pn of x be a polynomial 
of degree n which interpolates a real valued function f of x at x0, x1, x2, x3 up to xn.  
 
That is the function this polynomial goes through all this points x0 x1 x2 up to xn. So now, 
what we are interested in is actually getting a value in between x0 and xn, any value which 
is not tabulated between x 0 and x n. So let us say, x is such a point and f of x is the actual 
value of the function at that point x between x0 and xn then pn of x is the value that the 
polynomial gives for that x. So pn of x is our interpolating polynomial that is an 
approximate curve that passes through all these points and x is the value somewhere in 
between which is not tabulated and then pn of x is the value of the polynomial at that x 
value and f of x is the actual value of that function which we do not know. 
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So the error is f of x minus pn of x. So now, we should try to estimate this error, why is an 
estimate because, we do not know f of x, that is why we need a pn of x. So we do not 
know f of x, so we need to make an estimate for this error f of x minus pn of x. The way 
we do that is to say that, let us consider a point x bar, let us consider come point x bar 
between x0 and xn and we say, we assume that we know the function value at x bar that 



is, we know f of x bar we assume for the time being and then we can construct a 
polynomial of degree n plus 1 now, which goes through x bar and we call that now as p n 
plus 1, x bar and that will be equal to f of x bar and this is exact because, we define the n 
plus one th order polynomial as one which goes through x bar that is it takes the function 
value f of x bar at that point.  
 
Remember, the way we construct a polynomial of degree n which goes through n plus 
one points is to make sure, by making sure that this polynomial takes the function values 
at all the tabulated points now, we added one more point to that tabulated set of points 
which is x bar and we construct a polynomial pn plus 1 of x bar and that goes through that 
f of x bar. So that is, and then we can define the polynomial pn plus 1 of x as pn of x 
which was going through all the n plus 1 points.  
 
(Refer Slide Time: 05:04) 
 

 
 
So remember, p n of x plus an additional term which will be now the n plus 1 th term, the 
n plus 1 th term will be the j equal to 0 to n product x minus xj and the coefficient of that 
will now contain x bar. And then, we know that this polynomial pn of x bar, pn plus 1 will 
take the function value f of x bar there and then this will be pn of x bar plus fx 0 xn x bar 
product j going to 0 to n, x bar minus xj.  So now we see, what we were interested in is 
actually f of x bar minus pn of x bar, so now from this we can see that the error f of x bar 
minus p n of x bar is actually given by this term. 
 
So it is given by this term, that is the next term in the polynomial of order pn plus 1. So 
that, gives us an estimate of the error, the error is now like the next term in the 
polynomial. So what we had done, we had a polynomial of degree n which went through 
n plus 1 points and we wanted to know what is the error in this n polynomial and the way 
construct we define this or estimate this error is by saying that. Let us say, there is a point 
x bar which is in between this x0 and x1 and then we construct a polynomial of order n 
plus 1 which goes through this point and then we see that the error is actually the next 



term in the polynomial. So therefore, for all x bar which is not equal to any of these n 
plus 1 tabulated points the error is this. 
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So given this n plus 2 points, we can accurately determine the error in the interpolating 
polynomial, of interpolating n plus 1 of those points that is let us say, you have a set of n 
plus 2 points, and then you construct a polynomial of degree n and then it is going 
through this n plus 1 points of the n plus 2 points given to you. Then, we can accurately 
estimate what will be the error because, we have an additional point here to estimate 
which allow us to estimate error because we can use that term to construct the next term 
in the polynomial and we can estimate the error, so that is the idea here. But, what 
happen, if you do not know f of x bar at all, we do not have an additional point, so then 
can we actually estimate the error still. 
 
It turns out you can still do that by using this, what is called a mean value theorem which 
tells us that given a function f of x defined in the interval a to b and if that is k times 
differentiable then, if x0 to xk are the k plus 1 distinct points inside a and b within the 
interval a and b then there is a value of x equal to “i” call zeta here, which is between a  
and b, which is between a and b, such that this function this f of x0 to xk to x bar, that is 
this coefficient of the n plus 1 th term is actually equal to the k th derivative of the 
function evaluated at zeta divided by k factorial. That is what we are saying, trying to say 
is that this is n plus 1th term is coefficient is actually equal to the k th derivative of the 
function at some value zeta. 
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We are saying that there is a value zeta, which is between a and b such that this 
coefficient is equal to the k th derivative of the function evaluated at that point divided by 
k factorial. Again, we do not know what the function is so we do not know what the k th 
derivative is but we have an idea that this error will be of the order of the k th derivative 
so that gives us something.  
 
(Refer Slide Time: 09:46) 
 

 
 
So here is just a illustration of the mean value theorem, which is explained a little bit 
more for the first derivative there we are looking for the k th derivative, we are looking 
for the first derivative. So the mean value theorem basically states the following that, if a 



function f of x and its first derivative so we are looking for the first derivative mean value 
theorem and it is continuous over an interval from xi to xi plus 1, then there exists at least 
1 point on the function that has the slope designated by f prime of zeta such, that is 
parallel to the line joining f xi to xi plus 1.  
 
What we are saying, we are saying that, if there are 2 points xi and xi plus 1 and there is a 
curve going through this point xi and xi plus 1, then along the curve at least at 1 point its 
slope should be equal, at least at 1 point its slope should be equal to the line joining xi to 
xi plus 1. That is what basically we are saying here. So that is, this point, this particular 
point zeta marks the value of x at which, where the slope is. So basically, physically this 
means that, if you travel between 2 points with an average velocity, so we travel between 
2 points with some velocity there you can compute, what is the average velocity between 
these 2 points then there is along that travel at least 1 point you were traveling actually 
with that average velocity.   
 
So that looks trivial, if you say this way that if you were traveling between two points at 
in some variable varying velocities and then you compute the average velocity then this 
theorem says that at least at 1 point along your travel you were traveling with the average 
velocity. So that is, the statement of this theorem which is basically illustrated here. So 
that is illustrated here, that is you are going from this point to this point and you are 
traveling along this curve and the average velocity will be marked by this curve.  
 
So this curve connecting these 2 points and you see that there are 2 points here, what the 
theorem states is that there is at least one, where this slope is parallel to this one and here, 
there are cases where you have 2 points, where you have this slope parallel. And then, 
given this theorem you can actually estimate what that slope would be, you could just 
take that as r0 divided by h, that is the idea.  
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So, we can say that that slope is actually given by r0 divided by h or you could say what 
that r0 is by doing this. So that is, so now this is juts a simple proof for the derivative 
mean value theorem for the first derivative and this can be extended to the n th derivative 
we do not go through the proof of here, but it is an extension of this arguments which 
takes it to the n th derivative.  
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So back into this problem, we were saying that the estimate of the error is actually given 
by or this coefficient is f of f this k th derivative of f and divided by k factorial. So that 
means, what is the error term the e n f, which I call the error in the n th order polynomial 
at x bar. So now, that will be given by f of x bar minus pn of x bar which we just saw is f 
of n plus 1, there are k points that is the k th derivative there will be n plus 1 points going 
from 0 to n which in this function. 
 
So, here it will be n plus 1 divided by n plus 1 factorial with j going from 0 to n the 
product into x bar minus xj there are say it is a product of 2 quantities, one is the k th 
derivative divided by n plus 1 derivative divided by n plus 1 factorial and then a product 
of x bar minus xj that gives us some idea of how we could reduce the error in the 
polynomial, one is that, it goes as one by n plus 1 factorial and the error is of the order of 
n plus 1 derivative.  
 
So, if you think the higher order derivatives are negligible in the, along the curve which 
you are interested in then, we could construct a polynomial of order a larger n so we 
increase the degree of the polynomial to just to reduce the error in this thing. So that is 
one way, but that is not very convenient because that also increases this product, so we 
will have more terms in this product and that is as we saw earlier is not a very good thing 
to do always because you could have round off errors or other errors due to floating point 
operation coming in. So increasing the degree of the polynomial though might help, but 
not always good because this term might work against us. 
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That is the idea and also increasing the n would mean more computer time. So a better 
method would be to actually to try to reduce the 2nd term that is this term, why do not we 
reduce the value of this term, that is remember we had two terms a product of two terms 
here, which is this and this and we can increase the degree of the polynomial and reduce 
this term may be, but that might cost more computer time and may be more errors in this 
term. So another way to do this is just to take a finite small n but try to reduce this value.  
So what does that mean, so that would mean that, we will choose the points xj in the 
product close the x bar of interest to us. So that is what, we would do, what we would do 
is, we will choose x bar at which the polynomial is to be evaluated, that is this xj’s, so x 



bar is the point at which we want to evaluate the polynomial. So we will choose the xj is 
close to that x bar, so that is one way of doing this, then we will reduce this error x bar 
minus x j but then, if you have a set of points going from 0 to n, then it is not possible to 
choose all the points close to x bar because these points are given to you, this xj is are 
given to you and then x bar is the point at which you want to evaluate. so what is the idea 
here is saying that, let us not take all, when you construct a polynomial there is no need to 
take all the n points, all the n plus one points to construct a polynomial instead what do 
we do is, we will choose a set of points which are close to x bar from the given set of 
tabulated xj values, we choose a set of values which are close to x bar and construct a 
polynomial of degree let us say m, which is much smaller than n.  
 
So that is the idea behind piecewise interpolation, polynomial interpolation that is, for a 
given set of points we keep constructing different polynomials for different intervals for 
every interval you construct a polynomial and we will use that polynomial to evaluate x 
bar. So that is the idea behind piecewise polynomial interpolation and that is what we 
would be looking at.  
 
So as a problem, probably one could look at this, that this construct a 6th order 
polynomial interpolating, polynomial in the lagrange and newton’s form to estimate the 
function x, e to the power of minus x between 0 to 10. so you take sample values at 
1,2,3,34,5,6 and 7, so there are seven points here so you could construct a sixth order 
polynomial with it.  
 
So you have 1,2,3,4,5,6,7, so 6th order polynomial and then you construct a 5th order 
polynomial by just taking any 6 points and then you could construct, estimate the error. 
So there are 2 ways of estimating the error in this particular problem which you probably 
should try out that is, one is you know the functional form here, so then you construct a 
6th order polynomial going through the 7 points and evaluate at some value x which is 
not tabulated here and then compare with the actual function and see what the error you 
get and compare that with, the error you can estimate by making a 5th order polynomial 
to go through this by choosing any 6 points of the 7 values here, choose any 6 points and 
then make a 5th order polynomial and then find the difference between the 6th, the 5th 
order and the 6th order polynomial at that value that will be an interesting exercise to do.  
 
So coming back to the piecewise polynomial approximation. So what we do is, if you are 
given a set of points say, n points here 1 to n so and we have the function values between 
all these points. So what we do is, for every interval x1 to x2, x2 to x3, x3 to x4 etcetera, we 
will construct a polynomial. So we know that, these polynomials have to be kind of 
continuous across this otherwise, it does not look, it is not correct.  
 
So we have to make sure that this polynomials are continuous between the intervals, 
continuous means that it should satisfy the function values, the polynomial which you 
construct for the interval one to two and the polynomial you construct for the interval 2 to 
3 should match at .2 and if, possible it is derivatives should also match at .2 then, we will 
make sure that it is continuous that is what we are going to do here. 
 



(Refer Slide Time: 18:54) 
 

 
 

(Refer Slide Time: 19:39) 
 

 
 
So if, you take the polynomial of degree one, if you say degree one, which for every 
interval, so we construct a linear function which interpolates between 1 to 2 and 2 to 3 
then we do not have much of freedom, only thing we can do is to make sure that they 
match at the intermediate points. And if, you take a linear function to interpolate between 
every interval let us say, 1 to 2 to 3 then, what we can make sure is that this polynomials 
match at the .2 but its derivative we cannot do anything about it but, if it is more than n 
and more than 1 then we have some freedom to adjust some parameters such that it is 
continuous. So, that is the idea between the spline interpolation that is, you construct 



piecewise polynomials to go through all the intervals and then every interval you have a 
polynomial and every interval you have a polynomial of degree higher than 1.  
 
So we have some freedom to fix the derivatives, a derivative continuity at the points 
where these 2 polynomials join. So that is, the idea behind spline interpolation, so we 
would match the function values and its derivatives at in between points we will see that 
now. So for example, let us take the simplest case of a quadratic polynomial just before 
that I just want to show you a graphical illustration of this and here, is a case here, is set 
of points here given by blue curves and you have a linear curve, a linear piecewise 
interpolating polynomial going through and the red curve, here is a cubic polynomial. So, 
you have a linear function which interpolates between these two and you can see that 
there are things at these points because, I cannot match the derivatives, you can only 
make them go through all these points but when you have a cubic function which 
interpolates all these points you have a more continuous kind of line.  
 
So, we have chosen for every point a polynomial of order 3 for this red curve a 
polynomial of order 1 for the black curve that is, what we have seen.  
 
(Refer Slide Time: 22:23) 
 

 
 

So to get an idea about, how do we construct this thing, the easiest may be to think about 
is just look at a quadratic polynomial, so slightly better than n equal to 1 would be n 
equal to 2,  so typical quadratic polynomial which goes through xi is just written here. So, 
this is a quadratic polynomial, so we will just see what, how do we construct these 
polynomial piecewise so, i here would mean something which goes from i minus 1 to i. 
So that would be the polynomial i or i to i plus1, one of this things we have to take.  
 
So p i, i denotes the interval, which is either i minus 1to i or i plus 1 to i depending up on 
what you fix it as. So we will see how do we construct a polynomial of this form. So we 
have three coefficients ai, bi and ci for each interval. So we will have the set of 



coefficients, for every interval we have a set of coefficients, we have every interval in the 
polynomial is different so for, every interval we have a set of coefficients. So how do we 
determine these coefficients, first of course the polynomial i at xi. So we have constructed 
here the polynomial which goes from i to i plus one as pi. So pi is a polynomial which 
goes from i to i plus 1, then we would say that pi at xi should be the function xi and the pi 
at xi plus 1 should be function xi plus 1 because, the polynomial has to go through, those 
2 points because it is interpolating between i to i plus 1, pi is interpolating between i to i 
plus 1. 
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So it should match the function value at i and i plus 1.And then, we have also we can also 
demand that the derivative of the polynomial, at I, so this goes from i to i plus 1. So the 
polynomial, the i th polynomial which goes from i to i plus 1. So this its value at I, that is 
derivative at i should be the same as the i minus 1th polynomial derivative at i remember 
the i minus 1th polynomial will go from i minus 1 to i. So this goes to i and this also goes 
to i, so its derivatives at this point should match. So we have the 3 conditions at every 
interval and this are the set of conditions which we are going to use to determine this 
polynomial ai, bi and ci and this coefficients of the polynomial ai, bi and ci we will see that 
now. 
  
So we have, let us look at the simpler quadratic spline of this form. So f of i of x which 
goes from i to i plus 1 as ai x square, bi x plus ci and then, that is the polynomial at every 
interval. So we have n plus 1 data points going from 0 to n let us say, and that means, 
there are n intervals. So for each interval, we have a polynomial. So that means, we have 
3 n unknown quantities here, to evaluate that is the, a’s, b’s and c’s, 3 n unknown 
quantities. For every interval there are 3 and there are n intervals, so there will be 3 n 
unknown quantities. So now, we use the conditions that the function value at the 
boundaries of each of this interval should match the polynomial value and its derivatives 



should match the 2 polynomials and the two adjacent intervals should match the 
derivatives at the intersection point so that is what we do. 
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So we have these conditions that you know, the function the a i the i minus 1th 
polynomial should take at i minus 1, the function value i minus 1 and the i th polynomial 
also at i minus 1 should take the function value i minus 1, given by i minus 1 and so this 
will-, so this is matching the 2 polynomials and then that would give us, 2 into n minus 1 
conditions that is 2n minus 2 conditions for each interval one, so there are n minus 1 



intervals, so we get 2 into n minus 1 conditions. Remember, we have three n conditions 
to solve we have 3 n unknowns to solve. So we will come back to this again. 
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We have taken only the intervals and the in between interior points, there are n minus 1 
interior points, 2 conditions and we have 2 boundary points, that we have, that is 2, that is 
plus 2, we have 2 n conditions. Remember again, that we have 3 n unknowns to satisfy to 
get. 
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So then we use the derivative, so we match the derivatives at that points, so we have the 
derivative in the i minus 1th interval and, i minus 1th polynomial and derivative of the I 
th polynomial matching at i minus 1. So the derivative of the i minus 1th polynomial and 
the derivative of the i th polynomial will match at i, at i minus 1. So, that gives us n 
minus 1 conditions again, because this is again interior points, all the interior points we 
can match th derivatives of this polynomial, so we have n minus one conditions. So we 
had now two n conditions before and we had n minus 1 conditions to it, so we have 3 n 
minus 1conditions, but we still have, we have 3 n unknowns.  
 
So we are short of 1 condition, so we need to put in some extra information to decide this 
3 n coefficients and that is normally chosen as the derivative, the 2nd derivative at one of 
the end points also we could just say that we could take a derivative of one of the points 
and we would fix the derivative to be 0. So the functional values and that will give us 
additional constraints and that has to be substituted into this thing.  
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So then, once we have that condition, then what we have is, so what we have is this 
polynomial, here given by a polynomial of this form that fi x is equal to ai x square plus b 
i x plus c i and we will have all the function values here, so we could fix-, we have to 
have this extra condition which tells us what the second derivative at the boundary is to 
fix this extra-, at one extra coefficient which we cannot determine from the fact by 
demanding that, the derivative of the piecewise polynomials match at all the interior 
points and the polynomial themselves match at all the interior points. So the polynomials 
match at interior points gives us 2 into n minus 1 conditions and the derivatives match at 
the interior points give us n minus 1 conditions and the 2n points values for the 
polynomials gives us 2 conditions so we get 3n minus 1 condition we need 3 n conditions 
and we have to put in one extra condition. 
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And once, we have that condition and then we can actually determine the polynomial by, 
we can determine the polynomial and then we will have a subject like this, so we will 
have for each of this intervals a separate polynomial and it is graphically marked at here, 
so intervals 1, 2 and 3, for interval 1,we have polynomial with coefficients a1, b1 and c1 
and interval 2, we have a2, b2 and c2 and then interval 3, a3  b3 and c3. So that is what, we 
would have. So this is just a illustration of what the polynomial a piecewise polynomial 
would mean, so that is we can actually express this we can try to construct therefore this, 
given set of, such a polynomial for a given set of data points given here so you could try 
that as an exercise and then we would have 4 points 1, 2, 3, 4, 5, 6 points, so that means 
we have 1,2,3,4 interior points and 2 boundary points.  
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So we will have, so we can equate the derivatives at this interior points and so that will 
give us 1,2,3,4 conditions and this is the initial condition, 1 boundary condition which I 
had put in and so we have this 5 equations here and then we could have the function 
values for the 1 polynomial in the interval 1,2,3,4 to satisfy the function values at 1,2and 
3,4 as this and then we know that we have the next polynomial also to satisfy the same 
function values at x1, so the interval the polynomial going from 1 to 2 and the polynomial 
from going from 2 to 3 should satisfy the function value at 2. So that is another set of 4 
function values. So that will be this so that is polynomial going from 1 to 2 satisfying the 
function value at 2. 
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So you remember, the previous one was the polynomial going from 1 to 2 satisfying the 
function value at 1 and going from 2 to 3 satisfying the function value at 2 etcetera and 
this is the polynomial going from 1 to 2 satisfying the function value at 2. So we have 4 
interior points here and then 4 function values and we saw 4, 4 into 4 8 function values 
and then, we had one extra boundary condition and then, we had 4 derivatives to be 
satisfied and then, we have 2 boundary values to satisfy, that gives us the full set of 
points 15 points which we want to evaluate, 15 coefficients which we want to evaluate.  
 
So what is more commonly used in the spline interpolation is instead of radix spline there 
will be cubic spline that is, what more commonly used and that is what is used always 
and this, we find that this is much more easier to evaluate too and the function now, we 
have 2 conditions, so that is of course the function the polynomial going from i to i plus 1 
would satisfy the, continuity of the functions that is pi into xi plus 1 should be equal to p i 
plus 1at xi plus 1. 
 
We know that whether it will be continuous across or other way of saying is pi of xi 
should be f of xi and pi of xi plus 1should be f of xi plus 1 same as what we saw before. 
And then, we have the derivative continuity this is also we just now saw and now we also 
have the 2nd derivative continuity, so we say that pi double prime the 2nd derivative of 
the function should satisfy all the polynomial in the interval i to i plus 1 should match 
with that between i plus 1to i plus 2 at i plus 1.So we have an additional condition here 
and because we have a cubic polynomial now. 
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So now, since the pi’s are cubic and their second derivatives are linear so the, we 
construct this in much more cleverer way, this polynomial it is much easier to construct 
this way, that we say that, the polynomial is cubic so its 2nd derivatives are linear, and 
then such a linear polynomial the second derivative of the cubic polynomial can be 
written down in this fashion.  



 
So now, you can see that this polynomial, that is the interval from i to i plus 1 and the 2nd 
derivative of that polynomial is given by f double prime of x, that is the 2nd derivative of 
the function value at xi, some quantity which we do not know because, we do not know 
what the 2nd derivative of the function value at xi is, we only know the function value at 
xi but let us write it like this. So this is an unknown quantity into x minus xi plus 1 by xi 
minus xi plus 1 that is the lagrange’s form and f double prime at xi plus 1, x minus xi plus 
1, xi plus 1 minus xi. Now, you can see that, let us evaluate this polynomial the 2nd 
derivative polynomial at xi plus 1. So then, what do we get is this at xi plus 1, we would 
get that as this goes to 0, xi plus 1 minus xi plus 1, this term goes to 0 and we would say 
that p i double prime at xi plus 1 is equal to f double prime at x i plus 1.  
 
So the 2nd derivative of the polynomial going from i to i plus 1has f double prime at xi 
plus 1as its value. Now, what will be the p i plus 1double prime of x pi plus 1 double 
prime would be xi plus 1minus xi plus 2 x minus x i plus 2 x minus xi plus 1 divided by xi 
plus 2 minus xi plus 1 and this will be xi plus 1 this will be xi plus 2 and we can very 
easily see that pi plus 1 at xi plus 1 will again give us f double prime at xi plus 1. So by 
this construction, we have already satisfied that the 2nd derivatives are continuous by this 
construction of the 2nd derivative, we have made sure that the 2nd derivative of the 
polynomial at i plus 1, xi plus 1 polynomial i, at xi plus 1 and polynomial i plus 1 at xi 
plus 1 are the same.  
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So we know that. So, now if you integrate that linear polynomial twice we get, a cubic 
polynomial and that is what I have done here. So we have a cubic polynomial obtained by 
integrating that polynomial twice, so we have now xi minus xi plus 1 cube by 3. So, if you 
differentiate this twice you get back that polynomial again. And then, we have xi minus xi 
to the power 3 divided by 6 here and we have this additional terms linear terms a into x 
minus xi and b into x minus xi plus 1. So we have this polynomial. Now, this is our cubic 



polynomial, so we have a cubic polynomial which goes through which is interpolating 
between i to i plus1 whose 2nd derivative is continuous. So we have already made sure 
that. 
 
And now, we can get this a and b values by saying that p i at x i plus 1 is equal to f of-, p i 
at xi is equal to f of x i. So a is, b is f of x i it gets p i at x i p i at x i would mean that this 
term will go to 0 and then we can construct this value from that. So, p i at x i is equal to f 
of xi. we can construct from that the b function from this because this goes to 0 and we 
will have this goes to 0 and we will have only these and these terms left and from that we 
can actually construct the b term and then, we have p i at x i plus 1 going as f of x i plus 1 
and from that, we can construct the a because this will go to 0 this will go to 0 and we 
will have xi plus 1 minus xi, x i plus 1 minus x i  square by 6  into f double prime of xi.   
So we can construct that polynomial. 
 
So having done that so if you put in those boundary condition that the function value so 
we have constructed this cubic polynomial already in such a way that its 2nd derivative 
continuity is guaranteed and then we fix this some coefficients by saying that its function 
values, its values at the boundaries of those interval should be equal to the function 
values, then what we have to fix now. So now, what we have to fix is this coefficients 
double prime xi and double prime xi plus 1 that is the only thing which is unknown in this 
now. We fixed a and b by demanding that this goes through pi at xi plus 1 is equal to f of 
xi plus 1 and pi at xi is equal to f of xi . So we have fixed that and now we need to fix these 
quantities. 
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So for that we have this, if you substitute all that we got a polynomial of this form. So we 
have the complete polynomial now, the only unknown in the polynomial now is f double 
prime at xi, f double prime at xi plus 1, all the double primes are unknowns, we do not 
know the 2nd derivative of the function because, we do not know the function itself now 



we need to compute this f double prime of xi so what we are going to use is that 1 more 
condition which is left to us. 
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So that is remember in this equation we had this condition left that is p i at x i plus 1 and p 
prime at i plus 1 at xi plus 1 should be the same that is the 1st derivatives has to be 
continuous that is, what we are going to use. So we can use that condition to get this 
coefficients which are unknown in this polynomial and then we have fixed the cubic 
polynomial. 
 
So we will go ahead and look at that value now. So, this is the condition which says that 
the 1st derivative I have just taken the previous function phi of x and finds it is derivative 
pi at xi plus 1 and pi plus 1 at xi plus 1, the derivatives of this 2. I just match them here. 
So I get this equation, so that is an equation this is coming from pi at x pi prime at xi plus 
1 and this comes from pi plus 1 at xi plus 1. So these two conditions, these 2 derivatives 
have been equated and I have rearranged the terms into this form.  You can see the right 
hand side of the equation is all known functions and the left hand side, we have the 
unknowns f double prime of xi f double prime of xi plus 1 f double prime of xi plus 2. 
And this equation has to be written for all n minus 1 interior points and you would notice 
that this, so you will have n minus 1 such equations to solve and the right hand side of 
this equation is completely known.  
 
we know the function values we know the xi values so right hand side of the equation is 
known, these coefficients xi plus1 minus xi, xi plus 2 minus xi, xi plus 2 minus xi plus 1 
are known. So what is not known is the derivative at xi, i plus 1 and i plus 2. So each 
equation such n minus equations each of these equations will have 3 unknowns and they 
are the 2nd derivatives at i, i plus1 and i plus 2. So, if you write down this equation from i 
going from 0 to n minus 2, if you write down this whole equation and then you will get a 
tri diagonal matrix form. 
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So that is, what you would get so we can use some shorter notations, we will use z, 2nd 
derivatives are represented by zi and we will call in this equation we call this as di, xi plus 
1 minus xi as di, xi plus 2 minus xi as ei and xi plus 2 minus xi plus 1 as hi and this whole 
right hand side as ri. So if I use this short notation r i is the right hand side and I use this 
notations 2 xi plus 2 minus xi as ei and i plus 1 minus i as di, i plus 2 minus i plus 1 as hi 
and then I can write down this in a very short form di zi minus 1 plus ei zi plus hi zi plus 1 
is equal to ri. So in this form I go from I going from 1 to i should go from 1 to n minus 1 
that is what you will have. So you will have n minus such interior point equations.  
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So you will have a tri diagonal form. So there will be but we have n minus 1 equations 
and we have n plus 1 unknowns because, we have n plus 1 unknowns but we have only n 
minus 1 equations. So we need to fix this two remaining conditions remember what are 
our unknowns, our unknowns are our 2nd derivatives at every point, 2nd derivative at 
every point and we have n plus 1 points, we have n plus 1 points so we have n plus 1 
unknowns.  
 
So in the cubic spline interpolation with the unknowns are the 2nd derivatives at every 
point and we have n plus 1 points, we have n plus1unknowns but by this equation, we are 
getting only n minus 1 such equations, so we have 2 points to be fixed we need two more 
equations or we need to fix these 2 points and these 2 points or these 2 values are fixed 
by demanding that f double prime of x0 and f double prime of xn are 0, that is the 2n’s we 
say this their 2nd derivatives are 0 and this is known as natural spline.This is not the only 
way to fix it you could fix it by some other way but this is the standard practice and that 
is known as the natural spline.  
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So when you see a standard algorithm a program which gives a polynomial interpolation, 
a cubic spline interpolation, it is most probably using this particular boundary condition 
and that will be natural spline interpolation. So now, let us say we have this problem 
which we discussed earlier, so we want to find out a spline interpolation through these set 
of points that is, we have 1 spline going from this to this that is 1 and then 2 and 3,4,5. So 
we have to find out 5 splines, 5 cubic splines, so 5 cubic polynomials which we have to 
find out.so then, as I said the i is 0,1,2,3,4,0 that is the interval. 
   
Now, we can construct the ei’s di’s and hi’s and ri’s at this point I have computed it for 
this points, this values, so ei remember is 2 times x i plus 2 minus xi and di is, xi plus 1 
minus xi and hi is, xi plus 2 minus xi. So I constructed all that here and ri is the right hand 
side which was come known function, in terms of the function values that comes on the 



right hand side. So in terms of this equation, this is set of equations I showed you here 
these equations now, can be actually written down for this particular data for the set of 
data in this form so for every internal point interval, I can write down this equation and 
then I will get this n minus two equations  
 
So, there are 6 values here 1, 2, 3, 4, 5, 6. So I have n is n minus 2 such interior points 
and I have this n minus 2 equations here. And I can solve this n minus 2 equations, you 
can solve them by elimination method you can multiply as you said you can multiply this 
equation by d 1 and divide it by e 0 and the whole equation and then, and subtract it from 
this equation and multiply this by d 2  and divide this by e 0 and subtract from here and 
that way, you can eliminate this row and similarly by doing such elimination method you 
can actually solve for all the values z1, z2, z3and z4 here again, we have used z0and z5 as 0. 
So we have used that condition z0 is 0 and z5 is 0. 
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So I can do that and then, that means we have actually used this boundary conditions for 
also for this, so we can do this and for this case and actually solve this polynomial and I 
can quickly show you a program which implements this. So here is a program which 
would actually implement this method, so I have this tab again, I have this x f e. So I 
have the arrays declared here as x f e d h and r and this z, all this arrays declared here and 
then I have put in all this function values into this arrays x f and x and f and then I have 
1st constructed this e h r d i have this e, evaluated here as xi plus 2 minus xi into 2 for all 
the intervals and hi as, xi plus 2 minus xi plus 1 and then d i as, xi plus 1 minus xi and then 
I computed ri.  
 
So I have got all the known values from the data. Basically, I made this table inside this 
of the program, so that is simple enough, so you can see, it is very simple to construct this 
and then I have done this elimination as I said, the eliminating this row. 
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So I had taken the first row, I will take the first row divide that by e0 and then multiply it 
by d1 and then subtract it from this and then divide this by e0 and multiply it by d2 and 
then subtract from this, that way I can eliminate this row. So that is what is done here, So 
I goes from 0 to n minus 3, I have taken di and divided by the ei and then I have 
subtracted it from the rest of the thing that way, I eliminate all that thing and then I can 
back substitute this. Once, I have eliminated all the d’s actually I should actually write 
this this is d3 so I have to eliminate d1, d2 and d3.  
 



So I have there is a small mistake here, this should be d3. So this should be d3 here, so if I 
eliminate all this rows and then I have a simple equation here, from this I can solve for 
z4.So, once I solve for z4 because this whole row is eliminated I can solve for z4, once I 
solve for z4, I can substitute that here and solve for z3 and then, once I have z4and z3 I can 
substitute that here and solve for z2 and then z1.  
 
So I can solve all this by back substitution as it is known. So once first task is to eliminate 
this row, this whole  column that is the d column, I eliminate this d column and then I 
have a modified value for e3 and then a modified value for r3 because, I am going to 
multiply this and subtract from this and once I have done with that value and then I can 
compute z4 from that and once I have this z4 in this there is no d2 here I have modified e2 
and I have modified h2 and I know z4 and I modified r2. 
 
So from that I can compute z3, so I can go back like this and that is, what the next loop is 
implementing. So here is, I have eliminated the d function values and here I am doing the 
back substitution I start from the bottom that is from n minus 3 and go all the way to 1 
and evaluate all the z values. So, z equal to the first 2 values have been put in as z equal 
to 0 and z equal to 1 as 0 that is been put in here z equal to 0 and z equal to 1 as 0 and 
then I can actually construct my cubic polynomial, that is simple for every interval, I am 
evaluating what I am trying to do is for every interval, I am trying to evaluate.  
 
So there is in this program, so I have now for every interval a cubic spline and I am 
saying that you take each interval going from i equal to 0 to n minus 1 for each interval 
and within each interval you construct you take 5 points and try to evaluate this spline 
and that particular spline at that point. So that is what this is doing and I will show you 
that, so here is the polynomial then.  
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So again these points these are the points tabulated these square points the square 
symbols are the points which are tabulated and this circular discs are the points which are 
evaluated using the cubic spline for each interval 1 and you can see that this is pretty 
continuous and I can get this function values in it every interval satisfying. So again to 
summarize this point  this program, so let me again go back and then say that so what we 
are doing here is, we have the function values tabulated here and I first construct these 
numbers that is ei’s, di’s, hi’s and ri’s which are as you saw has been given in this from 
here as here, so this can be easily programmed and this ri’s can also be programmed 
because all of them are known in this interval and then we have this set of equations and 
that is what is shown here.  
 
So we have this set of equations and then in this equations, I can eliminate this whole  
first array of points for the di’s, I can eliminate by, so if I write this all the z1 coefficients 
because, this z1 coefficients can be eliminated by multiplying this  dividing this row by e0 
and multiplying d 1and this z2 coefficient can then be evaluated by, can be eliminated by 
dividing this row which now does not have a d1 by e1and multiplying by d2 and the z3 
coefficient can be eliminated by multiplying this row dividing this row which now does 
not have d2 and dividing it by e2 and multiplying by d2 etcetera.  
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So you can continuously you can do this and then you can eliminate all this rows all this 
columns and then you will have z3, e4 is equal to r3 as the equation all modified values of 
this coefficients e3 and r4 r3 and from that you can compute z4 and then you can continue 
back substitution and then get the answers which we wanted to get all the coefficients we 
wanted to get and then once you have that coefficients, we can construct this polynomial, 
once we have the coefficients we can construct the polynomial so we have this 
polynomial and all the function values all the coefficients are then known and then we 
construct this polynomial and evaluate the values in between every interval using a 
polynomial for that particular interval. 



 
So, when you actually write a program, we need to be given some value x, we need to 
know what polynomial to choose because, we have now n minus one um polynomials so 
we have to choose one of the n minus one polynomials. So we have to know which 
interval it fits into and then choose the appropriate polynomial and then evaluate the 
polynomial at that value. 
 
(Refer Slide Time: 54:57) 
 

 
 

(Refer Slide Time: 55:08) 
  

 
 

 
 



(Refer Slide Time: 55:18) 
 

 
 

(Refer Slide Time: 55:28) 
 

 
 

 
 
 
 
 
 
 
 
 



(Refer Slide Time: 55:39) 
 

 


