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Today, we will continue with our discussion on interpolation. So we are again discussing 
interpolation, interpolation of a discrete set of data points, to get values of the function, 
approximate values of the function in between. We saw that we use, if you have a set of 
data points given like in this blue curve, blue point here, this set of data points, and then I 
could actually draw two sets of lines through this, one set which goes through, on 
average, through all the points, and the other set actually touches all the points.  
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So, the red curve here is what we would call a fit, and the blue curve, and the black curve 
here which goes through the blue points is what we would call an interpolating curve. So, 
in this particular example we have a function which is 1 by x plus a as the red curve 
which goes through all these points, which just goes through these points, but does not 
touch all the points, but while this is a more realistic approximation of a curve. But again, 
I warned in the last lecture that this interpolating curve which goes through all the points 
is still an approximate function. It is not the real function. And then we looked at a 
particular form of interpolation called the Newton’s method, Newton’s form. So it was 
Newton’s form which we saw, and then we wrote what is known as the divided 
difference method to write, to actually write down the formula. 
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So in the divided difference method we had a set of values, a set of values for the 
variables x0, x1, x2, x3. That is the, and the independent variable, and then you have the 
function values at these points as f0, f1, f2, f3, and then we constructed a polynomial of 
this form. 
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So this is the Newton’s form of the polynomial which we wrote which goes through all 
the x0, x1, and all the points up to n. So this is the form of Newton’s polynomial. So we 
wrote x minus x0 into f of this square bracket x0 x1. So this is actually the coefficient of 
this term, and this is the coefficient of the next order term, and this is the coefficient of 
the nth order term, etcetera, n minus 1th term, etcetera.  



Now to determine these coefficients we use the divided difference which I just 
mentioned, and wrote on each of these coefficients as f of x0 x1 as f1 minus f0 by x0, x1 
minus x 0, and then we constructed this first order divided difference between all these 
points and all these function values, that is, f1 minus f0, f2 minus f1 divided by x2 minus 
x1, f3 minus f2 divided by x3 minus x2, etcetera, and then as a next term we constructed 
further divided differences. 
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So the first divided difference, and then we had all the first divided differences given by 
this form, that is, in general, f “xs xt”. This is, will be ft minus fs divided by xt minus xs.  
 
That is the definition of the first order divided difference, and the second order divided 
difference is as I said, is given by the difference of the first order divided differences, that 
is, f “x1 x2” minus f “x0 x1” divided by x2 minus x0 gives you f of x0 x1 x2. So in general, 
we had f the nth order divided difference, or the n minus 1th order actually. So it is going 
x 0 x 1 into x n as the n minus 2, the difference of n minus 2 order divided differences. 
That is, f going from x1 to x2, x0 to xn minus 1 divided by xn minus x0. So that is the way 
divided difference table. So to summarize, the table would be given something like this. 
We said this is, we saw this in the last lecture that this is, we have a set of data points x0, 
x1, x2, x3, x4, and then we had the function values which are f0, f1, f2, f3, f4. 
  
We had the first order divided differences, that is, f1 minus f0 divided by x1 minus x0 as f 
“x0 x1” f2 minus f1 divided by x2 minus x1 as f “x1 x2” f3 minus f2 divided by x3 minus x2 
as f “x2 x3” and f4 minus f3 divided by x 4 minus x3 as f “x3 x4”, etcetera. That is the first 
order divided difference. And then we had second order divided differences which is the 
difference of these first order differences, that is, f “x0 x1 x 2” as f “x1 x2” minus f “x0 x1” 
divided by x2 minus x0 and f “x2 x3” minus f “x1 x2 divided by x3 minus x1 is given by 
this. 
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And f “x3 x4” minus f “x2 x3” divided by x4 minus x2 is given by this, and then further 
divided difference is given by this, and then you can have one more, one more term 
which is the difference between these two divided by x4 minus x0. That will be the last 
term of this. So once you have the divided difference table we can construct the 
polynomial which we saw as, which we now just saw. So we will have the Newton’s 
form polynomial given by pn of x, as we just saw, as “a0” plus x minus x0 into f of x0, x1 
and f of x minus x0 into x minus x 1 into f of x0 x1 x2, etcetera, that is what we saw. And 
we also saw that this can be written in a nested form, that is, we could write it as a0 plus x 
minus x0 into f of x0, this is in square bracket, please note this is simple, so in square 



bracket, plus x minus x1 into f of x0 x1 x2 and plus x minus x2 into f of x0 x1 x2 x 3, and 
continuing that way we could write it in this and this is easier to implement numerically.  
 
There are other forms of this same polynomial. We also saw that given a set of n points 
the polynomial which goes through that, that is, if given a set of n points starting from 0, 
x and minus 1, the polynomial of order n minus 1 which goes through all these points is a 
unique polynomial. But this is one of the forms. There are many other forms of writing 
the same polynomial, but the polynomial is unique.  But you could write it in different 
ways. So, here is a problem which you would see, how, we would see later towards the 
end of today’s lecture, that we would see this thing actually being implemented, and we 
will actually construct the Newton’s form polynomial and use the divided difference to 
construct a polynomial which goes through all these points. 
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So now, going from here, as we said, we just wrote this in this form, and let us say, a 
special case of this is that where we had these differences, x0, x1, x2, x3 etcetera, written. 
And let us consider a case where x 0 minus x 1 or x 1 minus x 0 is same as x2 minus x1, is 
same as x3 minus x1. That is, we could write any nth order object as any nth order 
position, as x0 plus simply n times some interval h. So, if this kind of, in this special case 
where the distance between any two points is the same, that is, they are equally spaced, 
this polynomial can be written in a slightly different form. This is basically the divided 
difference for this f to obtain f x0 x1, f x0 x1 x2, f x0 x1 x2 x3 etcetera, can be written in 
slightly different form.  
 
We just saw that f0, this is the way we write this quantity, is that f of x0 x1 we wrote as f 
of x1 minus f of x0 divided by x1 minus x0. We said that, and we would say that the same 
first order difference as x1 x2, the first order differences as f of x2 minus f of x1 divided by 
x2 minus x1, x1 minus x0, x2 minus x1, they are all the same. They are equal to h. So we do 
not need to write this in the results table, and we could just put that into this function 
here, this part here. So if that is true, that is, and then I would have f of x0  



x1 x2, you remember, is we were writing this as f of x0 x1 x2 minus f of, f of f1 x2 minus f 
of x0 x1 divided by x 2 minus x 1. That is what we were writing before, and we know that 
this can be written as f x1 minus x2, if you remember, f x1 x2 here is simply f of x2 minus f 
of x1 divided by h x2 minus x1 is the h, and while this also is f of x1 minus f of x0 divided 
by h. 
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So I can substitute all that into this and write this as f of x2. I am substituting for this f of 
x1 x2 from this, and f of x0 x1 from that, and I can write that as f of x2 minus f of x1 minus 
f of x1 plus f of x0 divided by, so we have x2 minus x1 here, this is x2 minus x0, x2 minus 
x0 is 2 h. There is h coming from here, so it will be just 2 h square. 
 
So we can rewrite this thing in a slightly different fashion and we can simply, we can 
write it as f of x2 minus 2 f of x1 plus f of x0, and we can substitute that here, so when you 
substitute that these formulas for f of x0 x1 and f of x0 x1 x2 using these functions, and we 
write them here. We can write it as, we can write then this quantity as pn of x equal to 
“a0” plus, and then I would write this quantity as f of x0 minus f of x1 as I said. So we will 
write x minus x 0 into f of x1 minus f of x0 now, divided by x0 minus x1, x1 minus x0 
which is h. I will put it here, and then I will write this as x minus x0 into x minus x1. So x 
is the point at which you want to evaluate this polynomial.  
 
So we will write x minus x0. So x is the point at which you have to evaluate the 
polynomial, and x0 x1 x2, etcetera, are the points at which the data is tabulated. So we will 
write x 0 minus x 1, x minus x0, x minus x1 into, now this polynomial it will be written, 
this coefficient, we are going to substitute this, so we write f of x2 minus f of 2 f of 2 
times f of x1 plus f of x0 divided by 2 h square. That, we will put in here. So that is the 
form we are going to write, and we will continue a series from here. 
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Now that notation which is being used, which was shown here, is that we will say that f 
of i plus 1 minus f of i as delta fi, and the second order difference as del square f i, and 
which is delta of delta f of i plus 1 minus delta fi. so that is del square fi which is what we 
have written on the board and we would write in general the higher order differences del 
to the power n f of i. 
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That is the nth order divided difference, now will be written in this form, that is, fi, n plus 
1 n times fi plus n minus 1 and plus n into n minus 1 by 2 factorial into fi plus n minus 2 
up to fi, i going from all the way to 0 to n minus n.  
 
So the notation which we are using is basically plus you would say that is delta f and 
delta f into f of x1 minus f of x0. That is what we,  x minus x0 divided by h into delta f, 
and then you will have x minus x0 divided by 2 h square into del square f, and we will 
continue the series in this fashion. So we would call this as, if I call x minus x0 by h as s, 
then I can, and then I will introduce this new notation which is x minus x0 by h which we 
would call that as s.  
 
Then I can show I am just rearranging this data here, rearranging the points here,  that p n 
of x can be written a0 which is f of x0 which is actually f0. So we will just, f0 plus, we will 
write this as f0 plus s into delta f plus s into s minus 1 by 2 into del square f, and we can 
continue writing in this form, and you would write n as s into s minus 1 into s minus, we 
can enter the last term, would be s into s minus 1 into s minus of n minus 1 whole divided 
by n factorial times del n of “f”. So that is what we would see here. So I can finally write 
the whole polynomial in this fashion. So that is what I have written on the board now. 
 
That is, f0 plus s delta f0 s into s minus 1 by 2 factorial del square f0. Next term would be s 
into s minus 1 into s minus 2 by 3 factorial into del 3 f0, and continue up to s into s minus 
1, s minus n plus 1, that is s minus of n minus 1 divided by n factorial del n f0. So 
remember the notation which we use here is s as x s minus x0 by h, with h given by delta 
x the uniform x value. 
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That is, xs here is the point at which we want to evaluate the polynomial. So what we 
used here on the board is that we evaluated the polynomial at x, and we have x0 x1 x2 x3 as 
the point in which it is tabulated, and we use x minus x0 by h as s, and I can write the 
polynomial as of order n, n minus 1 as p n of x as f of x0 plus s delta f plus s into s minus 
1 by 2 del square f, etcetera. 
 
This is true when h here is, remember h is equal to xi plus 1 minus xi, so that is equally 
spaced data. So now, this form of the polynomial is known as the Newton-Gregory 
forward polynomial, and we would again see the implementation of this in a program in a 
short while. 
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 So now, there is, as I said, the polynomial is unique, but there are many ways of writing 
this polynomial. So, and we saw one way of writing this, and this is called the Newton’s 
form, and we write this particular form because it is easy for analysis. 
 
For example, if you want to get an estimate for the error in the polynomial, as I said, even 
though this polynomial function, it passes through all the points, all the n points which 
we have tabulated, it is still an approximate function of the real data. So the question is 
what is the error in this approximation that can be estimated in this particular form? We 
will also see that error estimation in a little while, but there are these, however, this 
particular form is a little difficult to implement in a code because we need to evaluate all 
these coefficients f of x0 x1, f of x0 x1 x2, etcetera. 
 
Even though there is a systematic way of doing that, by using the divided difference 
method, it is still rather cumbersome. So, we can use a slightly different form of this. 
Instead of writing this polynomial in this fashion, we can, we could write this nth order 
polynomial in a slightly different way, and that is what we would see in the Lagrange 
interpolating polynomial form.  
 
So we will see that now. So in the Lagrange interpolation formula we would write in the 
polynomial simply in a symbolic way as this. We use f n of x as the nth order polynomial, 
and we would write it as li of x f of xi, so function evaluated at xi into some coefficient li 
of x. x is not a coefficient, it is some other function l i of x. It is also, this is evaluated at 
the point x where we want to evaluate the polynomial is, so the trouble with this is that 
every time we want to evaluate the function f of x, the polynomial at any point x, we have 
to reconstruct this. The idea comes from this that we can write, we use the same notation. 
So we will write it as f n of x to represent the Lagrange form. 
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So there we would write this as a polynomial. Let us say we take a function which goes 
through 3 points. So we take n as 3, that is, we have, we had x0 as f of x0 as f0, the 
function x1 and f of f1 and x2 as f2, and then we would write the polynomial in this 
fashion, that is, we will write x minus x1 into x minus x2 into, let me call it a 1. We will 
see in just a minute what that a 1 is, and then x minus x 0 into x minus x2 into a 2 plus x 
minus x0 into x minus x1 into a 3. So we have 3 points: x0, x1, x2, and the function values 
of those points are f3, f1, f2, the function values, not the polynomial values.  
 
So that is what we have, and then I wrote this, this polynomial here which goes through 
x1 x2 and x3.That means, I have f3 of x1 is f 1 or f 3 of x 0 equal to f 0, etcetera. It should 
satisfy that. So that should give us, since it should pass through all these 3 points, I can 
evaluate a1, a2 and a3, and let us see what do we get. So, if you just insist that this 
polynomial f3 at x0 is f0, then we would get from this as f0 is equal to x minus x1 into x 
minus x2 into a 1, because at x equal to x0 this and this go to 0. So we have only this term 
left.  
 
This is a function value at x equal to x0 is f0.I could say that f 0 is x minus x 1 plus x 
minus x2 plus a1. So that gives me what a 1 is. I can evaluate a1 as f0 divided by x minus 
x1 into x minus x2. So then I can substitute that here, and similarly I could get a2 to see 
that x equal to x1 and then a2 should be given by, since at x equal to x 1, so from f of xn, 
that is, in this case 3 f x1 is f1. We will get from this polynomial as a2 into x, I made a 
mistake here: f0 is, f of x0 is f0, f0 is x0 minus x1.  so that is, f0 minus x1, x minus x2. 
 
So I repeat that here: so f of f3 is my polynomial and evaluated at x0, so that is, f3 at x0, 
that is, f0, my value. So it evaluated at x 0. It will be x0 minus x1, x0 minus x2 into a 1. So 
a1 is f0 by x0 minus x1 into x0 minus x2. Similarly here, I can now evaluate this 
polynomial at x1. Now I evaluate this at x1, and I evaluate at x 1. I get f3 of x1, which is f1, 
and that will be a2 times x1 minus x 0 into x 1 minus x 2, or my “a 2” here is f 1 divided by 
x1 minus x0 into x1 minus x2. So I can write it like this.  



 
So I can evaluate all the coefficients now; a1 here, a2 here, and in a very simple similar 
fashion, you can get a 3 as f2 divided by x2 minus x0 into x2 minus x1, a3, would be x2 
minus x0 into x3 minus x0 into x3 minus x1. Substitute x3 that is the value I would get as f 
of x0, f of x2. This is correct; x2 minus x1. So I get all the three coefficients from this by 
evaluating the function at x0 x1 and x2. I can get the coefficients, a1, a2, a3, which I just 
substitute here.  
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So this, now if you substitute that whole function into this value, we could write this 
polynomial now as x minus x1 into x minus x2 divided by a1 was this. So it is x0 minus x1 
into x0 into x0 minus x2 into f at x1 which we call f1, and then I have x minus x0 into x 
minus x2, a2 is this, which is x1 minus x0 into x1 minus x2, so which is then f of x. So, f 
evaluated at x0 here, and f evaluated at x1 plus x minus x0 into x minus x1 divided by x2 
minus x0 into x2 minus x1, and f evaluated at x2.  
 
That is the polynomial which we are getting. So that is the final form of the polynomial 
which we have, and that is exactly what is written here in this fashion. So we have, it is 
written as, so in this particular case we would have n equal to 2, that is going from 0 2 
and 3, and we will have, so we can see what li of x would be. So li of x is basically 
representing these functions. So that is what this would be, what I call now as l0, and l1, 
and l2. So then I can write this as sigma li of x. It is a function of x, as you can see, into f 
of xi. So that is what we have written here, l i of x and f of xi.  
 
So the li of x, then it can be written as phi, that is the product x minus xj divided by xi 
minus x 0, where j runs over all points from 0 to n except j equal to i. So when you say l 
0, j goes from 1 to n, and when you say l1, j goes from 0 to n, except i equal to, j equal to 
1. So that is, we can see that from the, this from is exactly the same as the form which is 
given here. When you take the l0, for example, we are finding the product between x 
minus x1 divided by x0 minus x1 into x minus x2 divided by x0 minus x2.  So I started with 



l0, i is 0, l 0. So i is 0. So xi x0 minus xj, and x minus xj, where j goes from 0 to, it goes 
from 1 to 2. So, x minus xj x0 minus xj into x minus xj by x0 minus xj. j is 1 here, j is 2 
here, and we come to 1. 
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It is x minus x0 divided by x1 minus x0, that is, x minus xj divided by x1 minus x0, because 
i is 1 multiplied by x minus x 2 by x1 minus x2.We skip x minus x1. That is because i is 1. 
So j will go to 0 and 2. So that is what we have seen here. So we have the first order term, 
the first order polynomial here, and the second order function would be polynomial, 
would be given by something like this.  
 
(Refer Slide Time: 30:50) 
 

 
 



That is what we have on the board, etcetera. In general, we could write the nth order 
polynomial which we saw li of x into f of xi. So the only trouble here is that each time we 
have to compute, as we just saw that, each time when we evaluate this polynomial, each 
time we have to compute the function, this li function, until this point. So, if you have 
changed the point at which we are going to evaluate this polynomial, and then we have to 
again compute each of these coefficients, unlike the case where we have the Newton’s 
form where once we have evaluated these coefficients at given value of points, we could 
just go on, evaluate the polynomial at every point which you want. 
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That is the slight difference between these two, but this is easy to implement. This is 
much easier to implement on a numerical, on a program than this, but this is more 
amenable to error analysis. So that is the basic difference between these two. We will see 
the implementation of both of these in a short while. As I said that now both are, now we 
can do some error analysis.   
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We should know since these are approximate polynomials, approximate functions to the 
real data, we need to know what is the error in this function and that can be evaluated by 
using this form of the polynomial, the Newton form, and that is what we would see in the 
next, in the next. So, before we go into actually evaluating the error in an interpolating 
polynomial using the Newton’s form, we would just see the implementation of the 
Newton’s form in a program, an algorithm, which would implement the Newton’s form 
in a program. So here is a problem which we discussed in the last lecture. That is, we 
have a set of points “2.5”, “3.75”, “5.0”, “6.25”, and the function values tabulated at 
these points, and we want a polynomial.  
 
So, we will have a polynomial of order 3 since there are 4 points here which pass through 
these points. We will try to get this polynomial used in the Newton’s form. We will try to 
implement this here. That is what we would try to do now. So here is a program which 
does that. So it is a very simple program. 
  
I have not used anything complicated in this thing. You can write this in a more 
optimized and better way, using rather involved c functions. Here, we look at a very 
simple implementation of this program. So we have tabulated, so I have now the main 
program, and then I have variables x of 5 dimension, 5 f. So these are function values, 
and these are the independent variables, and these are 2 arrays, and I have tabulated all 
the function values here, that is, “2.5” is x of 0, and the function value “minus 28.62”, 
and x of 1 “3.7” minus f function value, “minus 151.26”, etcetera. 
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So they are exactly the same, the problem given here. So we have just tabulated all these 
values, and I just opened a file here. So this is also, I also want to use this program to 
demonstrate some programming. So here I have used, I have opened a file called 
“data.dat”, and in which, using this file pointer, fp, I open this file, and then I would write 
this function, all the function values, the independent variable, and the function values, 
into that data.dat here.  
 
So, n is 3.There are 0 to 3, so I go from 0 to 3. So there are 4 data points, and I write all 
of them using, since they are floating points, I use percentage f here, percentage f, and I 
will write down all the functions, all the values of x and the function values, and then 
after finishing that right now, I close this function. I close this data file which is fp 
function pointer fp pointing to which is data.dat, that is just writing out that file. I just 
stored the tabulated values into this file, and now I have had to construct the divided 
difference, so you remember, the divided difference, we just go back and see the divided 
difference again. Here is the divided difference table.  
 
So here is the table. So we have the, the x values, and the function values, and then we 
have to construct this divided difference table and the coefficients of the polynomial, 
remember, are f0, f of x0 x1, f of x0 x1 x2, f of x0 x1 x2 x3.That is the coefficients of the 
polynomial are. 
 
So even though we have to evaluate, we have to calculate all these differences. To 
calculate these differences, so if you want to calculate these values, say, f0, f x0 x1, f x0 x1 
x2, f x0 x1 x2 x3, we need first to evaluate all those differences because these are 
differences of these difference functions but we do not need to store them. We do not 
need to store all of this because we need store only these coefficients, because that is the 
coefficients we are going to use. So, since we are going to use only these coefficients, the 
top line, we do not need to store all these values, but we need them as intermediate 



points. So we need only to evaluate the top points. So that is what we see. So this 
program demonstrates how we actually do this. So we have, I call them, I have these 
functions here. So there is f value. I have the function itself tabulated in this array.  
 
So this function itself is not important to me, once I have computed the function values at 
different points, are not important to me after once I have calculated the coefficients of 
using the divided difference. So I can use this same array here to store the coefficients of 
the divided difference, or the divided differences are stored into this particular array 
itself. That is what we are doing here. So I compute the first. So I have two loops here, j 
and i. So j is the outer loop, and i is the inner loop. So we go first level.  
 
These calculations are done using the i loop, and the j loop shifts me from these 
calculation to these calculations, and then to this, and then to the last one. So what I am 
going to do is, as you can see, I choose j equal to 0. So that is the first level of 
computation, and then I run i going from 1 0 to n, i goes from 0 to n. j is 0. So i goes from 
0 to n. So I will take 0, n in this case is 3. So I get 0, 1, 2, 3 and then I take the difference 
between this f 1 minus f0 and divide it by x1 minus x0, and store it in, that gives me this, 
which I store basically inside f0 itself. So that is what the points is. I hope I can show this 
to you here. 
 
So I took j equal to 0, and I store the f of j f of 0. I am storing, I am just temporarily 
storing it in some variable called df. I store this f of 0 there, and then I go to the next step 
and I run this i loop, and then I am storing this f of 0 again, or this df here, which is 
actually the 0th divided difference. 
 
We just simply, f of 0 itself, as df 1, and then I take the first divided difference here, so j 
is 0, remember, and i is 1, and I take f of 1 minus f of 0, j is 0, i is 1. So it is f of 1, i is 1 
here. f of 1 minus f of 0 divided by x of 1 minus x of 0. That, I have now. I put that into 
the variable called df, the first divided difference, or the first points f0 and f1, and this line 
is executed only if i is greater than 1. Since i is not greater than 1, we ignore it now. We 
go back here, and now i is 2. So when i is 2, we come back here, and now this value 
which we computed, that is, f1 minus f0 divided by x1 minus x0 is now stored into df1, and 
I compute here now, since i is 1, j is 0, i is 2, j is 0, that is, f2 minus f1 divided by x2 
minus x1. i is 2, so j is 0, so x2 minus x1.  
 
So that is the first divided difference between the second and third variables, that is 1 and 
2, second and third variables. So that is the second divided difference, and now since i is 
greater than 1, so that df 1 is now stored as f0, Remember, i is 2 here. i is greater than 1. j 
is 0, i is 2, so f1, I will use the function value f1 which I do not need anymore. I store, I 
use that point, f1, to store df 1 which was f1 minus f0 divided by x1 minus x0. This is clear. 
So we are, what I have just done is the following. I have just used, I have computed f1 
minus f0 divided by x1 minus x0, and I stored it in a temporary variable, and then I used f2 
minus f1 by x2 minus x1, and once I have done this second computation, that is, f2 minus 
f1 divided by x2 minus x1, I do not need f 1 anymore, because I have done f1 minus f0 by 
x1 minus x0, and I have done f2 minus f1 by x2 minus x1. 
 



So I do not need f1 anymore. So I choose the f1 to store this particular variable into that. 
So I store f1 in f1, I store this. Now similarly, in the next term, as I go over the i loop here, 
as I go further in i loop, I use f, I compute f3 minus f2 divided by x3 minus x2, again the 
first divided difference between x3 and x2, and then I would, that is, I would, I am 
computing f3 minus f2 divided by x3 minus x2, and in the previous step I had computed f2 
minus f1 by x2 minus x1. so now I do not need this f 2 anymore. 
 
So the value which I had computed as f2 minus f1 by x2 minus x1, that is, f x1 x2, I will 
store in f 1. Similarly, f x2 x3, I will store in f 2. So, at the end of the first i loop, I have 
now f0 and f1, storing f x0 x1 f2, storing f x1 x2 and f3, storing f x2 x3, n is already 3.If I 
have n equal to 4, and f 4 will store f x3 x4, so that is what I will have. So I have f0 and 
first divided differences stored to these variables. 
 
So that is what this program is basically doing. So I do not need to have, this is important 
because we will be using large number of data points at some points. This is only for n 
equal to 3, but even if I will be doing for large number of data points later, and we cannot 
have an array storage, storing for every intermediate difference which is not needed. So 
we do not need to use those data points. So we do not need them. We do not use those 
intermediate divided differences. So we do not need to store them. So here we are using 
the function itself to store the divided difference, and then we go to j equal to 1. That is 
the second divided difference, and again, we do exactly the same thing. 
  
So here so now j equal to n minus 1, is what we are going to go here. So when j is equal 
to 1 now, we are computing the next divided difference. Now you remember I can use 
exactly the same functional form here. I do not need to change when I want j equal to 1. I 
do not need to change this program because this part, because now, my f is the first 
divided difference.  
 
Now my f is storing the first divided difference, and so I can use that f itself to compute 
the second divided difference as the difference between the first divided differences, so 
that is what is done here. So when j is 1, so again we go from i equal to 1 to n minus j. 
Remember, I start from i equal to 1 and f of 1 is storing my first divided difference, and f 
of 2 is the first divided difference between the points 3 and 2, and f of 3 is storing 
between that, between 4 and 3, etcetera, 3 and 2, etcetera. So I can use this thing here. So 
I just use i equal to 1 and now get f of 2. j is now 1. So I can take f of 2 minus f of 1. j is 2 
now, i is 1. j is 1 now, and i is 1. 
 
So it is i1 plus 1, it is 2, it is f of 2 minus f of 1 divided by, now here you note, in the 
second divided difference we need f of, second divided difference is f of x1 x2 minus f of 
x0 x1 divided by x2 minus x0. So that has to come correct. So that is what is here. I is now 
1. I is 1 and j is 1, so it is x2 minus x0. i is 1, so xi minus 1, that is 0, x2 minus x0 is 
computed correctly, and then we go to i equal to 2. When I go to i equal to 2 again I will 
do now f3 minus f2 divided by, again note, it is i is 2, j is 1, so x3 minus x1. So the 
difference is 2 here, x3 minus x1, etcetera. And again, I am storing them, I am going to 
store them in second order divided differences into the same function.  
 



Now, what will I store into i now, i greater than 1? when i is 2, i greater than 1. So i goes 
here, and now my f2, i is 2 here, j is 1 and j minus 1.So this is f 2. So, f 2 will store now 
the second divided difference between the first two divided differences.  
So f 1 is not touched. So f0 and my function value x0, and now f1 that is f of 1, the first 
value, have now the first divided difference. And now I am storing f2, the second divided 
difference. So that is what is done. So, remember here, I just go through this again. So I 
had f1 minus f 0 divided by x1 minus x0 stored here, and into this f1 and f2 minus f1 by x 2 
minus x1 stored into f1 f3 minus f2 f3 minus f2 minus, divided by x3 minus x2 was stored in 
f 3. 
 
So then, now I am going to compute the difference between these two, that is, f of x1 
minus x2 x3 minus f of x0 x2 divided by x3 minus x0. Now where will I store that? I will 
store that into f2, that is what I am doing. I am storing this divided difference into f2 
because f1 is storing this one which I need, which is my coefficient for the polynomial. 
This is the coefficient of the polynomial. This also I need. So that is stored here. So the 
difference between these two is stored here, and the difference between these two is 
stored here, f3, and now we go to the next step. When I go to the step, that is j, now takes 
the value in this program, j now takes the value 2. So j0 is done, j1 is done, j2 it takes 
again we have the function values to evaluate. Now j is 2. So we now, i is 1,  
 
Hence, we are going to do f3 minus f2.  So notice that now we have only these three left 
these two left. So we are going to do f3 minus f2. That is what we are going to do now. So 
again, i loop now goes from 1 to n is 3, j is 2, so only 1. i loop is only 1 to 1, that is only 
one, because there is only one value which is divided, which is left, which is f3 minus f2 
that will be divided by x3 minus x0. That is our last coefficient.  
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So we remember, we had only 0, 1 and 2. 0, 1, 2 and 3 we had, we computed, we have 
the function values as f0, f1, f2, f3, we computed the difference between the first 
differences, and we stored them as f1 f2 and f3. So these three values, that is, f of x0 x1 f of 



x1 x2, f of x2 x3 were stored into f1 f2 and f3, and then we computed the difference 
between these two, and that was, that is, we have f x0 x1 and x2 and f x1 x2 x3, and that we 
stored in f 2 and f 3. Now we compute the difference between these two, and that will be 
stored in that f of x0 x1 x2 x3, and that will be stored in f 3. So that is the program. 
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The program uses the array we stored the function value to store the divided differences 
intermediate divided differences, which at the end will become just the coefficients of 
your Newton’s polynomial. So that is what we have done. At the end of this j i loop, at 
the i and j loops, we will have all the f values storing those coefficients f1, f0, f1, f2 and f3. 
So that is what I printed-off here.  
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So I just want to print out here in this statement printf, it will print it on the screen, the j 
values and the corresponding coefficients of the polynomial. We will just print out that, 
and once we have that, we will just see that first here. We can print that out. So we 
compile this program and then we will print that out. Now that is the coefficients. The 
coefficients are 0, 1 and 2. 
 
So we are just, I just use them here to show that. So, 104 minus 71 and f4. So that is the 
function values f0, f1, f2 which we, which you would use. So basically, you would use f 0, 
f1 and f2 to construct our polynomial. That is what we do here. So we will see that. Once 
we have that polynomial thing, so now we have to use the nested form. So you remember 
the nested form which we wrote down. So we are going to use that nested form to 
compute that, that is, we have the function value to be evaluated. 
 
Now I am going to evaluate the function values from “2.6” to “6.25” at steps of .2. That 
is what this says. So the floating point variable called x1.  It starts from “2.1” and it goes 
up to “6.25”, x 1 less than or equal to “6.25” in steps of .2. So it will go in steps of .2, and 
for every value, so since I have the coefficients already calculated, now I can evaluate 
this polynomial at any point I want, in between “6.25” and “2.5” because that is the value 
at which we have tabulated the points and the function, and then there is nested form 
here, that is the function value which I call y, is f of 0 plus x1 minus x0, x1 is the value at 
which we want to evaluate the polynomial into f of 1 minus f of 1 plus x minus x1 into f 
of 2 plus x minus x 2 into f of 3. So that is what we are going to print out. So we have this 
polynomial here, and you remember this is the nested form which we have written, that is 
f of 0 x minus x1 open a bracket. Then f of 1 plus x minus x1, open another bracket, that is 
here, and then f of 2 plus x minus x2 and multiply that by f of 3, and close all the brackets 
here, and I am printing out these values here.  
 
So I am printing out the values x1 and the function value. So we are printing out this into 
a file. I have opened a file called “Newton.dat” here, using the file pointer fp, and I print 
out. I am putting all these function values, and the point at which we are evaluating the 
function into that file, and now we just plot this file to show you how that is. So what we 
will do is we will plot this value, this plot, this data file called Newton.dat, which has our 
interpolated values, and we will plot also this file which had our original given values. So 
we have two data files now called data.dat, which has the values given to you, and 
Newton.dat which has the interpolated values, and we will plot them and then see. That is 
what we are going to see. So, I will use since I have run the program, I have these two 
files created. Now I will just plot that in them. So now, here is the plot of this thing. 
 
So that is the plot. It does not matter what the axis is. The axis is the function values. 
Now, note that these points, these green points here, these bluish-green points, are the 1, 
2, 3 and 4. There are these 4 values, and these are the tabulated values. So 1, 2, 3 and 4 
are the tabulated values which you have given in the square symbol. 
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The square symbol, I give the tabulated values, and this circular symbol is my 
interpolated values. So you can see that the interpolated values goes smoothly through 
this tabulated values, and in one point where the interpolated value, where we use the 
polynomial to evaluate the function exactly at the tabulated value, we have exactly the 
same result. So that is implementation of the Newton’s form.  
 
We will also see in the next class, may be, so the implementation of the Lagrange form, 
and how we can get the error of this polynomial which we got as an interpolating 
polynomial for these data points. 


