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Welcome to the lecture series on chemistry under the National Programme on Technology 
Enhanced Learning. We have heard a number of lectures on the atoms and molecules from the 
fundamental point of view namely the quantum chemistry and how we understand them from the 
principles of quantum mechanics.  

This is a continuing series of lectures and today it is 9th lecture. The lecture continues on what 
we had done earlier that is the Hydrogen atom. The solutions of the Hydrogen atom using the 
Schrödinger equation are the fundamental equations for matter at the atomic and sub atomic 
levels just as the Newton equations describe matter at a large scale, at the terrestrial and extra 
terrestrial scale. We have to follow the solutions of the Schrödinger equation and wherever 
possible we should also derive the results of the Schrödinger equations.  

But considering the limitations on the course as well as the mathematical background required 
for the students, we are continuing to look at the solutions of the Hydrogen atom. We will 
continue with that in today’s lecture and will hopefully complete the Hydrogen atom part today.  

The series is by the support of the National Programme on Technology Enhanced Learning by 
the Ministry of Human Resource Development and I am in the Department of Chemistry, Indian 
Institute of Technology Madras. 

 

 

 

 

 



(Refer Slide Time: 2:55 min) 

 

The lecture today continues on model problems in Quantum Chemistry and we look at the 
angular solutions as well as the overall solutions of the Hydrogen atom today. 

(Refer Slide Time: 3:10 min) 

 

So summarizing the contents of this lecture will give you an overview. We will continue to look 
at the solutions of the Hydrogen atom. We will go back and look at the rules as given by 
Quantum Mechanics for analyzing wave functions and if possible we will also indicate the how 
to calculate the averages and probabilities in Hydrogen atom. 

 



(Refer Slide Time: 3:37 min) 

 

So let us look at the solutions. Let us review the solutions again. We remember that the 
Hydrogen atom had a wave function which was divided into two parts a radial part and an 
angular part. The radial part described the distribution of the wave function as a function the 
radial distance from the nucleus.  

The angular part described how the wave function looks like. How the squares of the wave 
function will be on a sphere of any given radius. Of course any point on the surface of the sphere 
is described by two angles with reference to the polar axis. So we had the radial coordinate r, we 
had the θ the angular coordinate as well as the ø coordinate. 

The radial coordinates and the solution for the radial part gave as a quantum number n and in 
principle the value of this quantum number can be 1, 2, up to ∞.  

Then number of such radial solutions as we obtain for any given value of n is n2 for each value of 
n. This was the summary of the last two lectures with details. 

 

 

 

 

 

 



(Refer Slide Time: 5:00 min) 

 

The wave function for the Hydrogen atom was the product of both the radial and the angular part 
as you see here. The overall wave function is described by three quantum numbers. The n being 
the principle quantum number and l and m being the quantum numbers which are the result of 
the solution of the radial as well as the angular part subject to the constraints and the angular 
solutions was known as the spherical harmonics the values of m and l were described earlier as l 
being 0, 1 up to n – 1 and m being form – l to + l.  

The radial part obviously describes the wave functions as it varies with the distance and the 
radial function, if you recall from the previous solutions had certain nodes or certain zero’s and 
the number of such zero’s for the radial solution is n – l – 1.  

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 6:04 min) 

 

Thus if you take a 1s orbital the n value is 1, the l value is for the s corresponding to l = 0 and 
therefore there are no radial nodes for the 1s orbital because it is 1 – 0 – 1. You can compute the 
radial part the radial nodes using this formula.  

(Refer Slide Time: 6:30min) 

 

The energies for the Hydrogen atom which is obtained by solving the Schrödinger equation of 
course comes out to be exactly the same as the energies that were described or that were derived 
by Neils Bohr without the Schrödinger equation. That is not a surprise because the energies that 
you obtain as solutions for the Hydrogen atom have to be such that they should satisfy the 
experimental data obtain in line spectra of the Hydrogen atom.  



If you remember the series such as the Lyman series, the Balmer series, the Paschen series, the 
Brackett series and the Pfund series these series were there as experimental data much before the 
quantum mechanics described the results. Therefore it is imperative that any new mechanics 
either that of Neils Bohr or that of Schrödinger or of Heisenberg or any other mechanics 
accurately accounts for this experimental fact and it is no surprise that the solution of Hydrogen 
atom given by Schrödinger turned out to be exactly the same as far as the energies are concerned 
as calculated by the Neils Bohr formula but with one difference. 

Neils Bohr had to introduce this as an arbitrary ADHOC facts, I mean he called them as facts as 
required. These are the assumptions which were required. The assumptions is that the energies of 
the electron do not vary as long as the electrons are in certain orbit and only when the electron 
jumps from one or the other orbit either emits or its absorbs radiation. Now this was a constraint 
proposed by Neils Bohr to describe the overall solution. In the case of Schrödinger equation 
there is no such artificial constraint you have to believe that the Schrödinger equation works and 
if it works and if the wave function have to satisfy the boundary conditions as is required for 
differential equation then the solutions come out naturally and the quantum numbers of this wave 
equation therefore arise naturally as a result of the boundary conditions. 

(Refer Slide Time: 9:02 min) 

 

So what is this, in effect it is a new hypothesis. Instead of Neils Bohr condition now we have the 
Schrödinger hypothesis is, the Schrödinger equation itself. But with a very major difference 
namely that the Schrödinger equation works for all the other atoms. Neils Bohr formula works 
for only Hydrogen atom. 

The hypothesis is it is still a hypothesis but it is definitely more useful in the sense that it is 
useful for studying a much larger set of phenomena and in fact all of Chemistry ever since 1927 
seem to have centered around the solution of the Schrödinger equation as for as obtaining the 



properties of atoms from an ab initio that is from the beginning without doing any experiments if 
you want to calculate them the Schrödinger equation seems to be the equation. The electron in 
the Hydrogen atom is obviously described by 3 quantum numbers only. And please note here 
that spin is not a part of the Hydrogen atom model that Schrödinger gave.  

The spin was there earlier but it was an ADHOC proposition by Pauli and spin quantum number 
is a 4th quantum number that was introduced by Pauli and with that the Hydrogen atom picture 
the electron wave function picture is complete. But spin is not part of the Schrödinger equation 
that was originally used to solve the Hydrogen atom problem. 

(Refer Slide Time: 10:36 min) 

 

Accounting of the spin into the Schrödinger equation came later by Paul Adrien Maurice Dirac, 
an English Physicist, Mathematician and he is often considered the father of quantum mechanics. 
He introduced a very clear and a concise mathematical picture for Quantum Mechanics and it is 
his work which includes spin which derives the spin as natural 4th quantum number and therefore 
with the relativistic mechanics that Dirac introduced in the solution of Hydrogen atom equation 
this process was complete. 

It is important to point out here that the book was published by Dirac in 1930 and was revised a 
little later around 1959 or so. This book is still one of the most important works ever to have 
been written in Quantum Mechanics or about Quantum Mechanics and the title is “Principles of 
Quantum Mechanics”. It is very essential for students to read such books.  

 

 

 



(Refer Slide Time: 11:42 min) 

 

Now let us examine the wave functions a little more closely together. We were looking at the 
radial part before. We were looking at each one of the angular part before. Now we are going to 
look at both of them together. So let me rewrite the formula as you have here. (Refer Slide Time: 
12:03 min) 

The overall wave function as you recall is ψ n m l (r θ ø) = Rn 
l (r) Yl 

m(θ ø) which is the formula 
that you see here. Now the radial part contains an exp(–Zr/na0) where n is the principle quantum 
number and a0 is a constant known as the Bohr radius approximate value is 0.53A°. 

(Refer Slide Time: 12:45 min) 

 



The exp(–Zr/na0) approximate value is 0.53A°. It contains a quantum number n which is a 
principle quantum number. The radial part does not become zero at r = 0 then it is an s function 
i.e. l = 0 for the s function.  

The radial part if it has the formula so that the r raised to some power l where l is the orbital 
angular momentum quantum number. The r raised to l and multiplied by a polynomial which is 
(n – l – 1)th of order then it is a radial function of any specific value n and l. So l = 1 means p 
which means it is r and n – 2 the power. When l is 1 this is n – 2 is the order of the polynomial 
multiplied by r that is a p orbital and then l = 2 means d orbital and so on. 

(Refer Slide Time: 13:53 min) 

 

So the functional form of the radial part the functional form of the radial part can be an 
indication of the quantum number and the type of the orbital that one is interested in. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 14: 08 min) 

 

Let us look at the radial function one after the other and then we will look at the radial function 
square. First let us plot the radial functions for the several values of n = 1, 2, 3 etc with the 
appropriate values of l. The ground state or the state with the least amount of energy, n = 1 is the 
first state and then l = 0 is the only possible value. The radial part is exponential –Zr/a0 times the 
constant. If you plot this as a function of r, this is nothing other than an e–r. It is an exponential 
which drops off to zero as r goes to infinity. But the point to remember is that the function is not 
zero at r = 0.  

(Refer Slide Time: 16:10) 

 



The next one, when you plot this at n = 2 and l = 0 you see that there is a (1 –Zr/2a0) which is a 
monomial and then exp(–Zr/2a0). When you plot this function at r = 0 this function is again 
nonzero you start from somewhere and it goes to 0 when this part becomes 0 that is Zr/2a0 = 1 
that value of r is given by that and for any value of r greater than that this function is negative but 
it keeps on going and you see that it is brought back to 0 by the exponential. So this is the radial 
function for n = 2, l = 0. 

(Refer Slide Time: 15:44 min) 

 

Likewise for n = 2 and l = 1 you have rl which is l = 1 here so it is rl and the polynomial goes to 0 
because l is 2 and n is 1 so n –l –1 is 0. Therefore there is no polynomial here only r and the 
exp(–Zr/2a0) and you see that this has a simple function that r increases then exponential 
decreases. So there is a competition and after a maximum the exponential brings everything back 
to 0. This is the radial function for n = 2, l = 1 for 2p type of orbitals.  

When n = 3, l = 0, it is 3s orbital and you see that r raised to l and l is 0 there is a quadratic 
function here which is a constant times r and an r2 and an exponential. (Refer Slide Time: 16:46 
min). This quadratic has two zero’s, two roots where the function goes to 0. Those two roots are 
the two points when you plot them. When you put r = 0 this is nonzero you start again from a 
nonzero value for the radial function and then the exponential. These two roots and then the 
function goes to 0 because of the exponential. So you see that there is an alternating sign for this 
wave function. Will do just two more of them are n = 3 and l = 1 corresponding to 3p that is rl 
and then n – l – 1 which is obviously a polynomial of degree 1. The exp(–Zr/3a0) and you see 
that this goes to 0 only once and this never goes to zero except that infinity. So you have one 
node the radial node is 1 node for n = 3, l = 1 and the function goes like this.  

 



(Refer Slide Time: 17:54 min). 

 

The last one n = 3 and l = 2 the expression is r2 exp(–Zr/3a0). It never goes to 0. It starts with a 
zero and you see that this is a straight forward plot of the r2 exp(–Zr/3a0). 

(Refer Slide Time: 18:10 min) 

 

So if you put all these plots together for a given value of n you see that there is a radial function 
which is this is a 2s and this is a 2p. The curve with two radial nodes is a 3s, the curve with one 
radial node is a 3p and a curve with no radial node is a 3d. You have to remember that the radial 
nodes decrease as you go from s to p to d etc. because it is n –l –1. So as l increases the number n 
–l –1 keeps on decreasing until it becomes zero. So the picture also tells you where the radial 
nodes are for a given value of n relative to each other. Now all of this is for the radial function. 



(Refer slid time 18:57 min) 

 

Then we also know that the wave function itself does not have an interpretation. There is no 
physical interpretation for the wave function. It has to be because otherwise we have a problem. 
You have a wave function which starts of with a nonzero value at r = 0. What does it mean? That 
means the electron is has a finite I mean some function at the nucleus. It does not make sense. 
The wave function is not to be interpreted but it is the absolute square of the wave function 
which is to be interpreted as a probability density. So what is exactly is the formula. For this 
wave function what is the probability interpretation.  

 The function [ψ*n m l(r θ ø) ψ n m l(r θ ø)] This is for any value of n l m si n l m same ones r theta 
phi product that is the function and its complex conjugate multiplied or the absolute square of the 
wave function x over a small interval of space let me call them dτ here, gives you the probability 
of finding the electron in that space dτ where this dτ is sent at some value of (r θ ø). It is r +dr, θ 
+dθ and ø +dø in the small region.  

 

What is the probability of finding the electron in that small region is the only interpretation that 
can be given by the presences of this wave function by the solution of the Schrödinger equation 
and this ‘*’ is extremely important here because you remember that the spherical harmonics 
which part of the Hydrogen atom solution has complex quantities in them. Therefore if you 
forget the ‘*’ you are going to make mistakes. Any real number can be obtained from a complex 
number by taking the absolute square of the complex number and here probabilities are real can 
be measured. Therefore they have to be interpreted and this interpretation was due to Max Born 
and in fact Schrödinger himself did not make such an interpretation for the wave function but it 
was Max Born who did that several year later. Now with that sort of an interpretation what is the 
dτ. 



(Refer Slide Time: 21:23 min) 

 

Supposing we were to write the wave function as ψ*(x y z) ψ(x y z) Then it is very clear to us 
that what is dτ. You recall the particle in a 1D and the 2D box. The dτ was something like a dx 
Let me write dτ here and dτ is like a dx dy dz which is a volume element.  

(Refer Slide Time: 21:52 min) 

 

What exactly does this mean? This means the probability of finding the particle in the region 
enclosed between x, y, z and x +dx, y +dy and z +dz. That is if you draw a small rectangular 
volume element from x to x +dx, y to y +dy, z to z + dz as the appropriate sides. The probability 
of finding the particle in that volume element is given by ψ* ψ that is the only interpretation 
given. 



(Refer Slide Time: 22:58 min) 

 

Now, in Cartesian coordinates the volume elements are easy to write. The dτ is as I wrote dx dy 
dz. But in the case of spherical coordinates the dτ is not the dx dy dz but elementary mathematics 
tells us that it is   r2dr sinθ dθ dø. This is the volume element in spherical coordinate system.  

It is r2dr sinθ dθ dø but it is not r2 sinθ dr dθ dø. Please remember this. Now this r2 will play a 
critical role in our interpretation of the radial function in terms of the probability density. So let 
us look at the slide. (Refer Slide Time: 22:52 min) I have said that the ‘*’ denotes the complex 
conjugates. So ψ*ψ is the probability of finding the electron in the region dτ and in 3D space I 
also said that dx dy dz is the volume element. 

(Refer Slide Time: 24:04 min) 

 



What is the space for the electron? It is all the way from –∞ to +∞ for the x, y and z. That is 
entire universe but however if the entire Universe does not really make sense for us because you 
remember that there is a fundamental unit which governs the exponentials. The exponentials are 
exp(–r/a0) where a0 is the bore radius 0.53A°. Therefore if r is about 5a0 that is five times the 
bore radius the factor is e–5, and this e–5 decreases, it’s pretty close to zero and e–10 is even closer 
to 0. Therefore even though this mathematical limit is required for us to do the interpretation of 
the electron probabilities in consistent to the mathematical description We do not really need 
large values of  x, y, z because of the fact that the exponential is tapered of by the values of a0 
the bore radius.  

Therefore the universe the electron can be anywhere in the universe but it is likelihood of being 
far away from the Hydrogen atom. If that electron where to be near  of the Hydrogen atom and if 
it is to be far away from the Hydrogen atom the probabilities in these two cases will be quite 
drastically different i.e., anything more than 10 atomic radii. We do not have to worry about the 
electron as electron belonging to that atom or to that nucleus. But this mathematical limit is 
something that you have to keep in mind. It is a sort of not an arbitrary limit. It is required to do 
the algebra but it is not very meaningful in practical interpretation.  

(Refer Slide Time: 25:57 min) 

 

What is the probability of finding the electron anywhere in the Universe? Obviously you know if 
the electron was there with the Hydrogen atom to begin with, it’s going to be in the universe all 
the time somewhere. Therefore the overall probability is when you say the integrals ∫dz ∫dy ∫dx, 
all these means is that you are adding this probabilities for every possible values of x, y and z. 
(Refer Slide Time: 26:23 min)  Integration means addition for continuous variables x, y and z. 
Therefore when you add all these probabilities it has to be 1. So this is the conservation of the 
total number of electron with the Hydrogen atom. The electron and the nucleus were to be 



studied in the beginning the electron remains through out. The total probability of finding the 
electron anywhere in the universe is a certainty or is 1. 

(Refer Slide Time: 26:47 min) 

 

In spherical polar coordinates as I told you that integration now takes a different form. The dx dy 
dz is now replaced by r2dr sinθ dθ dø and the limits of integration are now for the radial 
coordinate r is between 0 and ∞, it refers to the sphere and the θ coordinate is between 0 and π 
and the ø coordinate is between 0 and 2π. Therefore we can easily rewrite this mathematical 
statement namely the integrals ∫dz ∫dy ∫dx ψ*(x y z)   ψ(x y z) in between –∞ to +∞ in all these 3 
cases is equal to 1 using spherical polar coordinates namely. 

(Refer Slide Time: 27:37 min) 

 



We will write it in this form. Let us write this slowly using this formula for dτ we can write the 
integral ∫∫∫ψ* ψ dτ as ∫r2 dr ∫sinθ dθ ∫ dø ψ*(x y z) ψ(x y z)where r goes from 0 to ∞ and θ goes 
from 0 to π and ø goes to 0 to 2π 

(Refer Slide Time: 28:17 min) 

 

 

This is the probability interpretation in spherical coordinates and the probabilities because we are 
calculating over the entire universal universe entire universe and this is equal to 1. Now you see 
that we are able to write the integral as a dr, dθ and dø and we know the functional forms for the 
ψ * and ψ in terms of the r and θ and ø. You know this is given by the radial function and this is 
given by the angular function spherical harmonics. (Refer Slide Time: 29:09 min) Therefore it is 
possible to these integrals fairly easily. So let me just complete this part by writing ψn l m as Rn

l 
(r) of the radial coordinate and Yl

m(θ ø) as the angular coordinate therefore the overall triple 
integral that you had is written as an integral involving a radial part and an integral involving the 
angular part which you can write as r goes from 0 to ∞ now you have to take ψ* ψ which means 
[Rn

l (r) ]* [Rn
l (r)], so this is the radial part of the integral ∫ r2 dr ψ* ψ but containing only the 

radial part. This is everything that depends on the radial coordinate. Therefore this is the integral 
that we need to evaluate as for as the radius coordinate r is concerned. 

 

 

 

 



(Refer Slide Time: 30:19 min)  

 

What are the theta phi parts and then θ and ø parts are multiplied to the radial part by where θ is 
equal to   ∫ sinθ dθ with in 0 to π and ø is equal to ∫dø with in 0 to 2π the integral theta is equal to 
0 to pi sin theta d theta.   Let us also do this phi = 0 to 2 pi d phi. Now we have got the θ, ø 
dependent angular function which is Yl 

m(θ ø)* multiplied by Yl 
m(θ ø) Y l m theta phi star 

multiplied by Y l m theta phi itself. This is the angular part. So you see the angular part 
integration as that containing the θ, ø integration and then the radial part integration containing 
the r integration now the interpretation for the probability is now meaningful when you include 
this r2 as part of the radial probability distribution. Now let us go back to the slide.  

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 31:27 min) 

 

So what I have done is to write this radial part ∫r2 dr Rn
l (r)* Rn

l (r) the radial integral and then 
there is the angular integral multiplied to it and if it is taken over all the limits for the all the 3 
variables and then this is equal to 1. 

(Refer Slide Time: 31:43 min) 

 

Therefore you see the probability density when we talk about the radial distribution is no longer 
simply the R squared but it is also the product of the r squared and the radial function squared. 
That is, it is this part r squared, one R and the other R. Together it is called the radial probability 
distribution function and this has definitely a meaningful interpretation as far as the likelihood of 
finding the electron away from the nucleus is concerned. Now the regions in which the 



probability is near zero are called the nodal regions and the point at which the probability is zero 
is nothing called the probability of finding the electron at this point is zero or at that point is zero, 
no. There is no such interpretation like finding the probability at a particular point. These are all 
continuous variables. Therefore we can only talk about a probability density and the probability 
density can be zero but the probability itself is meaningful only when you talk about a small 
region of space. Therefore whenever you have a small region of space the probability is never 
zero. May be extremely small but it is never ever zero. The regions in which the probability is 
near zero are called nodal regions. 

(Refer Slide Time: 33:20 min) 

 

The probability of finding the electron is very small or negligible but never zero because we do 
not talk about the probability densities but we do talk about the probabilities as themselves. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 33:35 min) 

 

Let us now plot the squares of the radial functions along with the r. So let us go back now look at 
the n= 1 and l = 0. This plot has to be contrasted with the earlier plot of the radial function r. The 
radial function if you remember was a simple exponential. The radial function was a simple 
exponential. R(r) verses r which was from the previous plot. Now you look at the radial 
probability function which is multiplied by r2 and the R2. See now it is rightly zero at the nucleus 
and it increases to a maximum value and then it goes down. So in this region the likelihood of 
finding the electron is in this value of r. The corresponding value of r is the corresponding value 
of r is um somewhere between 0.53 and 0.7. Finding the electron in this region the probabilities 
is the maximum and then the as you go farther away the likelihood of finding the electron also 
becomes very small. This is for the n = 1, l = 0 case so this is the 1s orbital. Therefore for 1s 
orbital the electron probability is very near the nucleus maximum.  

 

 

 

 

 

 

 

 



(Refer Slide Time: 35:08 min)  

 

Let us go to 2s where n = 2, l = 0. For 2s you see that the probability of finding the electron is 
maximum slightly farther away from the nucleus but there is a small region where the probability 
is also a local maximum and then it increases to much larger value slightly far away. That means 
the 2s orbital is extended in space with a likelihood of finding the electron near the nucleus for 
some value but most of its probability is farther away from the nucleus farther away from the 1s 
region. That is the 2s orbital which is the outer orbital when you compare the language of Neils 
Bohr where n = 1 is the first shell and n = 2 is the second shell.  

The 2s is now, you no longer talk about a shell or an orbital but you talk about a region of space 
where the probability of finding the electron is high and the 2s orbital gives you the concepts and 
this value is roughly close to the value of the radius that Neils Bohr derived. Therefore there is a 
one to one correspondence between the particulate model that Neils Bohr had and the wave 
function model that Schrödinger equation proposes that you replace the electron dot by an 
electron cloud such that the density of finding the cloud in that region is the maximum.  

 

 

 

 

 

 



(Refer Slide Time: 36:33 min) 

 

This is for 2p where n = 2, l = 1. The radial probability density is now you see there is a 
maximum and this maximum also is very near the maximum of 2s. You look at the values here 
for 2s. This is Z/a0, there is an r value. This is scaled to this bore radius a0. So what you have 
here is approximately around 5 and for 2p is also approximately around that region. So you see 
that the 2s and 2p nearly occupy the same region but slightly different of course. 

(Refer Slide Time: 37:15 min) 

 

Go to the n = 3, l = 0 which is the 3s orbital and now the density of finding the probability 
density or the likelihood of finding the electron is farther away from the nucleus is more. But you 
see 1, 2 there are two nodal regions corresponding to this value zero and zero here. The 



probability is zero of course at the nucleus or probability density is zero at the nucleus. And then 
you have these two nodes and then there is a likelihood of finding the electron. The 3s orbital is 
extended in space farther from the 2s orbital. This is the 3p orbital which has 1 node and the 
region of space where the bulk of the likelihood of finding the electron is in quite far away from 
the nucleus compared to the 2s. This is the 3d corresponding to n = 3 and l = 2 and again there is 
no node so the region is reasonably flat and the likelihood is again farther way from the nucleus. 

(Refer Slide Time: 38:18 min) 

 

Therefore if the radial functions are plotted they only tell you approximately the values for which 
the radial probability density is 0 or high. But you have to remember that the radial probability 
distribution as an additional factor of the r2. That r2 comes from the volume element in spherical 
polar coordinates and that volume element ensures that there is a reasonably correct 
interpretation for the distribution of the electron probability as one move away from the nucleus. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 39:00 min) 

 

If you put the probabilities together for the n = 2 case. You see this is the one with a node is 2s 
and the one without the node the red line The line that you see here without the node is 2p radial 
probabilities 

(Refer Slide Time: 39:18 min)  

 

and if you put all the three orbitals n = 3 orbitals and the 1 with the 2 nodes. The blue curve has 2 
nodes. These 2 with the 2 max 3 maxima that is a 3s. The red curve which has 1 node is a 3p and 
the green curve which has no nodes is the 3d and you see the maxima are roughly close to each 
other. They are not very far away but they are considerably far away from that of the n = 2 case 



as you see here. The n = 2 case as you see they are quiet far away. The n = 3 case is somewhere 
in this region.  

(Refer Slide Time: 39:55 min) 

 

So the concept of the bore radius and the bore shell n = 1, n = 2, n = 3 is now reinterpreted in 
terms of the probability densities as the regions where the likelihood of finding the electron is 
maximum. 

Let us see how many such orbitals are there for given value of n. I told you that it is n2. We will 
now substitute that numbers and see that that’s what we get. For n = 1, l = 0 is the only possible 
value. There is no m = 0. Therefore there is only one such solution 1s.  Let me write the solutions 
in the indexed form. n = 1, l = 0. Therefore m is 0. The wave function is ψ1 0 0 (r θ ø) this is ψn l m  

(r θ ø). Let me write it clear r theta si is obviously R1
0 (r) Y0 

0 (θ ø) where n is 1, l is 0 and m is 0 
this is 1s orbital. 

 

 

 

 

 

 

 



(Refer Slide Time: 41:17 min) 

 

It is not just the angular part. It is a radial and the angular part put together. Next n = 2, there are 
2 possibilities for the l. The l = 0 is one choice and l = 1 is other choice. For l = 0 then m is 0. For 
l = 1 you have got 3 choices namely m = 1, m = 0 m = 0 and – 1. So what are the 3 the four wave 
functions that you have is. This is also n = 2 here. So the 4 possible wave function that you talk 
about are ψ2 0 0, ψ2 1 1, ψ2 1 0 and ψ2 1 −1. This ψ2 1 0 is the 2pz orbital. This the real part or the 
imaginary part of these give you the 2px and the 2py orbital. (Refer Slide Time: 42:27 min) This 
function is complex but you have to take linear combination of this function and its complex 
conjugate to get the px and the py. But there are 3 such p orbitals and 1 therefore there is a total 
of 4 orbitals.  
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Now we look at the n quantum number for n = 3 the 3 possible values l = 0, l = 1 and l = 2. For l 
= 0 you have got m = 0. For l = 1 you have got m = 1, 0, – 1 and for l = 2 you have got m = 2, 1, 
0, – 1, – 2 so you have got 5 functions so you have got  1 + 3 + 5 a total of 9 functions for n = 3 
and these 9 wave functions are the 9 orbitals. But you have to remember when it comes to d 
orbitals and p orbitals we do not take the m values as they are but we take linear combinations of 
them.  
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For example, for m = 2 and – 2 if we take the linear combinations as I said in the last lecture you 
get the d x2 – y2 orbital or you get the dxy orbital. But the point is there are 5d orbitals. There are 
3p orbitals and there is one s orbital for the n = 3 case. So there is a total of 9. So this is the table 
which gives you that number. So n = 2, l = 0 2s(1) orbital and then 2p(3) orbital. For n = 3, l = 0 
is 3s(1) orbital and n = 3, l = 1 is 3p(3) orbitals and n = 3, l = 2 gives you 3d(5) orbitals. So that 
is, the total is 1 + 3 + 5 is for the n = 3 case, nine of them and for n = 4 you can likewise show a 
1s orbital 3p orbitals 5d orbitals and 7f orbitals leading to a total of 16. Therefore for any given 
value of n there are n2 orbitals as you have studied them in the earlier chemistry courses except 
that now you know what those wave functions are and what the products of the angular and 
radial parts of them turn out to be. 
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So the solutions for the Hydrogen atom we have done so far in this lecture is to look at the 
solutions from the radial part and the angular part and then bring them together and determine 
what are called the radial probabilities the radial wave functions as they are. And then the square 
of the radial function multiplied by the r2 gives you what is called the radial probability 
distribution. Let us look at the basic rules. The averages and probabilities of Hydrogen atom let 
me indicate to you. The calculations are somewhat tedious but you must know how to do the 
calculations. So let me do that process and we will go through formal algebra here. Please recall 
that the expectation value of any observable in quantum mechanics from the previous lecture I 
have given as the integral with the operator corresponding to the expectation the value.  

The observable operator between the two wave functions ∫ψ* A ψ dτ / ∫ψ* ψ dτ. This is a 
postulate. This is a postulate in quantum mechanics. We will have to take this as given and we 
have to work with it and feel comfortable about how to manipulate this for various cases. We 
have already done this for a particle in a one dimensional box. If you remember, the average 



value for the position for a particle in a 1D box was calculated as 2/L and this was a few lectures 
ago.  

As now 2/L ∫sin2(n π x/L) x dx between 0 and L came out because you have the wave function as 
ψn(x) = √2/L sin(n π x/L). This was the wave function. So, if you put this in here put the x in 
here and put the wave function again. You will get this result and you calculated this to be L/2 
the average value of x this was already done. Now except that in the case of Hydrogen atom you 
have got 3 variables to take care of and therefore we got these 3 functions to worry about in 
taking the average values.  
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So even in the simplest case of calculating what is the average radius for the electron in the 
ground state that is in the lowest energy state in the lowest energy state corresponding to ψ1s or 
ψ1 0 0. 
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Here the principle quantum number is 1. The l value is 0 and the m value is 0. What is the 
average value for this radius? Even this will be somewhat a long expression but it is doable 
because it involves simply exponential. So what you have to do is what the average value for the 
radius r is. If you do this question the answer to that is < r > = ∫∫∫ ψ*1 0 0 (r θ ø) r ψ1 0 0 (r θ ø) r2 dr 
dθ sinθ dø where dτ is now r2 dr dθ sinθ dø.   So it is a triple integral. This is what you have to 
calculate but you see that this is involving only the value r and you remember that the ground 
state wave function has a spherical harmonic Y0 0 corresponding to this. The Y0 0 is independent 
of the functions. If you recall Y0 0(θø) was 1/√4π. 
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What is the origin of that? It is a normalization constant for the function Y0 0. If it is independent 
of θ and ø, the angular part is dθ sinθ dø between the integrals. So let me do this calculation now. 
You have the radial function ∫ R1

0(r) r R1
0(r) and again the radial function 1 0 of r. It is a real 

function so ‘*’ is not needed. Then there is r2 dr multiplied by the integrals ∫ [Y0 0(θø)]2 sinθ dθ 
dø. This is how you calculate the expectation values of quantities for the Hydrogen atom and 
here the expectation value that we calculate is the average value for the radius of the electron. I 
mean how far away it is from the nucleus, the average value you cannot locate the electron in to 
particular point because Quantum Mechanics the wave function model precludes such a 
description. But on the average where are we likely to find the electron the value is given by this 
expression and you have R1

0(r) times the r and this integral. The calculation times this integral.  

The calculation of this is very straight forward. This is straight away one can do this. You 
remember that Y0 0(θ ø) was 1/√4π. Therefore the square of this is 1/√4π and it is independent of 
θ and ø and r. Therefore the integral for θ and ø can be done as 1/√4π ∫∫ sinθ dθ dø this integral is 
between 0 to π for dθ and 0 to 2π for dø. 
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You can show that the angular part whole thing is 1, the angular part. Let me write this again. 
This whole integral 1/√4π ∫ sinθ dθ ∫ dø = 1 between θ = 0 → π and ø = 0 → 2π. This integral is 
1. Therefore the radial part the average value r is essentially integral where r goes from 0 to ∞ is ∫ 
r2 dr R1

0(r) r R1
0(r) here you have got the radial function R1

0(r). The operator corresponding to 
the radial is the radius and R 1 0 r. This is the only integral that you need to calculate.   
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Now you see that the separation of the variables in terms of spherical polar coordinates has its 
advantages. When you calculate the properties of the electron what are the average values of the 
radius of the electron. What is the average value for the momentum of the electron. So, if you 
want to calculate every such average all you need to know is the corresponding operator 
associated with the property that you want to measure and then put the operator between the two 
wave functions and calculate the integral. So let me conclude this lecture with the following 2 or 
3 problems for the Hydrogen atom. This covers the last 3 or 4 lectures. So let me write the first 
problem as 1: From the tables of functions given as Rn

l(r) Yl
m(θ ø). Write down the wave 

function ψ2 0 0 (r θ ø) wave functions and ψ3 1 1 (r θ ø) wave functions. 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 53:48 min) 

 

This is a straight forward multiplication but please do this exercise by writing the individual 
wave functions. Second one: normalize the function ψ(r) given by a constant c times an exp( – 
Zr/a0). If I do not give you this constant how would you get the normalization constant of this 
wave function.  
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Remember the normalization constant is obtained by the following method. If the wave function 
is given as ψ the normalization means that the ∫ψ*ψ dτ. If it gives you a value of N, the 
normalized wave function ψ is given by, you replace the ψ by 1/√Nψ. 
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Then the wave function is said to normalize. So this is the normalization constant which is 
obtained by taking the square of the absolute square of the wave function and integrating over 
the space that is available. The only tricky part that you have to remember in this problem with 
respect to exp(–Zr/a0) and c is that ψ(r) is given as ψ(r θ ø) as nothing but c exp(–Zr/a0). There is 
no (θ ø) part. It is independent of that. Therefore what is meant by normalization when you write 
∫ ψ*ψ dτ? The normalization means that you calculate c2 ∫ [exp(–Zr/a0)]2 r2 dr. You must 
remember that this is the radial part you have to consider with respect to the wave function. 
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It is not enough. Also this is multiplied by the corresponding angular part. The angular part is 
simply there is ∫ dθ sinθ ∫ dø. So all that we have done is the integral dτ in this case is a triple 
integral corresponding to the fact that it is r2 dr dθ sinθ. The function that you are asked to 
normalize does not depend on θ and ø. Therefore this is taken out and this you know the value of 
this. If you calculate using simple integral it is 4π and all you need to do is to calculate the 
integral this c2 times and you should set this is equal to 1 to calculate the value of c.  
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This is somewhat difficult but it gives you a little bit of Mathematics involved in handling the 
wave functions. So let me summarize the purpose of going through the Hydrogen atom in all 
these details. We have not solved the Schrödinger equation for Hydrogen atom but we have 
looked at the solutions of the Hydrogen atom and try to analyze them. 

The important part is that. Remember that it is done in a spherical coordinate system and it is 
split into variables which can be handled independently and the description of the wave function 
in terms of the probabilities involves a radial probability and an angular probability. The 
visualizations of these functions the angular part of this gives you a mental picture about the 
likelihood of the distributions of these wave functions and so on. Hydrogen atoms and wave 
functions are fundamentally important in the study of the Chemistry of the atoms and molecules. 
In fact all the energy levels of the atoms are based on the classification of the energy levels of the 
Hydrogen atoms. We will continue this in next lecture. Thank you 

 


