
Numerical Methods and Programming 
P. B. Sunil Kumar 

Department of Physics 
Indian Institute of Technology, Madras 

Lecture - 11 
Piecewise Polynomial Interpolation 

 
Today’s lecture we are going to again look at some examples of polynomial interpolation.  
Thus we would look at some of the implementation of newton’s form which we saw 
yesterday. We will just start with that and then we look at the implementation of the 
newton’s form for equally spaced data and then we look at the lagrange form of the 
polynomial and the implementation and then we would go on to looking at the error in 
this polynomials. So to start with, we revise what we did in the last classes that is, the nth 
order polynomial. We said that in the newton’s form, we can write in this fashion that is 
this is the polynomial which would pass through x1 x2 up to xn minus 1.  
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This is the n the order polynomial, this is the coefficient of the polynomial which this 
coefficients we saw can be obtained by looking at the divided difference method by the 
divided difference method where, we had tabulated the values at x0, x1, x2, x3, x4 etcetera. 
As f0, f1, f2, f3 and f4 and then we computed the divided differences and we stored this 
divided difference into the same function values, function array f0, f1, f2, f3, f4.  
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We saw that in the program that I could create an array called x and f these 2 arrays and 
then I could store this values of x and f in this value in this array and so that is 0 to 3, xn 
values and f going from 0 to 3 for the y values that is, the “f” function values and then 
what we did was we computed the divided differences that is, fi minus fi minus 1 for 
different levels. 
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Here I, j was indicating whether it is the 1st divided difference or the 2nd divided 
difference etcetera. So we start with j equal to 0 that will be the 1st divided difference and 
then we had fi minus fi minus 1 divided by xi minus xi minus 1. So that is basically 



computing these quantities right, f1 minus f0 divided by x1 minus x0, f2 minus f1 divided 
by x2 minus x1 etcetera. So that gives us these divided differences and then what we did 
yesterday was to say that, these values can be stored in the function itself.  
 
So that is what we did here. So the function takes, this divided difference was stored into 
this function values the reason being that um in the polynomial construction, we need 
only f1, f x0 x1, f x0 x1 x2, f x0 x1 x2 x3. We need only these as the coefficients of the 
polynomial and so when I compute this divided differences here, these values I could 
start storing these set of values into these 4 array elements and the next set of values this 
3 could be stored in these 3 elements and these 2 in these 2 elements and the last one 
which is not shown here could be stored in this number. 
 
So that is exactly what we did yesterday. And then, we could print out that and once you 
have the coefficients in this form as f0, f x0 x1, f x0 x1 x2 etcetera. We could compute the 
polynomial by using a nested form and that is what is shown here. So I start with f of 0 
remember this is-, now you remember f of 0, f of 1, f of 2 and f of 3 are the coefficients 
of the polynomial which are the 3. The function at 0, the first divided difference at 1 and 
the 2nd divided difference and the 3rd divided difference and these are the coefficients 
and then I will write this in the nested form. We can see the nested form here.  
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So you have x1 minus x0 and a bracket starting here and this bracket would be closing 
only at the end. You can see this matching brackets it will close only at the end and then 
this x1 minus x0 multiplies f of 1 and then, you have x1 minus, this x minus x1 x1 here this 
x1 is the value at which we are evaluating the polynomial. So x minus x1 that multiplies, 
now another bracket starting which again closes only at the end into f2 plus x minus x2 
into f3. 
 



That is nested form which we discussed few classes ago and then we can evaluate these 
functions at various values for x1, that is what we had done. And then, we could plot this 
function which also we did. So we could plot this function and we could get these 
function values in various forms. We will just, what we wanted to do is we want to write 
down this functions and we are doing exactly for these set of values. So that “2.5”, 
“3.75”, “5.0”, “6.25” and these are the function values here and we are having a 
polynomial which interpolates through these points that is what we wanted to show. We 
can see this thing being plotted here these function values and what do we see here as this 
square blocks here are the values tabulated at “2.5”, “3.75”, “5” and “6.25” and this 
symbol, this round symbols here, these symbols are the interpolated values and you can 
see that it actually goes through this polynomial very well. 
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So it does not matter what the axis here is, what we have to see is that this interpolated 
polynomial actually goes through these set of points which we have mentioned here, the 
square being the function values given to us and round symbols being the interpolated 
values and they go through that, that is what we saw. So, we could also look at other 
problems which we look at a little while later in using other methods when we compare 
different polynomials, we would these functions also to compare them. we could for 
example, take a functional form and evaluate this function between 1 and 8 for example, 
and construct a set of discrete points and then construct a polynomial which goes through 
that, that tells us something about our error in interpolating polynomial. It will be a useful 
thing to learn.  
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Now, look at the same newton’s form but now, with equal intervals remember this form 
of the polynomial it is again newton’s form but, for the data is evaluated or the data we 
will have tabulated at equal intervals of x. So “s” here is actually xs, xs is the point where 
you want to evaluate the polynomial x s minus x 0 divided by “h” where h is our spacing 
between the data points, so the “s” written here is “xs”. 
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Xs is the point at which we want to evaluate minus x 0, x0 is the first data point which we 
have tabulated divided by h, where h is delta x given that is the difference distance 
between the two tabulated values and that is same for all values it is unlike the previous 
case, where we had “2.5”, “3.75”, “5”, “6.25”.  So this is, we could, so here also we 
actually have equal space but we did not use that. For example, this is a good example of 
that “3.75” minus “2.5”, “one point two five” “1.25” etcetera. So we could use the same 
data to actually get used and to use the same data and actually use this functional form, 
how the polynomial and obtain a polynomial and compare that, so we will see that in this 
here. So, that functional form so we call that as equal space dot c.  
 
So this is the program which should implement that particular quantity again we have a 
set of an array which is x and the function f, we store them in this array. Here, what I 
have done is, I have taken the log x program, the log x function and I created this 
function. So I have, I am going back and doing this particular problem using equal space 
data, this particular problem, that is I take log x function log base 10 x and I evaluate that 
function between 1 and 8 in some set of discrete intervals and then I would get an 
interpolating polynomial through that. So, I just create this set of discrete points at equal 
intervals h, where h I choose them to be “.5”. So I evaluate between 1 and 3 in this case, 
between 1 and 3 I evaluated a certain number at every point x equal to “.5” and then I 
could and then, I have a set x of i’s xi’s and f of i is xi and fi this will be the tabulated 
value then. 
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So then, I am writing this in this particular thing on to the screen the xi and fi values and 
then I would go and construct that divided difference. So here, it is the same as the 
newton’s form as I said, so we will use the same divided difference method, no difference  
the only change being that, in the earlier case in the newton’s method when we had a set 
of discrete points, we had them at arbitrary intervals and the arbitrary intervals the 
divided interval were made as f of i plus 1 minus f of i or f of i minus f of i minus 1 
divided by x of i minus x of i minus 1. We have to divide it by the spacing of the data but 
since here, it is all equally spaced as we saw all that, the spacing the delta x that is x i plus 
1 minus xi is absorbed into this function here and we write that s as x s minus x 0 into h.  
 
So delta f0 is simply remember is f of i minus f of i plus 1. So that is, for the evenly 
spaced data, so we will have just only delta f of i minus f of i minus 1 and these are 
further differences of the divided difference that is the 2nd order differences and the 3rd 
order differences etcetera. So that is what exactly, what we are doing here. So again we 
have like in the newton’s polynomial case starting with j equal to 0. So remember this all 
this points are exactly the same, once we have constructed the function here, the discrete 
set of points from this function log x we have constructed a discrete set of points x of i 
and f of i and then, this part of the program starting here is exactly the same as what is in 
the previous case of newton’s polynomial for except that the divided difference we do not 
divide this fi minus fi minus 1 by the interval xi minus xi minus 1 
 
Instead of that we just simply construct, the divided differences as the difference between 
the function values. Again, so let us start with j equal to 0 that is the first divided 
differences and i will go from one to ni will go from 1 to n since j is 0 in steps of 1 and 
we store the first function value at j equal to 0 in the d f 1 and then we construct df that is 
df as the difference between 1 and 0 f of 1 and f of 0 and then we go back, since this is i 
greater than 1 this line is executed only at i greater than 1 so we go back here . 
 



So we go to i equal to 2 and we come back here and the 1 which we have computed the 
value which we computed as f of 1 minus f of 0 is now stored into d f 1. So remember d f 
1 is now f of 1 minus f of 0 and then we go to the next line where we compute now since, 
i is 2, f of 2 minus f of 1 and then we store this value which was f of 1 minus f of 0 into 
now f of 1, j is 0. So this is now one, i is 2 and j is 0. So i minus 1 is 1, so f of 1 now, 
stores the 1st divided difference that is f of 1 minus f of 0 into that and we continue the 
loop and the next f of 3 minus f of 2 will be stored in f of 2 and f of 4 minus, f of 5 minus 
f of 4 will be stored in f of 4 etcetera.  
 
So we will use just like what we did earlier, we just store all the divided differences into 
the function f and then we change j value, now we go to j to 1 that is the 2nd divided 
difference and because, we have stored all the 1st divided differences into the function 
now, we do not have to worry we just have to take the difference between f again. So that 
is the advantage I would show you this graph this plot again so this is exactly the same as 
this so now all the distances are equal between x0, x1, x2, x3,  x4. So what we did again was 
computing the difference between these functions and storing them, computing the 
difference between these functions which are f of x0 x1, x1 x2, x2 x 3,x3 x4 and storing them 
in f1, f2, f3, f4 that is what we have done in the j equal to 0 loop just now. Now we are 
going to change j equal to 1. 
 
When you change j equal to1 again we would continue the same thing that is j equal to 1, 
i equal to 1 and i equal to 1. we will compute now f of now 2 j is 1, so f of 2 minus f of 1, 
that is what are going to compute, that is taking f of 2 minus f of one which is since, f of 
1 had this and f of 2 had this it is actually taking f of x1 x2 minus f of x0 x1 which is 
nothing but f of x0, x1, x2. So that is again being stored in this value here in the 2nd time 
loop, 2nd loop, i equal to 2 we come back here and store, now i equal to 2 we will 
compute remember when i equal to 2 we store this f of 2 minus f of 1 into d f 1 and 
compute f of 3 minus f of 2 now j is 1, i is 2, so this is 2 j is 1, i is 2, so this is 3, so this is 
f of 3 minus f of 2 and then, we come to the next step and store the 1 which we computed 
as f of 2 minus f of 1 into f of 2 that is, i is 2, j is 1, so f of 2 is what it is so. We will store 
it in this value. 
 
So that is saying that, this function now has gone into f of 2 and the next difference will 
go that is this will go into f of 3 etcetera. So we will compute exactly the same thing, so 
we get all the divided differences at the end again as f1, f0, f1, f2, f3, f4. So we get f0, f1, f2, 
f3, f4 as the divided differences and then we can use the nested form again like in the 
newton’s form. So only so far between the equally spaced data and the one, the unequal 
spaced data in the newton’s form is the construction of the divided difference where we 
will not divide the function by xi minus xi plus 1 plus xi that is the only difference and 
then we have the nested form again in this form.  
 
So now, the nested form is slightly different, now coming to the nested form, the nested 
form here is slightly different because it is this form, you are going to use because this 
functions now involves the value at which we have to evaluate the polynomial. So in that 
sense it is slightly different, it is now the coefficients of the polynomial now has to be 
evaluated at every value we want to get in that is, we have to get this s value computed at 



every-, so this s value has to be computed at every point where we want to evaluate the 
polynomial. So we have just completed the calculation of delta f 0 del square f0 del cube f 
0 del n f0 but these  has to be computed at every point because it is xs minus x0 by h where 
xs is the value at which we want to evaluate the polynomial.  
 
So that is what is done here. We can see that, we can see that “s” now, we were going to 
evaluate the polynomial starting from 1 to 3 at intervals of “.2” we tabulated-, we have 
tabulated values at the intervals of “.5” but, we want the polynomial in between the 
interval, so we are going to evaluate that in intervals of .2. So s is as I said now, x in this 
thing is now x1 here, so x1 minus x0 by h is your “s” as x1 changes s also changes and 
then, we would say that the function value, we start with the first term, the first term is-, 
the first term is just f of 0 as you can see that the first term is just f of 0 and the 2nd term 
is s into delta f 0 that is f of 1. So that is f of 1 is my delta f 0 f of 2. Remember, I stored 
these things in to my function values so this is my f of 1 and this is my f of 2 and this is f 
of 3 etcetera. That is what is been done here?  
 
you start from, start with f 0 plus this value that is s into, so we have chosen our y value, 
to be start with this that is s times f of, f of n by n that is what we are going to do, here. 
And then we are going to go backwards, so what we will do is we are going to start from 
here, and then we go backwards and complete that so our n in this particular case is equal 
to we will be having 4 points, we have 7 points. So n is equal to six let us say, so we 
would start from that value, so fist we start with the n th term or the last term here.  
 
So we will take f of n remember this is, f of 1, f of 2, f of 3 and this is f of n, so we will 
start with the last value and that has to be divided by n factorial, so that is what we have 
to do. So now this is going to be remember, n factorial is 1 into 2 into 3 up to n. Now I 
am going to do this in a nested loop, so I am going to take out, I am going to make this n 
now this gets multiplied, I take only s minus n plus 1 divided by n and that gets 
multiplied by s minus n plus 2 divided by n minus 1 etcetera, as we go further that is what 
the loop here is This is a nested loop but, we start from the highest order term, so s into n 
minus 1 that is s minus n plus 1 into f of n by n that is the first value which we have taken 
which is exactly the same as this 1 which we take.  
 
So s minus n plus 1 by n instead of n factorial into the f of n that is, what this is. So that is 
the start with and then I run a loop starting from n minus 2 to 0, j equal to n minus 2 to 0 
and then go step by step, dividing it each time adding to that function the next f value that 
is f n minus 1 so j is n minus 2, so i add to this value here, f n minus 2 and divide it by n 
minus 1, i just divide by n minus 1 remember this was divided by n the next is n minus 1. 
So since, f is in the bracket this function also gets divided by n minus 1 it is already n into 
n minus 1, so by the time I complete this loop, I have n factorial for the 1st term n minus 
1 factorial for the 2nd term n minus 2 factorial for the 3rd term etcetera, and the last I just 
sum up the function to f of 0 that is this term.  
 
So that will give me the full value and I just print it out into a file, here called equal dot 
dat. So that is what this program is? So summarize this program I have taken the log x 
function, I have taken the log x function and then I have tabulated at from 1 to 3 in 



intervals of “.5” and then I wrote that and I stored that into a file into an array of x of i 
and f of i and then, I use that f of i to compute my divided differences without dividing it 
by x of i minus x of i minus 1 because, it is equally spaced and then, I use a nested loop 
to compute once I have the divided differences, I use a nested loop to compute my 
polynomial at different values starting from 1 to 3 at intervals of “.2” and I wrote that into 
a file here called equal dot dat.  
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I opened a file here and I wrote that in to a file and I closed the file here that is the 
program for computing this thing, now we will go back, we will go and just run this 
program and then see what do we get. So we will run this program, we need a math 
library there so that is, and then we would run this program, so that is the values at which 
I have tabulated this thing so I have tabulated it at 1, values at “1”, “1.5”, “2”, “2.5”, “3” 
etcetera. So this is the value at which I tabulated the function.  
 
So 1,2,3,4,5 data points starting from 0 to 4, so that is the function value at this point and 
this is the, these are the divided differences I got, the coefficients basically of the 
polynomial that is delta f 0 del square, del 2 f0 del 3 f0 etcetera, are also listed here as 
“.176” “.0-,  “.0511” minus “0.023” etcetera, these are the coefficients and then I would 
just run a program with this. I just plot those the data points. This is the data points 
plotted again the line which we can see here, the line which we can see here is the log x 
function that is the function which we had and this square symbols here, these square 
symbols here are the interpolated values and you can see that the interpolated value 
actually goes over the function quite well. so interpolation works pretty well. 
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So we should see, so we saw now two different methods of doing this. So, one is the 
using the divided difference newton’s formula and this is the newton gregory formula in 
which we have equally spaced data. The difference being the way which we would 
implement this, implement the nested loop is slightly different in this case you would 
start from the bottom and then we would go up, up to this value computing s for every 
value which we want to evaluate.  
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In the case of the newton’s form you do not need that this is actually have once you have 
the polynomial functions, we can simple evaluate the function for every value of x. So 



this is a slightly different nested form otherwise, it is similar and again the divided 
differences are computed only by taking the difference between the function and the 
divided difference, the difference between the first divided differences etcetera, that is the 
form of this. so now, now will look at the next form that is, the lagrange interpolation 
formula. 
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We again see an implementation of this lagrange interpolation formula now, and we said 
that in this case it has been represented by fn of x here we said that this can be written as i 
going from 0 to n and li is some operator li of x here into f of xi. Now this function, li of x 



is of order n all the time, so that is what which we saw, if you write it for just the first 
order term, it will be simply written by this.  
 
So li of x remember, r is the product going from j equal to 0 to n of x minus xj divided by 
xi minus xj, we saw the derivation of that in the last class and so we can this product runs 
over all the values from j equal to 0 to n except for j equal to i so here n, this is n plus 1 
quantities and then so n plus 1 minus 1, so there are n products, n terms here. So for n 
equal to 1, it is just 1 that is, let us say you have a polynomial n equal to one that is going 
through x0 and x1 and then you will have x minus x1 by x0 minus x1 as the 1st term and 
the 2nd term would be x minus x0 divided by x1 minus x0 as the 2nd term and you can see 
that at x1 f of x, x equal to x1 this will give me the f of x1 and x equal to x0 this will give 
me f of x0. 
 
So, that is the basic idea of the lagrange interpolation thing, the formula is that every term 
is a functional value at that, at that i, is if i write it as f of xi, so now this is the 2nd term 
the 2nd term the 2nd order term would be x minus x 1 into x minus x2 by x0 minus x1 into 
x0 minus x2 and continues up to 2, there will be 3 terms in this each of them is a 2nd order 
polynomial, in the case in n equal to 2 each of them is a 2nd order polynomial, in the case 
of n equal to 1 each of them, each of the terms is the 1st order polynomial and now if n 
equal to 3 there will be 4 terms, each of them would be 3rd order polynomial etcetera and 
the idea being that each term would give me the function value each li fx into f of, will 
give me a function value at that i, so that is the whole idea of this thing. So we have to 
again go back and then look at the implementation of this particular formula in this. That 
is what we will now see. 
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So here is the program which would implement this new formula, this formula that is the 
lagrange formula that is saying that the function value is equal to f of i the function is at 
any value, at any point x is equal to li of x into f of xi, i going from 0 to n. so now you 
remember this, li goes from 0 to n li of x and f of x i. So when, if you have a polynomial 
which goes through n,  let us say 3 n equal to 3, we will say 3 points or 4 points that is the 
example, which we are going to see it goes through 4 points and then there will be 5 
terms in this, it goes from 0 to n, 0 to 4 it will go that will be 5 terms in this formula and 
each of them li being given by this product x i minus x-, x minus xj divided by xi minus xj 
for j going from 0 to n for j is not equal to i that is the implementation which we are 
going to see 
 
so what we have to see is the polynomial has li of x into f of xi, sum over i li of x into f of 
xi, i going from 0 to n that is what we want to see the implementation of that. So we again 
have the program here with 2 arrays, x of 0 and x and f, where x is the tabulated values 
we are using the same-, same  data points as we had done before and then f of 0 so that is, 
f of-, f 0, 1, 2, 3 that is the function value tabulated. So that is what we have, the function 
values tabulated that is n is 3 in this particular case and then, so now we are going to store 
the result from this into a data file called lagrange dot dat that is what we are going to do 
and again we are going to evaluate this polynomial at various, starting from x of 0 to x of 
n in steps of .1. 
 
That is what we want to do. And again, so this is now a slightly different implementation,  
so it is not a nested form or something like that now the point here is that at every x value 
which we want to evaluate the polynomial, we have to compute this product, so every x 
value for, every I, we have to compute this product because this product is different from 
every x value. So we cannot evaluate a set of coefficients and then compute the 
polynomial at every x but we have to actually compute the polynomial at every x value.  



So it looks difficult but it is very, as we see in the program it is much more easier to 
implement in this particular case that is what we see here. So we want to evaluate it at let 
us say x1 equal to x of 0 or x we are going to get, some value x1 starting from x of 0 to x 
of n in steps of “.1”  
 
so we start with y of-, for every x value we start with the function value is finally going to 
be written into y. So we start with y equal to 0 and then, we say that we go from i equal to 
0 to n, so that is we have to do that-, as you remember the function value is sigma I, li f-, 
li of x into fi of x or f of xi. So sigma i, li of x, f of xi is the value which you want to 
actually finally obtain, so that i loop goes from 0 to n as we saw it in steps of 1 and then 
we want to compute the product, so the product is actually would finally come out as df 
which i have initialized as 1 and then i do the j loop here.  
 
So the j loop is this 1 so i want to evaluate this product, so i just 1st put this as 1 and i go 
from j equal to 0 to n except for j equal to i and i multiply x minus xj divided by xi minus 
xj where x is the value which we want to evaluate. since is very simple to implement, so 
x1 is the value at which you want to evaluate so x1 minus xj divided by xi minus xj is the 
product for all j values except j equal to i this is-, this notation is j not equal to i so some 
programming detail here j not equal to i, if j not equal to i, so this loop is executed only 
when j is not equal to i  otherwise j goes from 0 to n and i initialize this function to one 
value and now i get the product here xi minus x0 divided by xi minus x0 x1,  x1 minus x0 
divided by x1 minus x0 x1 minus x0 and then- , so if i start with i equal to 0 and j equal to 
0 is not executed because j is equal to i so j starts from 1 so I will get x1 minus x0 divided 
by x1 minus x0 and then x1 minus x0 divided by x2 minus x0, x0 minus x2 etcetera. So all j 
values, so you get all the product. So and then, I multiply that product by the functional 
value at i and then I run from i goes through 0 to 1 and then I have the final function y, so 
that is the sum, the sum is here the product is here. We 1st evaluate the product that gets 
me the l of, li of x and then I take the sum multiplying the li of x with the f of i and i sum 
it up here and then I get the function value at that x1 and i tabulate I write it into the file 
here. That is the file.  
 
So I can do this, so I put it into Lagrange dot dat and we just plot that again and then see. 
So here is, this is slightly different we just evaluate we just compute this. So that was the 
one remember data dot dat was where we stored the function value the tabulated values 
and this is the function values. So again the green points here the green squares which 
you can see here are the tabulated values and this round points are the interpolated values, 
you can see that it goes through this very well and you can see that it is the same as, it 
will give the same accuracy or same result as what we got from the newton’s polynomials 
there is no difference between these two. 
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so we see that we can actually evaluate polynomials we can get the function values or 
the,  we can interpolate given set of tabulated values using we saw 3 different methods 
for equally spaced data 1 and for unequally spaced data 2 methods that is, we saw the 
newton’s method and the Lagrange’s method.   
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So now, does it mean that if you give me any interpolated any set of discrete function that 
I can evaluate this function anywhere. So is that possible all the time, so that is the 
question which we have to ask and we will find that this is not always true there will be 
always an error in the polynomial and that is something which I can demonstrate here to 
you, so I will show you this in program that, so here is a program which is similar to 
again using the lagrange’s method but I am using another set of data points here. So I 
choose another set of data points which is tabulated in this to inter dot data this data file 
which is actually something which we have it here. I will show you the data file. 
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So I want to, I want to interpolate this particular set of data, so I have this data file here 
and I want to write an interpolation polynomial to get the values in between this. So that 
is something we should, we can try I have entered these set of data into a file, so that file 
is I called it to inter dot data, so this file contains all this this tabulated values of x and f 
of x and what does this program do this program first read that file so, again I wanted to 
show you here a way to read the files off so I want to read this file so i have used this 
fscanf function to read that file.  
 
So first I opened the file called to inter dot data and then I go from and I read that file 
using the fscanf.  I set the while it reads that line by line till it finds a end of file statement 
there. So every file will have an end of file character so till it finds an end of file 
character it will keep reading, so this while loop here closes at this point so, this is a 
while loop. While loop has only one function to be executed one statement to be executed 
that is to scan this file called fp 1, where fp 1 is the to inter dot data so that is how you 
open a file and you could just read that off and while reading it also counts the number of 
lines that is done by the i equal to 0, there is other ways of getting the number of lines in 
a data file but this is a very simple way of doing it i equal to 0 we have initiated it and I 
am just scanning that thing till it finds the end of file character and I increment i at every 
time and after I read this file I close the file . 
 
It over counts it by 2.So I just set my number of data points as i minus 2. So that is 
because it starts from 1 in counting, so I set it by 2 that is the number of, that is my 
number of data file the data points which I have and in this file, to inter dot data, so then I 
use lagrange’s after that I have the data in x of i and f of i you remember when you use 
the scanf function you are given  ampersand sign here when you are reading you are 
pointing it to that addresses and storing the data files in this addresses to which this is 
pointing to, x of i and f of i is the arrays which I have to store the f value and the x value 



and once I have that, I use exactly the one as the same before the Lagrange’s form and I 
use the lagrange’s form to evaluate the function, to evaluate the polynomial and I am 
running it from x of 0 to x of n at a subset “.1”.  
 
So I have a set of data points here and I construct a Lagrange’s from polynomial with this 
and I evaluate the function values the polynomial values in between this starting from this 
to this in steps of “.1”, that is what I am doing. So that is what we would see here so and 
then, this is the this part is exactly the same as we saw before that we had y value and we 
had the product here that is evaluating the l of i the li of xl , li of x1 and multiplying it by f 
of xi and doing the sum here and the values I got, I am storing it into this thing called 
lagrange’s dot dat again so we will see this we will run this program and see what do we 
get.  
 
Now I have to run this program, so I run this program, so that is the data points which we 
have just tabulated here, I just put it here again now that is the value which we are getting 
here. So now you can see. 
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Now this again the squares, the squares here are my function values which is given to me  
the squares are the function the values of which are given to me and the dot, this circular 
points are the interpolated values and you can see that wherever the circular points were 
close to this square points I have a good agreement where it is but it is quite ambiguous 
when it is away from that for example, this line decided to go down and go up and here 
for example, it is going up quite a bit and then coming down.  
 
So we are not very sure that whether this is actually for example here this has to go down 
and go up this point. So, it is not very clear to us in the first in the initial value, initial 
stage you can see that when the curve starts, look at the square disc as the square points 
and the circular disc, they agree very well at the first point because that is exactly the 



same value, so function value and the polynomial agrees wherever they are close they are 
exactly the same, so they agree and the next point it goes it varies a lot so given this set of 
square points it is not clear to us that this line shown by this circular discs is a good 
representation. So that is what I wanted to show you, so it is not clear that the polynomial 
which we got is the correct polynomial or, what is the error in this?  
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There is some error, what is the error in this? And that is, what we want to quantify and 
that is, what we would look at in the next part. 
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We are given a polynomial pn of x of degree n and we have which interpolates between 0 
and n the function value, tabulated function value etcetera. Now the actual value of the 
function should be of course f of x, so f of x is the actual value of the function at any 
point x, let us say this is the function and this function is tabulated at x0 up to xn and we 
have constructed a polynomial pn of x and we have constructed in such a way as we just 
saw in this particular example, that we have constructed it such a way that this pn of x or 
the n the order polynomial agrees completely with f of x at these points.  
 



So now, if x is any point which is different from x0 x1 x2 xn. Then, what is the error? We 
can define the error as f of x the actual value of the function which we do not know of 
course minus pn of x. So that will be the error. So f of x is something which we do not 
know because, x has been tabulated f of x has been tabulated only for discrete set of 
points so that is x0 to xn and then we have f of x here and f of x minus the polynomial 
value at that x this we know now this is my error so now question is can , we do not know 
this exactly but the question is can we estimate this error and so we will use the lagrange 
form, the newton form for doing this analysis here.  
 
So let us, try to estimate this error how different is the p n of x from f of x, so that is what 
we would try to get. So let us say, if pn of x is a polynomial of degree n plus 1 which 
interpolates from f of x at x0 to xn and at x bar, so that is the idea. We will try to do, as I 
said x is a point which is not, which does not match with any of this x0 to xn. So now, we 
say, we assume that we know this, let us take this x as x bar that is what we have done 
here and we say that we know the function value at this point f of x bar and the 
polynomial is actually not of the order n it is of order n plus one because it also goes 
through x bar we force it to go through x bar.  
 
So x bar is some value between x0 and xn, so now since it is goes through x0 and xn and 
also through x bar. We have n plus 1, so n plus 2 points, this is the n plus 1 points here 
and then x bar so n plus 2 points and the polynomial which goes through all of that would 
an order of degree n plus 1 so that, then we have the this exact equation that p n plus 1 of 
x bar is equal to f of x bar because that is way pn plus 1 is constructed.  
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So remember, that pn of x was a polynomial which went through n points n plus 1 points 
that is, x0 to xn and then p n plus 1 is a polynomial which goes through x0 to xn and also 
through x bar which is some value of x between x0 and xn. So we have that polynomial so 
then we can write pn plus 1 of x as so pn of x plus pn of x is the n th order polynomial 



which went through x0 to xn and then we have an additional term, the last coefficient 
would be then f of x0xn x bar remember, the newton’s form. So we have f of x0 to xn  to x 
bar and then a product here that is x minus x0, x minus x1, x minus x2, x minus xn into x 
minus x bar, x minus x2, x minus xn up to that it will be there that is the last term. So 
remember, once again I want to emphasize this point that is pn of x is a polynomial which 
went from which went through n plus one points x0 to xn and then we added an extra 
point x bar which is between x0 and xn and then we constructed a n plus 1 th order 
polynomial which also went through this . 
 
Now I want to write this n plus one th order polynomial as this polynomial plus 
something, if I want to do that then what I would get would be this. So that is the last 
term, this is the last point this point is somewhere in between but this is an additional 
point which we have had. So, I have to construct this coefficient which is now f bracket  
x0 xn and x bar and it will be multiplied by x minus this will be the n th order term n plus 
1 th order term because this is a polynomial of order n and this is a polynomial of order n 
plus 1 and the n plus 1 th order term would then be x minus x0 into x minus x1 to x minus 
xn, that will be n plus one th order. And then, if I evaluate this polynomial at x bar that 
will be exactly the same as f of x bar because, we are forced to go through that. So f of x 
bar is pn plus 1 of x bar which is pn of x bar plus this additional term into x bar minus xj.  
 
So now, what do we see, what do you wanted to see in the earlier thing was this 
difference, this difference at x bar at x equal to x bar what is the error of the polynomial n 
th order polynomial, if I evaluate this polynomial at any value x bar which is between this 
but not one of this. So that is exactly, what we are getting here, so we get that difference 
as this term. So what do we see is that the error in this polynomial is actually in this 
polynomial for any value x bar which is not any of these values is given by the next term 
in the polynomial so that is if you are given a polynomial of order n plus 1 it is like n plus 
2 th order polynomial, n plus 2 th term. So n plus 2nd term in this. 
  
So the next term in the polynomial is the error, the error now we can get this so the error 
in the polynomial would be like the next term. So can we make now again, we do not 
know this value set at every point so, can we make an estimate of this as I said we do not 
know x bar. So we assumed here, that we know f of x bar, when we write that I said f of x 
bar is pn of x bar we said that we forced the polynomial to go through that point for that 
we need to know f of x bar so, otherwise we cannot construct this function here. So we do 
not know this f of x bar in reality but we can see that the error is of this form like the next 
term in the polynomial. So now, question is can we make an estimate of this, so that is 
what we should try to see whether we could make an estimate and then we could compute 
some examples of this actually. 
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So what we sue is this theorem, this is called the mean value theorem, it says that if there 
is a function f of x which is defined between a and b, and it is k times differentiable in 
this interval a and b and so if x0 to xk are k plus 1 distinct points in a and b. And then, 
there exists a value between this interval a and b, such that this function is equal to the k 
th derivative of that function at that point divided by k factorial, this is the theorem. So I 
am not going to give a proof of this theorem, except to show you that in the first order k’s 
we can see this very easily. We call that derivative mean value theorem and we can see 
this very easily for the first order k. So the statement is again the following what we want 
to get is an estimate of this quantity. 



 
Remember we did not know f of x bar, so unless we know the f of x bar we cannot 
compute this coefficient going from x0 to xk. We cannot compute that coefficient, so we 
need an estimate and what it turns out is that, this quantity is equal to the k th derivative 
divided by the k factorial. So we have an estimate of that of that already for some value 
of x, for some value of x between a and b this given by zeta here, so that is an estimate so 
we can actually maximize this derivative we can actually, since the function is 
differentiable in this interval k th time differentiable, so we could actually look at the k th 
order we do not know the function actually, what I am trying to say is that the estimate 
tells us that it is the k th derivative.  
 
So if you assume the function to be smooth and differentiable then we already have an 
idea about how bad that function that polynomial would be or the error in that polynomial 
at any point would be, it will be of the order k th derivative divided by k factorial. So we 
see that as the degree of the polynomial increases, it increases pretty fast we will continue 
on this theme again in the next class and look at some details of what is the implication of 
such a term would be, that would be again in the next class.                   


