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Welcome to the lecture series in Chemistry under the auspicious of National Program on 
Technology Enhanced Learning. This is a series of lectures in Chemistry which we perceive as 
basic importance to all Engineering and Chemistry students who begin their academic career. 
This is a series of lecture on atomic and molecular aspects of Chemistry. It is a Quantum 
Chemistry of Atoms and Molecules. We have had several lectures already on the solution of the 
Schrödinger equation and also the last lecture and the previous one concentrated on the solutions 
of the Schrödinger equation for the hydrogen atom.  
 
Today we continue with the solutions of hydrogen atom and we continue the pictorial 
demonstrations through the animations two dimensional and three dimensional of certain aspects 
of the solutions of the Schrödinger equation.   
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Let me start with the basic slides, I am Mangala Sunder from the Department of Chemistry and 
my email id is given as mangal@iitm.ac.in 
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This is the 8th lecture on the model problem in Quantum Chemistry and we continue to visualize 
the angular solutions to the hydrogen atom problem as proposed by the Schrödinger equation and 
the solution. 
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The contents for today’s lecture are the essential solutions for the angular equation through 
visualization of the angular functions using both 2D and 3D graphics and if time permits we will 
also see the plots of radial functions. 
 
What is extremely important in this set of lectures as given for the students is the enabling you to 
visualize these solutions rather than derive these solutions mathematically. The differential 
equations are hard and you need a certain amount of special functions, Mathematics to derive the 
solutions through the standard procedure. That is not of important to us from the Chemistry stand 
point but we want to see how quickly that the atomic orbitals can be visualized and how quickly 
we can keep a mental picture that we already started with in the high school days with the picture 
of the hydrogen atoms, orbitals in the textbooks.  
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So let us see today in the lectures here. Let me recall the angular equation here. you remember 
from the previous lecture the angular variables for the hydrogen atoms satisfy the differential 
equation given by the equation here is 1/(sinθ) ∂/∂θ(sinθ ∂Y/∂θ) +1/(r2sin2θ) ∂2Y/∂ø2 = −βY, here 
these are the partial derivatives of the function Y which we are trying to obtain and β is a 
constant which is appied on the same function Y. 
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Y’s were introduced to you earlier as spherical harmonics as a function of both θ and ø. And we 
started looking at the some of the functional forms of the spherical harmonics in the last lecture. 
And you also kindly recall that the solutions to the (θ, ø) equations contain two quantum 



numbers m and l where the values of l are determined by the radial equation whose principle 
quantum number is n and the value of l is from 0 to n – 1. For any given value of l the values of 
m are known to be between – l, (–l+1), (–l+2) and all the way up to l in integer steps. That is, 
there are two l + 1 values of m for each value of l and these are of course solutions for the 
angular parts only they are independent of the radial coordinate r. The Mathematical notation is 
that they are denoted by the spherical harmonics of spherical tensor of rank l and the spherical 
component m.  
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In the previous lecture we looked at the l = 1 case and we looked at the 2D, 3D that is two 
dimensional and the three dimensional representations of these wave functions on a polar plot. 
We will continue that here for the l = 2 case. Obviously there are five such spherical harmonics 
and representing them in a polar coordinate is an exercise that is worth doing for anyone who 
solves the Schrödinger equation for the first time. Here we are not solving the equation here we 
are giving the solutions of the equation because the Mathematics is hard enough that we can 
postpone that to a later lecture. But what is important is of course to visualize these solutions.  
 
So what you see here are the three of the five spherical harmonic corresponding to l = 2. The m = 
2 is given by the spherical harmonic Y2

2 with some constant here. It is sin2θ e2iø that is important 
for m = 2 then the exponential are e2iø where m corresponds to the variable ø and l corresponds to 
the variable θ. You see the colors more or less to indicate that kind of an association sin2θ e2iø. 
Therefore l = 2, m = 1 the spherical harmonic is denoted by Y2

1, again constants that do not 
appear all that random. Y2

1 is [−√15/8π sinθ cosθ eiø] here again for m = 1the exponential is eiø. 
For l = 2, m = 0 you do not have any exponential ø part here but that is the equivalent of ei0ø 
where the value of m is 0 but the angular part is (3cos2θ – 1). 
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For l = 2 and m = –1 the spherical harmonics Y2
−1 is [√15/8π sinθ cosθ e−iø] look at Y2

1 is √15/8π 
but with a – sign. And m = 1 has sinθ cosθ eiø, but m = – 1 has sinθ cosθ e−iø which is again the 
corresponding m value. For l = 2, m = – 2 has sin2θ e−2iø.  
 
So these are the five spherical harmonics we want to visualize in a polar plot. The Cartesian plots 
are something that you are very familiar with x, y, z. I have been telling that in the previous 
lecture what is the difference between a typical Cartesian plot and the polar plot and we try to 
plot the x, y and z orbitals for the p that is l = 1 case. The l = 2 case is known as the d orbitals 
and in the atomic spectroscopy parlance d is diffuse.  
 
You recall sharp is for s, principle is for p, diffuse for d and fundamental is for f these are the 
four spectral series that were discussed by the atomic spectroscopies even before Quantum 
Mechanics came into existence the theory was put forth even before that. Now the l = 2 
corresponds to the d orbitals and you know that l = 2 the principle quantum number has to be n = 
3 or more because the maximum value of l is n–1. Therefore l cannot be 2 unless n is 3 or more. 
So let us take the lowest n value for which l = 2 is an allowed quantity, so 3d orbitals.  
 
Let us look at the angular parts of the 3d orbitals. Then to complete this the next set is of course 
the f orbitals corresponding to the l value 3 and for l = 3 case there are seven spherical harmonics 
from + 3, +2, +1, 0, – 1, – 2, – 3 as you see in this table as well as in the last one.  
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So, for m = 3 you have sin3θe3iø and for m = 2, it is sin2θcosθ e2iø. So the m’s are reflected by the 
exponents in the exponential of iø, 2iø, 3iø and so on. For the number of such sine functions the 
degree here is 3, the degree here is 3, the degree here is 3 and 1 where 3 is higher sinθcos2θ. 
(Refer Slide Time: 11:20 min). So if you look at that degree (5cos3θ−3cosθ), sinθ (cos2θ−1) and 
sin2θcosθ all of these correspond to l = 3. The trigonometric functions have a degree of 3 and the 
exponential ø functions have the m as the running index for the corresponding exponential 
functions. This is a way of identifying a pattern in these wave functions. The first thing when 
you look at Mathematics is all us would like to derive if you want to understand the equations 
themselves. Now, if you cannot derive the equations because of the Mathematical skills required 



or because of the details involved. Let us at least quantify these functions by looking at them 
somewhat closely and see how we identify these patterns.  
 
Spherical harmonics give you beautiful patterns. By the way spherical harmonics is not of 
interest only to Quantum Chemistry but even to those who study electromagnetics, those who 
study aeronautics all kinds of Engineering comes with the spherical harmonics pattern in every 
one of them. Therefore aside from looking at it as orbitals you can also see these as 
visualizations of spherical harmonics as applicable to your respective Engineering branches. 
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Now, let us look at the visualization part of the 2D and 3D animations and the orbitals that we 
are plotting are the 3d angular functions. But before let me give you a little bit about the notation. 
In the last lecture when we wrote px orbital we took this as a linear combination of the spherical 
harmonic of Y1

1 and Y1
−1. This was fairly simple because you looked at this formula Y1

1 was 
−sinθeiø and other one had a −sinθe−iø and this is a linear combination. We needed to take that 
because this eiø is a complex function e−iø is also a complex function we cannot plot the complex 
functions as they are but we have to plot the real and the imaginary parts of the complex 
functions separately.  
 
And if you want to do that you have to actually take the real part of the function the imaginary 
part of the function which means you have to take the linear combination of real and imaginary 
part by taking the function and its complex conjugates. You see that Y1

1 and Y1
−1 are related to 

each other through complex conjugation, eiø and e−iø but with a – sign in front. So this gave you 
the quantity sinθcosø leaving aside all the other things.  
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You know that polar coordinate is like x that is the definition of the spherical polar coordinate 
representation for x and for y it is sinθ sinø and obviously you got sinθ sinø from linear 
combination of sinθeiø – sinθe−iø and this gave you sinθ sinø. Now this was py orbital and with 
respect to pz there was no problem it was simply cosθ which is proportional to the spherical 
harmonic Y1

0.  
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So the orbital notations as the real and imaginary parts of the spherical harmonic were implied by 
these labels px, py and pz. Now let us do the same thing for the d orbital. (Refer Slide Time: 15:12 
min) 



You have to recall from your elementary Chemistry that the five d orbitals from your high school 
textbooks and also any other Quantum Chemistry book is that the notations are dx

2
 – y

2
, dxy, dxz, dyz 

and dz
2 but which is typically d3z

2
 – r

2 in order to write this we will usually call this as dz
2 but the 

correct notation is d3z
2

 – r
2. Now where do these things come from? You have look at these 

spherical harmonic closely, so here are the functional forms. 
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For l = 2, m = 2 the spherical harmonics is sin2θ e2iø. Now what is the real part of this function? 
The real part of this function is sin2θ cos2ø, and the imaginary part is sin2θ sin2ø, let us look at 



those; sin2θ cos2ø this is the real part of spherical harmonics Y2
2. This is nothing but sin2θ 

[cos2ø− sin2ø]. And if you recall that this is nothing but (sinθ cosø)2 –(sinθ sinø)2. What is this?  
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This is x2 – y2. Therefore the label dx
2

 – y
2 corresponds to the real part of Re[Y2

2] which is real 
part of Y2

2 with l = 2, and here l = 2 for d the real Y2
2 is for this x2 – y2. So you remember that 

these labels x2, y2, xy, xz they are not arbitrary. In fact you go back further in Mathematics you 
will find that these spherical harmonics have a certain degree of symmetry and they have a 
property of what is called the irreducibility under the group representation and all those things 
anyway.   
 
There is a Mathematical firm basis for the way the spherical harmonics come out as solutions for 
the Schrödinger equation part the angular equation part and we see that the Chemist make 
absolutely perfect use of these orbitals in describing the Chemistry of what goes on.  
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Let us look at the shape of these orbital now. What is dxy? It should be obvious now that it is 
sinθcosøsinθsinø. Therefore this is nothing but sin2θsin2ø, where sin2ø is of course the 
imaginary part of e2iø and this is of course what you see is Y2

2 where the subscript 2 is for the l = 
2  the degree 2 sin2θ. And the superscript 2 is for the m = 2 for the exponential function. So again 
the imaginary part of Y2

2 gives you dxy and the real part of Y2
2 gives you dx

2
 – y

2. Therefore there 
is no more mystery regarding these labels from the table of spherical harmonics. 
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If I go further in this quickly I will show you that association. 
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This is the table you have to remember. In fact you can construct that right away (3z2 – r2) is 
(3cos2θ –1) that is what you get from the Y2

0. And x2 – y2 is sin2θ cos2ø, xy is sin2θ sin2ø, and 
xz, yz therefore likewise come from the sinø and the cosø. You remember that the sinø comes 
from eimø where m is 1.  Therefore these two correspond to the spherical harmonic Y2

2 but with 
the m value + 1 and – 1. Real and imaginary parts of Y2

1 are obtained by the linear combinations 
of these two functions. Therefore all the five spherical harmonic or harmonics give you these 
five different functions namely 3z2 – r2, x2 – y2, xy, xz and yz.  
 
In Inorganic Chemistry, to study the chemistry of materials and the materials of molecules that 
the materials are made of you will realize that these labels are extremely important in the field 
known as the coordination compounds.  
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So these are not trivial labeling but let us look at the objective namely the representation of these 
orbitals one by one. We will also see all these five orbitals or the angular representations closely. 
First the dxy orbital: My strategy for today’s lecture is to first show you what the picture looks 
like and then go back and build this picture from the elementary plotting parts of the two variable 
functions like we did in the last lecture so that you see that the picture that you saw is not 
something that it is arbitrary but it is built up from very solid Mathematical plotting. Let us look 
at the dxy orbital first. 
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dxy orbital corresponds to two pairs of lobes with two different colors you see the green and the 
blue here that these pairs of lobes pointing along the diagonals of the x, y axis system. You see 
that they are in the xy plane of course they also come out of the xy plane but they are pointing 
along the diagonals of the xy plane. What about the next one? The dyz: you should not expect 
anything strange here you should expect that it is pointing now along the yz plane but along the 
diagonals of the yz plane as you see here.  
 
The dyz is pointing the two lobes here and the other two lobes the green lobes they are both 
pointing along the diagonals. Let us look at the dxz orbital. Again you get the picture that the 
lobes are pointing along the xz plane but along the diagonals of those planes not along the axis 
themselves. Next one is dx

2
 – y

2 orbital. Now it looks exactly like dxy except that now the orbitals 
point along the axis the lobes point along the axis here the plus and the – axis.  The last one in 
this the 5th one is the d3z

2
 – r

2 orbital which looks like having a pair of lobes pointing along the z 
and the – z and the ring surrounding. 
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This ring is obviously symmetric in the (x, y) plane so you see that there is something which 
appears somewhat different from the other four sets. Now, these are the final pictures, these 
kinds of animations you can find anywhere but what you will not find is the method of building 
these animations by looking at the function and then plotting them in the polar graph. 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 24:20 min) 
 

 
 

That is the step that we will follow next. So let us look at the Y2
2 which is sin2θ cos2ø. First we 

will plot this for one value of ø and then sin2θ for all the values of θ and then we will extrapolate 
that plot to all the values of ø just as we do in a three dimensional plot. So let us look at the flash 
file for this particular function. So what I have here is sin2θ cos2ø.  
 
Now, recall the definition of θ and the ø. The θ is obviously along the z to the – z-axis which is a 
polar axis, you remember the pictures we had earlier. The variation is θ = 0 here value slightly 
one value and so on and obviously 90° and then when you go to – z it comes to 180°. The ø is for 
a given value of θ. Of course anywhere if you go across the sphere through a circular path that is 
the value of ø going from the x axis as ø = 0 and to y axis ø = 90° – 180° for the –y axis, 270 for 
the y axis and then back to 360° and then 0° for the x axis. 
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So we now plot this for one value of cosø namely ø = 0 which means we are plotting this 
function along the x-axis. And the value θ is sin2θ so the functions are given here. Now θ is 
given from 0 to 180 and sin2θ is given from 0 to whatever is the corresponding value and the plot 
is for any value of θ the magnitude sin2θ is plotted along the radius as you have done in the 
previous px, py, pz graphs in the last lecture are 15° then 30° here it is ¼, after 45° this is 1/2 and 
so on. 
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Whatever values are there for θ and sin2θ they are plotted.  
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You know the value of θ if you go back to this graph. 
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So what is the value? This represents the θ it is this angle, the θ is 75° and the corresponding 
value is 0.933 in a circle of radius 1 that you can mark. You saw that it is how you plotted it. 
You see this 0.93 is the value in a circle of radius 1 and that of course cuts the radius here so this 
value is also 0.93. So there should not be any doubt about how this plot comes about.   
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So this is sin2θ and it is not spherical as in the case of sinθ but it is some sort of a slightly 
distorted shape. Now this is for only value of ø namely cos2ø is 1 at ø = 0. This if we plot the 
same function same graph for every value of ø by multiplying that with cos2ø we get the three 
dimensional representation of the function sin2θ cos2ø that is the next plot in the 3D file. 
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So here have it along the x axis then this is now plotted along all the possible values of ø by 
taking a few samples and then connecting all of them together and that is multiplying at the same 
time with cos2ø 
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So that is the way the function looks like, just go back and see what it means. The nice thing 
about all these animations is that you can play them back and forth and learn at your own pace. 
Now, I have stopped at a point roughly where ø is 45°, at 45° of ø value the cos2ø is 0 so you see 
that this function has disappeared completely (Refer Slide Time: 28:10 min) and at angles greater 
than 45° the cos2ø is negative but it keeps building up. And ø = 90 means cosπ which is – 1 that 
is the highest value in the negative side. So you see that the value again builds up and it becomes 
most negative along the y axis exactly like what it was along the x axis except that the function 
on this side is negative because of cos2ø, and sin2ø always positive having no problems. (Refer 
Slide Time: 29:41 min) 
 
Now, as you go further cos2ø goes from 180° to 270° as ø goes from 90° to 135°, and you see 
that it again goes to 0. So this whole part is negative, this part is positive and you continue this 
process until you go through the rest. And you see that the positive and negative part alternate 
leading to the two different colors of the function and this is typically what you write in your 
high school plots for the d orbital (x, y, z) and xy and yz and zx you put two ‘–’s on one pair of 
lobes and you put two ‘+’s on the other pair so what do they mean? They represent nothing but 
the signs of the function, the actual value of the function with its magnitude and the signs, so that 
is what you see here.  
 
This is dx

2
 – y

2 and it points along the lobes and this is an agreement with the picture that we had 
earlier. (Refer Slide Time: 30:45 min) Next is the imaginary part of Y2

2 is sin2ø sin2θ that is the 
θ part and it is still sin2θ but the ø part is sin2ø.  
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So if you look at the flash file the only thing that we have to do now is we should not plot this for 
ø = 0 because for ø = 0 the sin2ø sin2θ is 0. Therefore, if you want to plot a particular value of ø 
keep the value and change the sin2θ for various values of θ. The most convenient point is ø = 45° 
but not 0. So if ø is 45° obviously you see that the x and y axis if you represent them somewhere 
from the middle this function starts its value and the final plot is a sin square theta plot which is 
the same as the previous plot, so let me just draw the final plot, the last frame. 
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It is obviously along 45° is sin2θ with cos2ø is 1 at ø = 45°. Now this plot obviously gets 
repeated by sin2ø modulation in the three dimensional picture.  
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So when we go to the 3D part of the imaginary part of Y2
2 everything is the same as the previous 

one except that now the maximum lies along 45° not along the x axis because at the x axis sin2ø 
is 0. So all that seems to happen is that the previous plot which you saw as between x and y 
seems to have been tilted by about 45° because of the value sin 2 phi and that is  exactly what is 
reflected in this picture of imaginary the part of the Y2

2. Well, it is very easy to remember and if 
you remember that sin function and cosine function are essentially different from each other by a 
phase angle of 90°. This is sin2θ and therefore the phase angle here is 45° instead of 90°. So 
what you have here is dxy which is the orbital pointing between the axis with the maxima 
between the axis and along the diagonals and again with two positive parts and two negative 
parts. 
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The yellow is positive and the slightly brown or grayish ones are negative. This is for Y2
2 

imaginary part or what we call as dxy. Now there should not be surprises regarding what should 
be the imaginary part and real part of the Y2

1 and Y2
−1. 
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They correspond from this function as you see cosø sin2θ where sin2θ is cosθ sinθ and sinθ cosø 
is x cosθ so this is xz orbital.  
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We are going to plot this for ø = 0 because it is a cosø. And cosθ sinθ plot has something slightly 
different from the previous plot so it is worth going through the plotting routine again. 
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The values are given here and the points are plotted along the radii making the angle θ. 
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So let me stop at the half way point. The reason for the half way point break is cosθ sinθ 
obviously it goes to 0 when θ= 90° so you see that the function starts from 0 and it goes to some 
maximum and then it comes back to 0 and throughout this part the function remains positive. But 
now as θ increases cosθ sinθ going to be negative and again it goes through the same except that 
now it is along the bottom part of the axis system, let us play that now.  
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And what you see here is the mirror image of that plot except that the values are all negative not 
by saying this is negative, there is nothing called negative here but the function is negative. 
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This z-axis does not make any meaning right now, this axis is only to reference 0° angle and 
180° angle. 
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The z axis is 0 and the angle θ = 0 is here, the angle θ = 180 is here that is the only reference. 
You cannot mark anything along the axis this is not a Cartesian plot but this is a polar plot so 
only the radius and the length along the radius are important. So now you see cosθ sinθ has this 
positive and the negative lobe where the red is positive and the blue is negative and this has to be 
plotted as a function of cosø for all values of ø which is given in the three dimensional file. 
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You see, this is a slightly more expanded version cosθ sinθ here along the x axis and then you 
plot this it is modulated by cosø so it goes to 0 at ø = 90°, and goes to – 1 at ø = 180°.  
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You see that the lobes are pointing in the xz plane and there is nothing along the y axis because 
at y the ø value is 90 therefore cosø is 0 so you see that these lobes are identical to the xy lobes 
except that now they are in the xz plane. And let me do one more plot here on the Y2

0 namely 
(3cos2θ –1) it is a slightly interesting plot.  
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There is no ø dependence for this function and (3cos2θ –1) when you calculate for various values 
of θ the table is here. for θ = 0 3 then (3cos2θ –1) is 2. And there is a value of θ for which this 
goes to 0 which is cosθ= 1/√3 for θ= 54.74°. Also θ = π – 54.74° both of them for which this 
function goes to 0, and in between the 3cos2θ is less than 1 therefore the function takes a 



negative sign between these two 0s otherwise the function is positive. Let us see what the plot 
looks like. 
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The function is already 0 at this point, this angle θ is 54.74° and the function up to now is 
positive but now it becomes negative it increases and then goes back to 0 again. 
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So let me complete this plot. 
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The rest of the plot is identical to what we have on the top. So the function looks like, see the 
plot when you connect all these points the function goes to 0 then there is a negative part, there is 
a linear positive part and this is independent of ø therefore when you plot this in the three 
dimensional axis system 3cos2θ –1 in the spherical polar representation you get the picture that 
we saw in the beginning namely the lobes with a ring in the middle, ø independent so it is a same 
plot and we simply repeat that for all the values of ø.  
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So you get two lobes and a ring in between. And the ring is negative the lobes are positive. Now, 
having done this if you go back and look at the d3z

2
– r

2 orbital you see that this was a slightly 
different colored representation but you see that two lobes and the ring in between gave you how 
to build these functions from scratch once you know how to plot them in the polar graphs. (Refer 
Slide Time: 40:29 min)  
  
All of the orbitals that you see as pictorial representations in textbooks in Quantum Mechanics 
textbooks and any Physical Chemistry textbooks which are called the orbitals are not exactly 
orbitals. But what you see are basically the angular functions, the real and the imaginary parts of 



the angular functions being plotted on the polar graph. This gives you for a given radius r value 
how is the wave function distributed along its sphere. And the spherical polar coordinate system 
is a fundamentally useful coordinate system for hydrogen atom because the electron nucleus 
interactions is the same for any give distance irrespective of where that axis is or where on the 
sphere of radius the electron is moving around. But that is a classical picture.  
 
One assumes the electron to be like a dot moving around a sphere having an interaction with the 
nucleus. Now that picture does not have any meaning the moment you associate a wave function 
with the electron through the solution of Schrödinger equation. All that you have is a function 
which itself not a very meaningful function because you know that wave function does not have 
an interpretation in Quantum Mechanics. It is the absolute square of the wave function calculated 
in a small region of space that is related to the probability that the system in that region, that is 
the only interpretation of this. So what is the meaning of all these plots and why should we go 
through representing functions so elaborately and so carefully when we know that in the end 
these functions themselves are a meaningless quantity.  
 
The reason is, when you do the Quantum Chemistry when you want to see how the atoms react 
to form molecules and the atomic orbitals are interpreted as combining to give molecular orbital 
the linear combination of atomic orbital which is a procedure by which we understand chemical 
bonding requires us to understand the functional forms of these orbitals very clearly. One has to 
understand how a p orbital looks like.  
 
One has to know a d orbital looks like from one atom to another atom and when the two comes 
together what kind of an overlap between these orbitals takes place. Chemical bonding is 
interpreted as nothing but the overlaps of the atomic orbital constructive overlaps. If the overlaps 
are destructive we do not call them chemical bonding but we call them chemical anti bonding. 
The interpretation of the molecular nature and the associations of atoms to form molecules go 
back to the use of these wave functions based on the hydrogen atom atomic orbitals. 
 
A carbon atom nucleus of course does not have the atomic orbitals like that of a hydrogen atom. 
In the case of the hydrogen atom there is only one electron. When you go to carbon atom you 
have got six electrons and there is the electron repulsion. But then there are theories which build 
on these approximations and treat the atomic orbitals as useful and fundamentally important 
quantities from which you build the atomic orbitals of the other atoms and from which you also 
build the molecular orbitals of various molecules. In that sense, in understanding, visualization, a 
mental pictorial representation of the hydrogen atom orbitals is extremely important even though 
the functions themselves do not have a physical interpretation. 
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We have to keep this in mind when we go through the Mathematics of all these things without 
deriving the Mathematics. We are treating this very carefully on waters whose depth we do not 
know but we want to understand how the surface looks like. 
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Let me summarize this part of the angular function and let me go back to the plots of the radial 
functions in a few minutes. 
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Now let us examine the radial part of the hydrogen atom solutions. The radial functions when we 
discussed the solutions for the radial part the radial functions were described for n as a principle 
quantum number for n = 1 that was one radial function, now recall the lesson about 1 ½ hours 
before this lecture for n = 1 there was one radial function and for n = 2 there were two radial 
functions namely with the quantum number l = 0 and l = 1.  We have represented the quantum 
number l = 0 as the s orbital or spherical but ideally it is the labeled sharp chart and l = 1 also 
was a radial function for n = 2. (Refer Slide Time: 45:59 min) 
 
When the principle quantum number the next number that n is 3 there were three radial functions 
and so on. So let us look at the functional forms of the radial function with the justification for 
the radial functions and the wave functions I gave a few minutes ago. The first one 
corresponding to n = 1 and l = 0 is a constant and let me read this out, it is the exp(–Zr/a0). The  
n = 1, l = 0 the radial function is Rn

l(r) and that is R1
0(r) is leaving the constants out, it is exp(–

Zr/a0), where Z is the charge on the hydrogen atom nucleus which is +1 and a0 is the bore radius  
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a0 has a constant value of 0.53 A° also known as the Bohr radius in honor of Neils Bohr whose 
discovery on the hydrogen atom was one of the most important developments in the history of 
Physics. Now, if you look at this form exp(–Zr/a0), obviously r/a0 is dimensionless it has to be 
dimensionless otherwise the exponential quantities do not make sense. So what you have is the 
radial functions decreases with respect to r like the exponential. This is what you see in the plot 
here it is an exp(–r/a0). The function has the maximum value there is a constant in front of it 
therefore that takes the value and then it is a simple exponential decaying as r goes down goes to 
very large values. and you see that even though that r value in principle can take anywhere from 
0 to infinity that is the radius of sphere can be from 0 to infinity you see that this functions drops 
by four to five atomic units here the function becomes negligibly small, it never reaches 0 until r 
goes to infinity but it is practically zero, for all practical purposes it is 0. So it does not mean that 
even though with respect to a hydrogen atom the electron has infinitely large dimensional degree 
of freedom that is radius can be 0 to infinity.  
 
Now, you are in Madras and the electron coordinate in Los Angeles cannot be called as the 
electron belonging to the hydrogen atom in Chennai it does not make sense. Within three to four 
atomic units the wave functions are becoming more or less unimportant for this Mathematical 
limit to exist only as a Mathematical limit but with no real physical reasoning. So the value r is 
restricted for n = 1, l = 0 case to just about 2 to 3 atomic radii, what is the next one? 
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The next function for n = 2 and l = 0 the radial function is R2
0(r) is roughly (1 –Zr/2a0) exp(–

Zr/2a0), do not worry about how we derive these things, this derivation comes from the solutions 
of the Laguerre polynomials which we did not solve we are only looking at the final solutions 
and trying to make sense out of it. So, again there is a dimensionless number here and then exp(–
Zr/2a0).  
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In principle Rn

l(r) will have an exp(–Zr/2a0). So this number is indicative of what quantum 
number what atomic orbital that we are talking about where n = 1 corresponds to the shell k, l, m, 
n shells you might remember this the k shell, the l shell, the m shell and the n shell for the 



hydrogen atom those are determined by the values of n. So (–Zr/2a0) tells you what shell you are 
in. 
 
Now Rn

l(r) looks like (1 –Zr/2a0) exp(–Zr/2a0) so what does it look like functionally when you 
plot them in a graph? The function has a graphical representation like this: at r = 0 and (1 –
Zr/2a0) is 1and the exponential is 1 it is maximum and for as r increases for an intermediate value 
of r this function decreases but this is dominant in the beginning so it goes down and at the value 
Zr/2a0 = 1 therefore this function goes to 0, this is called the radial node. Then for all the other 
values of r greater than this value the Zr/2a0 is negative therefore the function is negative all 
along and eventually the exponential decreases much more than the increase here so the 
exponential eventually brings it to 0 that is from the most negative value to 0. You see that there 
is what is called a minimum and there is a node and this function has this feature. 
 
The second radial function associated with n = 2 is the l = 1 case, the n = 2, l = 1 case the 
functional form is some constants Zr/a0 exp(–Zr/2a0). The functional form is R2

1(r) = Zr/a0 exp(–
Zr/2a0) obviously for r = 0 this goes to 0 and as r increases it keeps on increasing it is always 
positive but this keeps decreasing so there is a tug of war between the increase due to this r and 
the decrease due to the exponential and you see the graph.  
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The graphical representation is that there is a maximum and then it goes to 0. Nowhere does it 
become 0 for any value of r in between 0 and ∞, there is no value there is node in between. The n 
= 3 radial function is somewhat complicated. Now one of the reasons why I did not want to 
derive all these polynomials is that the Mathematics is a separate course by itself, and what is 
important is how we interpret the algebraic results. 
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So n = 3, l = 0 is exp(–Zr/3a0). And then there is a quadratic equation in front here is                  
[3 – 6(Zr/3a0) + 2(Zr/3a0)2] so there is an r2, r as a constant, so let me write that here in the 
generic form: R3

0(r) is (a + br + cr2) exp(Zr/3a0) where a, b and c are some constants in the form 
of quadratic in r. The quadratic has two roots and both of them are positive.  
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The roots are such that you can write this as R3
0(r) as (r– a1) (r– a2) exp(Zr/3a0) where a1, a2 are 

the first and second roots and then these are multiplied by exp(Zr/3a0) such that a1> a2. Now this 
is fairly clear as to how it should look when we plot them.  



For all values of r less than the smallest of the two this is negative, this is negative, the product of 
the two negative therefore it is positive and this function is of course is always positive for all 
values of r which is from 0 to ∞ here (Refer Slide Time: 55:22 min) so the graph is positive from 
0 to a1, between a1 and a2 and greater than that the (r– a1) part is positive, (r– a2) part is negative 
and this whole is always unchanging in sign so what you have is at a1 there is a 0 the function 
goes from positive to negative between a1 and a2 and for r greater than a2 the function is again 
positive but at a2 it again goes to 0.  
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So there are two roots or two nodal points two nodes a1 and a2 are the two constants the two roots 
of that quadratic equation that we have here and for this the function is 0 but the radial function 
is positive, negative and then it goes to 0 because the exponential becomes dominant and it kills 
everything else, no matter what the increase is the exponential decrease kills any finite power to 
n so the radial function that you have has two nodes and alternates for n = 3, l = 0, let me just do 
the two other cases quickly and then conclude the lecture. 
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For n = 3, l = 1 it is easy from the functional form Zr/a0 (1 – Zr/6a0) times exp(Zr/3a0) that this 
has only one root and it starts from 0. Therefore you see that from 0 to reaches the maximum and 
then goes to 0 at (1 – Zr/6a0) =0 and then it becomes negative and it goes to 0 for very large 
values.  
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The last for n = 3, l = 2 you see that it is simply (Zr/a0)2 exp(Zr/3a0) it never goes to 0 for any 
value other than 0 and ∞ so it is a simple node. Now, let us keep these things in mind, again the 
question will come in that for some values of  r the radial function starts from r = 0, so r =0  



means what? It is the nucleus, that does not mean that the electron is there in the nucleus in the 
region where the nucleus is, r = 0 sometimes the function is 0 so what do these things mean?  
Again the same answer, the wave function themselves do not have any interpretation when we 
take the absolute square of  the wave functions all these conceptual difficulties we have with the 
wave functions will disappear and we will continue this in the next lecture where we will 
complete all these basic ideas about the wave functions as well as do some numerical 
calculations on what is called the electron probabilities, the electron distances, the average 
distances, the distances of where  the electron probability is maximum and so on, until then thank 
you very much. 


