Numerical Methods and Programming
P. B. Sunil Kumar
Department of Physics
Indian Institute of Technology, Madras
Lecture -10
Error in Interpolation Polynomial

Today, we will continue with our discussion on interpolation. So we are again discussing
interpolation, interpolation of a discrete set of data points, to get values of the function,
approximate values of the function in between. We saw that we use, if you have a set of
data points given like in this blue curve, blue point here, this set of data points, and then |
could actually draw two sets of lines through this, one set which goes through, on
average, through all the points, and the other set actually touches all the points.

(Refer Slide Time: 01:54)

Vi phes shrsm thir

iy pmgi b g e marwial

= bk =hibie g 1T
midkei b Aial s (b
i [l imrsa iy m bl
b i o TR PaEaTies

TSI EEETT

So, the red curve here is what we would call a fit, and the blue curve, and the black curve
here which goes through the blue points is what we would call an interpolating curve. So,
in this particular example we have a function which is 1 by x plus a as the red curve
which goes through all these points, which just goes through these points, but does not
touch all the points, but while this is a more realistic approximation of a curve. But again,
I warned in the last lecture that this interpolating curve which goes through all the points
is still an approximate function. It is not the real function. And then we looked at a
particular form of interpolation called the Newton’s method, Newton’s form. So it was
Newton’s form which we saw, and then we wrote what is known as the divided
difference method to write, to actually write down the formula.

(Refer Slide Time: 02:56)

interpo lation - Divided difference

i the Tunction i 8 knawn for several viloes of
for eovamiphe

So in the divided difference method we had a set of values, a set of values for the
variables Xo, X1, X2, X3. That is the, and the independent variable, and then you have the
function values at these points as fo, f1, f, f3, and then we constructed a polynomial of
this form.

(Refer Slide Time: 03:34)

We consider the »-fh degree polynomial writlen in a

special way

So this is the Newton’s form of the polynomial which we wrote which goes through all
the Xo, X1, and all the points up to n. So this is the form of Newton’s polynomial. So we
wrote X minus Xo into f of this square bracket xo x;. So this is actually the coefficient of
this term, and this is the coefficient of the next order term, and this is the coefficient of
the nth order term, etcetera, n minus 1th term, etcetera.

Now to determine these coefficients we use the divided difference which | just
mentioned, and wrote on each of these coefficients as f of X x; as f; minus fy by Xq, X1
minus X o, and then we constructed this first order divided difference between all these
points and all these function values, that is, f; minus fo, f> minus f; divided by x, minus
X1, f3 minus f, divided by x3 minus X,, etcetera, and then as a next term we constructed
further divided differences.

(Refer Slide Time: 04:50)

if we choose that at the known points,

) then vl 15 an interpalating
polynomial. f [! are determined by divided
ditterences of the mbulated values:

Here we have used the notation,

Flx,,x |

for the first divided difference between and

So the first divided difference, and then we had all the first divided differences given by
this form, that is, in general, f “Xs X;”. This is, will be f; minus fs divided by x; minus X.

That is the definition of the first order divided difference, and the second order divided
difference is as | said, is given by the difference of the first order divided differences, that
is, T “X1 X2” minus f “Xg x1” divided by X, minus Xo gives you f of Xy X; X2. So in general,
we had f the nth order divided difference, or the n minus 1th order actually. So it is going
X o X 1 into X , as the n minus 2, the difference of n minus 2 order divided differences.
That is, f going from X; t0 Xz, Xo t0 X, minus 1 divided by x, minus X,. So that is the way
divided difference table. So to summarize, the table would be given something like this.
We said this is, we saw this in the last lecture that this is, we have a set of data points X,
X1, X2, X3, X4, and then we had the function values which are fy, fy, f;, f3, fs.

We had the first order divided differences, that is, f; minus f, divided by x; minus X as f
“Xo X1” T, minus f; divided by x, minus x; as f “x; x,” f3 minus f, divided by X3 minus x;
as f “x, x3” and f4 minus f3 divided by x 4 minus xz as f “x3 X,”, etcetera. That is the first
order divided difference. And then we had second order divided differences which is the
difference of these first order differences, that is, f “Xo X1 X 2” as f “X1 X, minus f “Xg X1”
divided by x, minus Xo and f “x, x3” minus f “x; X, divided by X3 minus Xx; is given by
this.

(Refer Slide Time: 05:50)

Higher order differences ane defined in terms of
lower-aorder differences. For example,

in genaral,

(Refer Slide Time: 07:30)

Here is the divided difference Lable,

And f “x3 X4” minus f “X, x3” divided by X, minus X, is given by this, and then further
divided difference is given by this, and then you can have one more, one more term
which is the difference between these two divided by X, minus Xo. That will be the last
term of this. So once you have the divided difference table we can construct the
polynomial which we saw as, which we now just saw. So we will have the Newton’s
form polynomial given by p, of X, as we just saw, as “ay” plus x minus Xo into f of Xg, X1
and f of X minus Xp into X minus X ;1 into f of Xg X1 Xp, etcetera, that is what we saw. And
we also saw that this can be written in a nested form, that is, we could write it as ap plus X
minus X, into f of X, this is in square bracket, please note this is simple, so in square

bracket, plus x minus x; into f of Xy X3 X, and plus x minus X, into f of Xy X1 X2 X 3, and
continuing that way we could write it in this and this is easier to implement numerically.

There are other forms of this same polynomial. We also saw that given a set of n points
the polynomial which goes through that, that is, if given a set of n points starting from 0,
x and minus 1, the polynomial of order n minus 1 which goes through all these points is a
unique polynomial. But this is one of the forms. There are many other forms of writing
the same polynomial, but the polynomial is unique. But you could write it in different
ways. So, here is a problem which you would see, how, we would see later towards the
end of today’s lecture, that we would see this thing actually being implemented, and we
will actually construct the Newton’s form polynomial and use the divided difference to
construct a polynomial which goes through all these points.

(Refer Slide Time: 10:01)

Problem

Find USing Newions divided differeni method, the
polynomial of order four that passes through the
(=1l

L5 2R 62
78 15936
5. 51397

= = 6ls
Problem?2 | s

Find a sixth order polynomial approximation o i
between -/ and using newlons divided
difference method. Choose different values of i

g & in the inbardal and compane the function
vakises af i ik For rrospesmn

So now, going from here, as we said, we just wrote this in this form, and let us say, a
special case of this is that where we had these differences, Xo, X1, X2, X3 etcetera, written.
And let us consider a case where x 0 minus X 1 Or X 1 minus X o IS same as X, minus X, Is
same as X3z minus x;. That is, we could write any nth order object as any nth order
position, as Xo plus simply n times some interval h. So, if this kind of, in this special case
where the distance between any two points is the same, that is, they are equally spaced,
this polynomial can be written in a slightly different form. This is basically the divided
difference for this f to obtain f Xo X3, T Xo X1 X2, T Xo X1 X2 X3 etcetera, can be written in
slightly different form.

We just saw that fo, this is the way we write this quantity, is that f of X X; we wrote as f
of x; minus f of Xq divided by x; minus xo. We said that, and we would say that the same
first order difference as Xy X», the first order differences as f of x, minus f of x; divided by
X2 Minus X1, X1 Minus Xo, X2 Minus Xi, they are all the same. They are equal to h. So we do
not need to write this in the results table, and we could just put that into this function
here, this part here. So if that is true, that is, and then I would have f of X

X1 X2, you remember, is we were writing this as f of X X3 X, minus f of, f of f; X, minus f
of Xp X1 divided by x » minus x ;. That is what we were writing before, and we know that
this can be written as f x; minus Xy, if you remember, f x; X, here is simply f of x, minus f
of x; divided by h x, minus x; is the h, and while this also is f of x; minus f of X, divided
by h.

(Refer Slide Time: 13:21)

So | can substitute all that into this and write this as f of x,. | am substituting for this f of
X1 X from this, and f of X x; from that, and | can write that as f of x, minus f of x; minus
f of x; plus f of xo divided by, so we have x, minus X; here, this is X, minus Xp, X minus
Xo 1S 2 h. There is h coming from here, so it will be just 2 h square.

So we can rewrite this thing in a slightly different fashion and we can simply, we can
write it as f of x, minus 2 f of x; plus f of xo, and we can substitute that here, so when you
substitute that these formulas for f of xo x1 and f of Xg X1 X, using these functions, and we
write them here. We can write it as, we can write then this quantity as p, of x equal to
“ap” plus, and then I would write this quantity as f of xo minus f of x; as | said. So we will
write X minus X ¢ into f of x; minus f of xo now, divided by Xo minus X3, X3 minus Xo
which is h. I will put it here, and then I will write this as x minus X, into X minus X;. So X
is the point at which you want to evaluate this polynomial.

So we will write X minus Xo. So X is the point at which you have to evaluate the
polynomial, and X X3 X», etcetera, are the points at which the data is tabulated. So we will
write X g minus X 1, X minus Xo, X Minus X into, now this polynomial it will be written,
this coefficient, we are going to substitute this, so we write f of x, minus f of 2 f of 2
times f of x; plus f of xp divided by 2 h square. That, we will put in here. So that is the
form we are going to write, and we will continue a series from here.

(Refer Slide Time: 16:15)

Evenly spaced data

in case of evenly spaced v-values, o find the
interpolating polynomial the divided difference |s
not used bul ordmary difference |s used,

The difference in vilues s mol divided l.l‘!p'
difference in -values.

The frst ordar differefcse 5 wiithon as
and is CGI'I"IFH.HEIH a5

(Refer Slide Time: 16:17)

Second order differences, ., ane the differences
of ihe Nrst-order diflerences.

which is easily shown bo be

Now that notation which is being used, which was shown here, is that we will say that f
of i plus 1 minus f of i as delta f;, and the second order difference as del square f ;, and
which is delta of delta f of i plus 1 minus delta f;. so that is del square f; which is what we
have written on the board and we would write in general the higher order differences del
to the power n f of |.

(Refer Slide Time: 16:43)

They can be compiited as the onginal -values:

That is the nth order divided difference, now will be written in this form, that is, fi, n plus
1 n times f; plus n minus 1 and plus n into n minus 1 by 2 factorial into f; plus n minus 2
up to f;, i going from all the way to 0 to n minus n.

So the notation which we are using is basically plus you would say that is delta f and
delta f into f of x; minus f of xo. That is what we, X minus X divided by h into delta f,
and then you will have x minus X, divided by 2 h square into del square f, and we will
continue the series in this fashion. So we would call this as, if I call x minus xo by h as s,
then I can, and then I will introduce this new notation which is x minus X, by h which we
would call that as s.

Then | can show | am just rearranging this data here, rearranging the points here, that p n
of x can be written ap which is f of xo which is actually fo. So we will just, fy plus, we will
write this as fp plus s into delta f plus s into s minus 1 by 2 into del square f, and we can
continue writing in this form, and you would write n as s into s minus 1 into s minus, we
can enter the last term, would be s into s minus 1 into s minus of n minus 1 whole divided
by n factorial times del n of “f”. So that is what we would see here. So | can finally write
the whole polynomial in this fashion. So that is what | have written on the board now.

That is, fo plus s delta fy s into s minus 1 by 2 factorial del square f,. Next term would be s
into s minus 1 into s minus 2 by 3 factorial into del 3 fo, and continue up to s into s minus
1, s minus n plus 1, that is s minus of n minus 1 divided by n factorial del n f,. So
remember the notation which we use here is s as X s minus Xp by h, with h given by delta
x the uniform x value.

(Refer Slide Time: 18:36)

(Refer Slide Time: 19:15)

whens ihe uniform spacing
N v-values

That is, xs here is the point at which we want to evaluate the polynomial. So what we
used here on the board is that we evaluated the polynomial at x, and we have Xq X; X, X3 as
the point in which it is tabulated, and we use x minus Xo by h as s, and | can write the
polynomial as of order n, n minus 1 as p n of x as f of X plus s delta f plus s into s minus
1 by 2 del square f, etcetera.

This is true when h here is, remember h is equal to x; plus 1 minus x;, so that is equally
spaced data. So now, this form of the polynomial is known as the Newton-Gregory
forward polynomial, and we would again see the implementation of this in a program in a
short while.

(Refer Slide Time: 20:48)

whene the uniform spacing
in c-values
This form of the II'I'ii'.'I'FIfJ-L!tIﬂI_.] FII'JJ','HFJIIHICH s called

the Newtons-Gregory

ardand pody ol
[}

So now, there is, as | said, the polynomial is unique, but there are many ways of writing
this polynomial. So, and we saw one way of writing this, and this is called the Newton’s
form, and we write this particular form because it is easy for analysis.

For example, if you want to get an estimate for the error in the polynomial, as | said, even
though this polynomial function, it passes through all the points, all the n points which
we have tabulated, it is still an approximate function of the real data. So the question is
what is the error in this approximation that can be estimated in this particular form? We
will also see that error estimation in a little while, but there are these, however, this
particular form is a little difficult to implement in a code because we need to evaluate all
these coefficients f of Xg X3, T of Xg X1 Xz, etcetera.

Even though there is a systematic way of doing that, by using the divided difference
method, it is still rather cumbersome. So, we can use a slightly different form of this.
Instead of writing this polynomial in this fashion, we can, we could write this nth order
polynomial in a slightly different way, and that is what we would see in the Lagrange
interpolating polynomial form.

So we will see that now. So in the Lagrange interpolation formula we would write in the
polynomial simply in a symbolic way as this. We use f n of x as the nth order polynomial,
and we would write it as |; of x f of x;, so function evaluated at x; into some coefficient I;
of X. x is not a coefficient, it is some other function | ; of x. It is also, this is evaluated at
the point x where we want to evaluate the polynomial is, so the trouble with this is that
every time we want to evaluate the function f of x, the polynomial at any point x, we have
to reconstruct this. The idea comes from this that we can write, we use the same notation.
So we will write it as f n of x to represent the Lagrange form.

(Refer Slide Time: 23:00)

Lagrange interpolating polynomial

This is simply a reformulation of the MNewion
polynomial thal avolds the compulation of divided
differences. it can be ropresented concisely as
concisely as

So there we would write this as a polynomial. Let us say we take a function which goes
through 3 points. So we take n as 3, that is, we have, we had Xq as f of xg as fo, the
function x; and f of f; and x, as f,, and then we would write the polynomial in this
fashion, that is, we will write x minus X; into X minus X, into, let me call it a 1. We will
see in just a minute what that a 1 is, and then x minus X ¢ into X minus X; into a 2 plus x
minus Xp into X minus X; into a 3. So we have 3 points: Xo, X1, X2, and the function values
of those points are f3, f;, f,, the function values, not the polynomial values.

So that is what we have, and then | wrote this, this polynomial here which goes through
X1 X2 and x3. That means, | have f; of x; is f ;1 or f 3 of X o equal to f o, etcetera. It should
satisfy that. So that should give us, since it should pass through all these 3 points, | can
evaluate aj;, a, and as, and let us see what do we get. So, if you just insist that this
polynomial f3 at xo is fo, then we would get from this as fy is equal to x minus X into X
minus Xz into a ;, because at x equal to X, this and this go to 0. So we have only this term
left.

This is a function value at x equal to Xq is fo.l could say that f o is X minus x 1 plus x
minus X, plus a;. So that gives me what a 1 is. | can evaluate a; as fy divided by x minus
X1 Into X minus X,. So then I can substitute that here, and similarly I could get a, to see
that x equal to x; and then a; should be given by, since at x equal to x 1, so from f of x,
that is, in this case 3 f x; is f;. We will get from this polynomial as a; into x, | made a
mistake here: fy is, f of Xg is fo, fo IS Xg minus X;. so that is, fo minus Xy, X Minus Xo.

So | repeat that here: so f of f3 is my polynomial and evaluated at Xo, so that is, f3 at X,
that is, fo, my value. So it evaluated at X o. It will be Xo minus X1, Xo minus X; into a ;. So
a1 IS fo by Xo minus Xx; into Xo minus X,. Similarly here, I can now evaluate this
polynomial at x;. Now | evaluate this at x3, and | evaluate at x ;. | get f3 of X3, which is fy,
and that will be a, times x; minus X ¢ into X 1 minus X 2, or my “a ,” here is f 1 divided by
X1 Minus Xp into X; minus X,. So | can write it like this.

So | can evaluate all the coefficients now; a; here, a, here, and in a very simple similar
fashion, you can get a 3 as f, divided by X, minus X, into X, minus X;, as, would be x;
minus Xp iNto X3 MiNnus Xp iNto X3 minus X;. Substitute x3 that is the value 1 would get as f
of xo, T of x,. This is correct; X, minus x;. So | get all the three coefficients from this by
evaluating the function at xo X3 and x,. | can get the coefficients, a;, a,, as, which 1 just
substitute here.

(Refer Slide Time: 28:04)

So this, now if you substitute that whole function into this value, we could write this
polynomial now as X minus X; into x minus X, divided by a; was this. So it is Xo minus X;
into Xp into Xg Minus X, into f at x; which we call f;, and then | have x minus X, into X
minus X», a, is this, which is X; minus Xg into X; minus X,, so which is then f of x. So, f
evaluated at X, here, and f evaluated at x; plus X minus Xo into X minus X; divided by X,
minus Xg into X, minus Xy, and f evaluated at X».

That is the polynomial which we are getting. So that is the final form of the polynomial
which we have, and that is exactly what is written here in this fashion. So we have, it is
written as, so in this particular case we would have n equal to 2, that is going from 0 2
and 3, and we will have, so we can see what I; of x would be. So I; of x is basically
representing these functions. So that is what this would be, what | call now as Iy, and Iy,
and l,. So then I can write this as sigma I; of x. It is a function of X, as you can see, into f
of x;. So that is what we have written here, | j of x and f of x;.

So the [; of x, then it can be written as phi, that is the product x minus X; divided by X;
minus X o, where j runs over all points from 0 to n except j equal to i. So when you say |
0, j goes from 1 to n, and when you say |1, j goes from 0 to n, except i equal to, j equal to
1. So that is, we can see that from the, this from is exactly the same as the form which is
given here. When you take the Iy, for example, we are finding the product between x
minus x; divided by X, minus x; into X minus X, divided by Xo minus x,. So | started with

lo, 1is0,10. Soiis 0. So x; Xo minus X;, and X minus X;, where j goes from 0 to, it goes
from 1 to 2. So, x minus X; Xo minus X; into X minus x; by Xo minus X;. j is 1 here, j is 2
here, and we come to 1.

(Refer Slide Time: 30:17)

Where,

where | | designates the “product of,” For example,

the linear version (v=1) is

It is X minus X divided by X1 minus Xo, that is, x minus x; divided by x; minus X, because
1 is 1 multiplied by x minus X , by X3 minus x2.We skip x minus x;. That is because i is 1.
So j will go to 0 and 2. So that is what we have seen here. So we have the first order term,
the first order polynomial here, and the second order function would be polynomial,

would be given by something like this.

(Refer Slide Time: 30:50)

That is what we have on the board, etcetera. In general, we could write the nth order
polynomial which we saw [; of x into f of x;. So the only trouble here is that each time we
have to compute, as we just saw that, each time when we evaluate this polynomial, each
time we have to compute the function, this li function, until this point. So, if you have
changed the point at which we are going to evaluate this polynomial, and then we have to
again compute each of these coefficients, unlike the case where we have the Newton’s
form where once we have evaluated these coefficients at given value of points, we could
just go on, evaluate the polynomial at every point which you want.

(Refer Slide Time: 32:15)

The rational underdying the Lagrange
formulation can be grasped directly by
realizing that each term will b 1
at and 0 at all other sample points,

Thus, each product I (x) f lakes on the
value of | af the sample point

(Refer Slide Time: 33:20)

Error in the Interpolating polynomial

Let | be a polynomial of degres » which
interpolates a real valued funclion af

i Is the actual value of the function at ©, the
&rov in this imterpodation is

W will now try 1o estimate this error, Conskder any
point different from . M is a
polynomil of degree which Interpolates

at and at , then

That is the slight difference between these two, but this is easy to implement. This is
much easier to implement on a numerical, on a program than this, but this is more
amenable to error analysis. So that is the basic difference between these two. We will see
the implementation of both of these in a short while. As | said that now both are, now we
can do some error analysis.

(Refer Slide Time: 33:53)

Problem

FFined USITg Newtons divided difference melhod, the
1:||:|L!|r|1|:rr|1:.1.l of order four that passes through the
PONTES,

Problom

Find a sixth order polynomial approximation 1o I

between and using newlons divided
difference method, Choose different values of g =
o & in the inberyal and compare the function
vahses at

We should know since these are approximate polynomials, approximate functions to the
real data, we need to know what is the error in this function and that can be evaluated by
using this form of the polynomial, the Newton form, and that is what we would see in the
next, in the next. So, before we go into actually evaluating the error in an interpolating
polynomial using the Newton’s form, we would just see the implementation of the
Newton’s form in a program, an algorithm, which would implement the Newton’s form
in a program. So here is a problem which we discussed in the last lecture. That is, we
have a set of points “2.5”, “3.75”, “5.0”, “6.25”, and the function values tabulated at
these points, and we want a polynomial.

So, we will have a polynomial of order 3 since there are 4 points here which pass through
these points. We will try to get this polynomial used in the Newton’s form. We will try to
implement this here. That is what we would try to do now. So here is a program which
does that. So it is a very simple program.

I have not used anything complicated in this thing. You can write this in a more
optimized and better way, using rather involved c¢ functions. Here, we look at a very
simple implementation of this program. So we have tabulated, so | have now the main
program, and then | have variables x of 5 dimension, 5 f. So these are function values,
and these are the independent variables, and these are 2 arrays, and | have tabulated all
the function values here, that is, “2.5” is x of 0, and the function value “minus 28.62”,
and x of 1 “3.7” minus f function value, “minus 151.26”, etcetera.

(Refer Slide Time: 34:25)

#inclidemath. h>

#include<stdio.h>

madin()

{

int i,j,m;

float x1,x[5],f[5],v,df,df1;

FILE *FF;

FP=fopen (“data.dat"”,”w"):

x[0]=2.5;x[1]=3.75;x[2]=5.0;x[3]=6.25;

f[0]=-28.62;f[1]=-159.26;f[2]=-513.97;

fl3]=-1265.45;

n=3;

for{i=0;i<=n;i++)

{ fprintf(FP,"Sf %f “\n" ,x[1], f[11);:}
1,7-14 Top

So they are exactly the same, the problem given here. So we have just tabulated all these
values, and | just opened a file here. So this is also, | also want to use this program to
demonstrate some programming. So here | have used, | have opened a file called
“data.dat”, and in which, using this file pointer, fp, I open this file, and then I would write
this function, all the function values, the independent variable, and the function values,
into that data.dat here.

So, nis 3.There are 0 to 3, so | go from 0 to 3. So there are 4 data points, and | write all
of them using, since they are floating points, | use percentage f here, percentage f, and |
will write down all the functions, all the values of x and the function values, and then
after finishing that right now, I close this function. | close this data file which is fp
function pointer fp pointing to which is data.dat, that is just writing out that file. 1 just
stored the tabulated values into this file, and now | have had to construct the divided
difference, so you remember, the divided difference, we just go back and see the divided
difference again. Here is the divided difference table.

So here is the table. So we have the, the x values, and the function values, and then we
have to construct this divided difference table and the coefficients of the polynomial,
remember, are fy, f of Xo X1, T of Xg X1 Xo, Of Xg X1 X2 X3.That is the coefficients of the
polynomial are.

So even though we have to evaluate, we have to calculate all these differences. To
calculate these differences, so if you want to calculate these values, say, fo, f Xo X1, f X0 X1
X2, T Xo X1 X2 X3, we need first to evaluate all those differences because these are
differences of these difference functions but we do not need to store them. We do not
need to store all of this because we need store only these coefficients, because that is the
coefficients we are going to use. So, since we are going to use only these coefficients, the
top line, we do not need to store all these values, but we need them as intermediate

points. So we need only to evaluate the top points. So that is what we see. So this
program demonstrates how we actually do this. So we have, | call them, | have these
functions here. So there is f value. | have the function itself tabulated in this array.

So this function itself is not important to me, once | have computed the function values at
different points, are not important to me after once | have calculated the coefficients of
using the divided difference. So | can use this same array here to store the coefficients of
the divided difference, or the divided differences are stored into this particular array
itself. That is what we are doing here. So | compute the first. So | have two loops here, |
and i. So j is the outer loop, and i is the inner loop. So we go first level.

These calculations are done using the i loop, and the j loop shifts me from these
calculation to these calculations, and then to this, and then to the last one. So what | am
going to do is, as you can see, | choose j equal to 0. So that is the first level of
computation, and then I run i going from 1 0 to n, i goes from 0 to n. j is 0. So i goes from
0 to n. So I will take O, n in this case is 3. So | get 0, 1, 2, 3 and then | take the difference
between this f 1 minus f, and divide it by x; minus Xo, and store it in, that gives me this,
which | store basically inside f, itself. So that is what the points is. I hope | can show this
to you here.

So | took j equal to 0, and | store the f of j f of 0. I am storing, | am just temporarily
storing it in some variable called df. I store this f of O there, and then | go to the next step
and I run this i loop, and then I am storing this f of 0 again, or this df here, which is
actually the Oth divided difference.

We just simply, f of O itself, as df 1, and then | take the first divided difference here, so j
is 0, remember, and i is 1, and | take f of 1 minus fof O, jis 0, iis 1. Soitisfof1,iis 1
here. f of 1 minus f of 0 divided by x of 1 minus x of 0. That, | have now. | put that into
the variable called df, the first divided difference, or the first points f, and f;, and this line
is executed only if i is greater than 1. Since i is not greater than 1, we ignore it now. We
go back here, and now i is 2. So when i is 2, we come back here, and now this value
which we computed, that is, f; minus fo divided by x; minus Xq is now stored into df;, and
I compute here now, since i is 1, jis 0, iis 2, j is O, that is, f, minus f1 divided by x;
minus X;. i 1S 2, 0 j is 0, SO X, minus X.

So that is the first divided difference between the second and third variables, that is 1 and
2, second and third variables. So that is the second divided difference, and now since i is
greater than 1, so that df 1 is now stored as fp, Remember, i is 2 here. i is greater than 1. j
is 0, i is 2, so fy, I will use the function value f; which I do not need anymore. I store, |
use that point, f, to store df 1 which was f; minus f, divided by x; minus Xo. This is clear.
So we are, what | have just done is the following. I have just used, | have computed f;
minus fp divided by x; minus X, and | stored it in a temporary variable, and then | used f,
minus f; by X, minus X3, and once | have done this second computation, that is, f, minus
f1 divided by x, minus X3, | do not need f ; anymore, because | have done f; minus f, by
X1 mMinus Xo, and | have done f, minus f; by x, minus X.

So | do not need f; anymore. So | choose the f; to store this particular variable into that.
So | store fy in fy, | store this. Now similarly, in the next term, as | go over the i loop here,
as | go further in i loop, I use f, I compute f3 minus f, divided by x3 minus X, again the
first divided difference between x3 and X, and then | would, that is, | would, I am
computing f3 minus f;, divided by x3 minus x,, and in the previous step | had computed f,
minus f1 by X, minus X;. so now | do not need this f ; anymore.

So the value which | had computed as f, minus f; by X, minus Xy, that is, f x; X2, 1 will
store in f 1. Similarly, f X, x3, | will store in f 2. So, at the end of the first i loop, | have
now fy and fy, storing f X X3 2, storing f x; X, and f3, storing f X2 X3, n is already 3.If |
have n equal to 4, and f 4 will store f X3 X4, S0 that is what | will have. So | have f, and
first divided differences stored to these variables.

So that is what this program is basically doing. So | do not need to have, this is important
because we will be using large number of data points at some points. This is only for n
equal to 3, but even if 1 will be doing for large number of data points later, and we cannot
have an array storage, storing for every intermediate difference which is not needed. So
we do not need to use those data points. So we do not need them. We do not use those
intermediate divided differences. So we do not need to store them. So here we are using
the function itself to store the divided difference, and then we go to j equal to 1. That is
the second divided difference, and again, we do exactly the same thing.

So here so now j equal to n minus 1, is what we are going to go here. So when j is equal
to 1 now, we are computing the next divided difference. Now you remember | can use
exactly the same functional form here. | do not need to change when | want j equal to 1. |
do not need to change this program because this part, because now, my f is the first
divided difference.

Now my f is storing the first divided difference, and so | can use that f itself to compute
the second divided difference as the difference between the first divided differences, so
that is what is done here. So when j is 1, so again we go from i equal to 1 to n minus j.
Remember, | start from i equal to 1 and f of 1 is storing my first divided difference, and f
of 2 is the first divided difference between the points 3 and 2, and f of 3 is storing
between that, between 4 and 3, etcetera, 3 and 2, etcetera. So I can use this thing here. So
I just use i equal to 1 and now get f of 2. j is now 1. So | can take f of 2 minus f of 1. j is 2
now, i is1.jis1now,andiis 1.

Soitis iy plus 1, itis 2, it is f of 2 minus f of 1 divided by, now here you note, in the
second divided difference we need f of, second divided difference is f of x; X, minus f of
Xo X1 divided by x2 minus xo. So that has to come correct. So that is what is here. | is now
1. lis1andjis 1, soitis Xy minus Xe. i is 1, so Xj minus 1, that is 0, X, minus Xo is
computed correctly, and then we go to i equal to 2. When | go to i equal to 2 again | will
do now f3 minus f, divided by, again note, it is i is 2, j is 1, SO X3 minus X;. So the
difference is 2 here, x3 minus xi, etcetera. And again, | am storing them, | am going to
store them in second order divided differences into the same function.

Now, what will | store into i now, i greater than 1? when i is 2, i greater than 1. So i goes
here, and now my f,, i is 2 here, j is 1 and j minus 1.So this is f ,. So, f , will store now
the second divided difference between the first two divided differences.
So f 1 is not touched. So fy and my function value xo, and now f; that is f of 1, the first
value, have now the first divided difference. And now | am storing f;, the second divided
difference. So that is what is done. So, remember here, | just go through this again. So |
had f; minus f o divided by x; minus X, stored here, and into this f; and f, minus f; by x
minus X; stored into f; f3 minus f, f3 minus f, minus, divided by x3 minus X, was stored in
fs.

So then, now | am going to compute the difference between these two, that is, f of x;
minus X, X3 minus f of Xy X, divided by x3 minus Xo. Now where will | store that? 1 will
store that into f,, that is what | am doing. | am storing this divided difference into f;
because f; is storing this one which | need, which is my coefficient for the polynomial.
This is the coefficient of the polynomial. This also | need. So that is stored here. So the
difference between these two is stored here, and the difference between these two is
stored here, f3, and now we go to the next step. When | go to the step, that is j, now takes
the value in this program, j now takes the value 2. So j, is done, j; is done, j, it takes
again we have the function values to evaluate. Now j is 2. So we now, i is 1,

Hence, we are going to do f3 minus f,, So notice that now we have only these three left
these two left. So we are going to do f3 minus f,. That is what we are going to do now. So
again, i loop now goes from 1 tonis 3, jis 2,soonly 1. i loop is only 1 to 1, that is only
one, because there is only one value which is divided, which is left, which is f3 minus f;,
that will be divided by x3 minus X,. That is our last coefficient.

(Refer Slide Time: 50:30)

Newton.c

intiy,n;
float x1,x[5).f[5], v, df df1;

FILE "FP
FP=f

So we remember, we had only 0, 1 and 2. 0, 1, 2 and 3 we had, we computed, we have
the function values as fo, f1, o, f3, we computed the difference between the first
differences, and we stored them as f; f, and f3. So these three values, that is, f of X X3 f of

X1 X, T of X, X3 were stored into f; f, and f3, and then we computed the difference
between these two, and that was, that is, we have f X X; and X, and f x; X, X3, and that we
stored in f ; and f 3. Now we compute the difference between these two, and that will be
stored in that f of X X1 X2 X3, and that will be stored in f 3. So that is the program.

(Refer Slide Time: 50:38)

far(i=0:i==ni++)
d
!
fprintf(FP,"%f %f \n" x[i], f[i]);
}
fclose(FP)

feurl | =] j=nj++)

o=

far(i=1:1==(n-])i++)
I
1

df1=df
df={fTi+ |-+ 1]+)-x0-110;
[fli=1f[i+]-1]=df1

¥

The program uses the array we stored the function value to store the divided differences
intermediate divided differences, which at the end will become just the coefficients of
your Newton’s polynomial. So that is what we have done. At the end of this j i loop, at
the i and j loops, we will have all the f values storing those coefficients fy, fo, 1, f, and fs.
So that is what | printed-off here.

(Refer Slide Time: 50:48)

fin]=df
printf("%ed %f\n"j, fI+1])

)

3)

So | just want to print out here in this statement printf, it will print it on the screen, the j
values and the corresponding coefficients of the polynomial. We will just print out that,
and once we have that, we will just see that first here. We can print that out. So we
compile this program and then we will print that out. Now that is the coefficients. The
coefficients are 0, 1 and 2.

So we are just, | just use them here to show that. So, 104 minus 71 and f,. So that is the
function values fo, f; f, which we, which you would use. So basically, you would use f o,
f1 and f;, to construct our polynomial. That is what we do here. So we will see that. Once
we have that polynomial thing, so now we have to use the nested form. So you remember
the nested form which we wrote down. So we are going to use that nested form to
compute that, that is, we have the function value to be evaluated.

Now | am going to evaluate the function values from “2.6” to “6.25” at steps of .2. That
is what this says. So the floating point variable called x;. It starts from “2.1” and it goes
up to “6.25”, x 1 less than or equal to “6.25” in steps of .2. So it will go in steps of .2, and
for every value, so since | have the coefficients already calculated, now | can evaluate
this polynomial at any point | want, in between “6.25” and “2.5” because that is the value
at which we have tabulated the points and the function, and then there is nested form
here, that is the function value which I call y, is f of 0 plus x; minus Xo, X; is the value at
which we want to evaluate the polynomial into f of 1 minus f of 1 plus x minus x; into f
of 2 plus x minus X ; into f of 3. So that is what we are going to print out. So we have this
polynomial here, and you remember this is the nested form which we have written, that is
f of 0 x minus x; open a bracket. Then f of 1 plus x minus x;, open another bracket, that is
here, and then f of 2 plus x minus x, and multiply that by f of 3, and close all the brackets
here, and | am printing out these values here.

So | am printing out the values x; and the function value. So we are printing out this into
a file. I have opened a file called “Newton.dat” here, using the file pointer fp, and I print
out. I am putting all these function values, and the point at which we are evaluating the
function into that file, and now we just plot this file to show you how that is. So what we
will do is we will plot this value, this plot, this data file called Newton.dat, which has our
interpolated values, and we will plot also this file which had our original given values. So
we have two data files now called data.dat, which has the values given to you, and
Newton.dat which has the interpolated values, and we will plot them and then see. That is
what we are going to see. So, I will use since I have run the program, I have these two
files created. Now I will just plot that in them. So now, here is the plot of this thing.

So that is the plot. It does not matter what the axis is. The axis is the function values.
Now, note that these points, these green points here, these bluish-green points, are the 1,
2, 3 and 4. There are these 4 values, and these are the tabulated values. So 1, 2, 3 and 4
are the tabulated values which you have given in the square symbol.

(Refer Slide Time: 55:08)

The square symbol, | give the tabulated values, and this circular symbol is my
interpolated values. So you can see that the interpolated values goes smoothly through
this tabulated values, and in one point where the interpolated value, where we use the
polynomial to evaluate the function exactly at the tabulated value, we have exactly the
same result. So that is implementation of the Newton’s form.

We will also see in the next class, may be, so the implementation of the Lagrange form,
and how we can get the error of this polynomial which we got as an interpolating
polynomial for these data points.

