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Welcome back to the lecture series on the topic of Engineering Chemistry. This is a series of 
lectures being given to Under Graduate Science and Engineering students in the country and 
elsewhere and is part of the National Programme on Technology Enhanced Learning the project 
funded by the Ministry of Human Resource Development Government of India. I have been 
giving the series of lectures on the first module on Engineering Chemistry the module being the 
Atoms and Molecules and on the fundamental atomic structure principles and principles of 
Quantum Chemistry which we would hope that all Engineering students should be familiar with. 

My name is Mangala Sunder and I am from the Department of Chemistry IIT Madras Chennai 
and the email is mangal@iitm.ac.in  

In today’s lecture we will continue with the hydrogen atom that we started in the last lecture 
namely lecture number 5. I introduced the spherical polar coordinate system for the study of 
hydrogen atom stating that this coordinate system enables us to solve the Schrödinger equation 
for the hydrogen atom rather in a straight forward manner by affiliating the Mathematics with 
Mathematical equations that have been known are quite sometime. The Schrödinger equation for 
the hydrogen atom is also the first real contact with systems of atomic nature and in which the 
full the Mathematical machinery can be employed to show analytical solutions. (Refer Slide 
Time: 3:16) 

We will not solve the problem here we will state the problem and we will state the solutions as 
has been the tone of these series of lectures. It is an introductory lecture or this course is an 
introductory course. The solutions for the Mathematical equations that enter in hydrogen atom 
are a bit more detailed than the Mathematics you are already familiar with. The differential 
equations that come into the picture require solutions using slightly more advance methods 
which I hope as Engineering or Science students pursuing your higher degree you will see them 
in later years particularly in special function techniques, orthogonal polynomials, these are all 
Mathematical methods in the solutions of differential equations.  

mailto:mangal@iitm.ac.in


We will only state the solutions but more importantly we will try and understand what the pattern 
in all these solutions is and how we can make sense out of these solution in terms of the orbital 
picture that your are familiar with from your preliminary or the previous encounter that you had 
with hydrogen atom.  

(Refer Slide Time: 04:38 min) 

 

So in today’s lecture which is lecture number 6 on Atoms and Molecules is part of the model 
problems in Quantum Chemistry. We will continue to look at the hydrogen atom.  

(Refer Slide Time: 4:52 min) 

 



And in this lecture we are only going to look at two things; one is the separation of the wave 
equation expressed in spherical polar coordinates r, θ and ø. The second part is the radial 
solution. We will not look at the angular solution and we will not have the time to do the angular 
solutions but we shall examine the radial solutions and make sense out of the results. So the 
radial equation, the Hamiltonian for the hydrogen atom if you recall from the previous lecture the 
kinetic energy was written as −ħ/2me[∂2/∂x2 +∂2/∂y2 +∂2/∂z2] where m is the mass of the 
electron, and the  momentum is taken as in terms of x components, y components and the  z 
components. The whole of this is the kinetic energy and a potential energy term which is 
−e2/4πε0r that is of course the charge of the nucleus is z but that is equals to 1 in this case and r is 
the radial distance of the electron as a dot from the nucleus with a classical model classical 
picture expressed in Quantum mechanical representation.  

(Refer Slide Time: 6:56 min) 

 

It is because we have written the momentum in the form of the derivatives. 

Now, this was converted into the (r θ ø) coordinate system. I would like to rewrite or to write the 
Hamiltonian using the radial coordinate system or the polar coordinate system as –ħ2/2m{[1/r2 
∂/∂r(r2 ∂/∂r)]+[1/(r2sinθ) ∂/∂θ(sinθ ∂/∂θ)]+[1/(r2sin2θ) ∂2/∂ø2]}.  

 

 

 

 

 



(Refer Slide Time: 08:09 min) 

 

This is the polar coordinate representation of this term, the kinetic energy term that you have in 
the r, θ, ø representation. And then of course this is the kinetic energy term and what we are left 
with is the potential energy term which is −Ze2/4πε0r and you know r is equal to √(x2+y2+z2).  

(Refer Slide Time: 08:56 min) 

 

Now, when we say that the purpose of going into the polar coordinate system is to simplify the 
Schrödinger equation and separate it from the form that I just wrote down does not look like any 
simpler than the form that you have in Cartesian coordinate system. Actually the kinetic energy 
part is extremely simple looking in the Cartesian coordinate system. What causes the problem in 
that representation is r which is the √(x2+y2+z2). So even though the kinetic energy form and the 



potential energy form are simple looking and they are not separable in the way they are written 
in the Cartesian coordinates. What do we mean by this? You have to recall the particle in a 2D 
box where we employed a wave function ψ(x, y) as a product of one coordinate only the x 
function and a product of the y coordinate only and we were able to write the equation as 
−ħ/2m[∂2/∂x2 +∂2/∂y2] acting on ψ giving you the Eψ for the particle in a 2D box free particle 
and bounded by v = infinity at the edges. This was separable when we assumed the wave 
function to be of this form.  

(Refer Slide Time: 10:45 min) 

 

The equation separated into two one dimensional equations involving an X(x) only giving you an 
energy component Ex in terms of the (h2/8mL2)n1

2 and likewise (h2/8mL2)n2
2 for Ey and then the 

total energy was of course the sum of these two terms h2/8mL2 (n1
2+ n2

2).  

 

 

 

 

 

 

 

 



(Refer Slide Time: 11:21 min) 

 

But the nice thing is that the representation of this wave equation could be simplified into two 
one dimensional wave equations by the proposition that the wave function ψ is a product of two 
wave functions each of which depends only on one coordinate. You recall that this is called the 
method of separation of variables in that lecture. Now, even though the hydrogen atom equation 
that you have here the Hamiltonian that you have here looks far more complicated in terms of the 
derivatives appearing in all places like this, the nice thing about this representation is that this 
can be separated into an or dependent equation only, a θ dependent equation only and a ø 
dependent equation only. It may not be obvious but we will go through that part rather 
elaborately to show that the equation is in fact separable. Now let us try and separate these 
equations one step at a time.  

The first step is, let us multiply the Schrödinger equation by r2. And in the second step let us 
write the overall wave function as ψ(r, θ, ø), let us for the time being write this as a radial 
function only and a function which depends on θ and θ and we will not separate this now we will 
do it later but we will write this as a product of a radial function or a function r which depends 
only on the radial coordinate and a function which depends on θ and θ and substitute this in Hψ 
= Eψ.  

 

 

 

 

 



(Refer Slide Time: 14:07 min) 

 

So let us write this equation. When you multiply by this by r what you have is −ħ2/2me[∂/∂r(r2 
∂/∂r)] acting on radial function R(r) and Y(θ ø). Now it is quite clear that the radial derivative 
will act only on the radial function and with respect to this function this is of course the total 
derivative. So we might as well write this in a slightly different way by taking into account the 
full derivative and keeping all the other things outside namely −ħ2/2me[d/dr(r2dR/dr)] so that is 
the radial part and this whole thing is multiplied by Y(θ ø), this is the first term.  

Now if you do the same thing for the next term what you have is −ħ2/2me [1/(sinθ) ∂/∂θ(sinθ 
∂Y/∂θ)] R(r) since we have multiplied by r2 we have only 1/sinθ. Now this is a ∂/∂θ function. 
Since the function Y is a function of both θ and ø we will write this as a partial derivative ∂Y/∂θ 
meaning that the ø part will be kept constant. And of course this will be multiplied by the radial 
part which is a multiple. (Refer Slide Time: 15:49 min). And likewise for the other angular part 
−ħ2/2me[1/sin2θ ∂2Y/∂ø 2] and of course this is also multiplied by the radial part, R(r). This is the 
entire kinetic energy acting on the wave function and the potential energy is −Ze2r/4πε0 acting on 
the radial part R(r) and the angular part Y(θ ø).  

 

 

 

 

 

 



(Refer Slide Time: 16:41 min) 

 

Since we multiplied everything by r2 there is an r missing in denominator but we are multiplying 
this by r2 so we will have the r here, and this becomes Er2 R(r) Y(θ ø).  

(Refer Slide Time: 17:11 min) 

 

Now given this form you can see this in full screen that if you divide the whole equation by this 
R(r) Y(θ ø), let us divide the whole equation by that and what you will see is this Y will go away 
and there will be a 1/R here because you see this is dR/dr this is an operator you have to divide 
1/R in first term and you will have a 1/Y here in θ part and you will have a 1/Y here in ø part, let 
us write that down. (Refer Slide Time: 17:51 min). 



So, divide the above equation by R(r) Y(θ ø). So when you do that it is −ħ2/2me1/R[d/d r (r2 
dR/dr)] and let me bring the other r dependent terms here namely −Ze2r/4πε0 that is no factor 
here and then there is one more which was the energy term on the right hand side which if you 
have to bring it on this side it is – Er2. So it is {−ħ2/2me1/R[d/d r (r2 dR/dr)] − Ze2r/4πε0 − Er2}. 
All of these depend only on r and the leftover terms are {−ħ2/2meY [1/(sinθ) ∂/∂θ(sinθ ∂Y/∂θ)]}, 
Of course there is a Y in the denominator when we divide the whole thing by R and Y.  

(Refer Slide Time: 19:26 min) 

 

And then there is one more term which is −ħ2/(2meY)[1/sin2θ (∂2Y/∂ø 2)]. The whole thing is 
equal to zero as we brought the E on this side already. So, now you have an equation which if 
you look at it carefully as a term which depends only on the r and has two terms which depend 
only on θ and ø. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 20:02 min) 

 

And remember that r, θ, ø are independent coordinates. Therefore you see that this equation has 
separated the terms according to r dependent terms only and θ, ø dependent terms only. 
Therefore if you write this as something like a quantity which depends only on a function of r 
and another which is a function of θ and ø if you do this symbolically is equals to 0 and this is 
valid for all values of r and all values of θ and ø which is in the hydrogen atom case r goes from 
0 to ∞, θ goes from 0 to π and ø goes from 0 to 2π. (Refer Slide Time: 20:40 min)  

If it is true then the only possibility for this equation to be solved consistently is that this whole 
thing is equal to a constant and the other whole thing is equal to a negative of the constant so that 
the constants β − β = 0. So now you see what is meant by the separation of variables in the case 
of the hydrogen atom when you express the kinetic energy in a rather complicated form using the 
r, θ, ø coordinates which was not there and if you were to write this using the (x, y, z) 
coordinates system. It is not over yet we have only separated r and θ and ø. Now we can do 
further by writing the θ, ø equation and trying to separate this into a function which depends only 
on θ and a function depends only on ø.  

 

 

 

 

 

 



(Refer Slide Time: 21:37min) 

 

Let us keep in my mind that we call this whole θ dependent quantity as equal to –β, so let us 
write the (θ ø) equation. So (θ ø) equation is −ħ2/2meY [1/(sinθ) ∂/∂θ(sinθ ∂Y/∂θ)], this is the 
first term of the (θ ø) equation and then you have −ħ2/(2meY)[1/sin2θ (∂2Y/∂ø 2)] and these are 
equal to –β that is what we set this equal to a function G(θ ø) = –β. So the total equation we can 
write as {−ħ2/(2meY) [1/(sinθ) ∂/∂θ(sinθ ∂Y/∂θ)]} −{ħ2/(2meY)[1/sin2θ (∂2Y/∂ø 2)]} = –β.  Now, 
if we have Y(θ ø) expressed in the same way as we did earlier namely write as a function of θ 
only and a function of ø only.  

(Refer Slide Time: 23:18 min) 

 



Then this equation can be separated further into two equations one dependent on θ and one 
dependent on ø. Then the separation of the three dimensional (r θ ø) problem of the hydrogen 
atom into three one dimensional problems each of which depends only on one coordinates is 
complete. And afterwards of course you have to think about solving such equation. Fortunately 
there are methods that Physicist found out and they knew earlier and those methods could be 
applied directly here. Let us just do the separation on the θ and ø.  

So, if you substitute again you have to do the same thing you substitute and then you divide by θ 
and ø basically both sides. Substitute, divide by Θ(θ) and Φ(ø) so what you get is −ħ2/2me and 
you will get a Θ(θ) in the denominator and you will get [1/sinθ ∂/∂θ(sinθ ∂Θ/∂θ)]. So this is 
{−ħ2/(2meΘ) [1/sinθ ∂/∂θ(sinθ ∂Θ/∂θ)]}. This is the first term and the next term will be 
−{ħ2/(2meΦ)[1/sin2θ (∂2Φ /∂ø2)]} and these two are equal to –β. (Refer Slide Time: 25:03 min).  

But then it is obvious from this equation that if you multiply this by sin2θ throughout, let us do 
that, we multiply this by sin2θ what we get is sinθ here instead of 1/sinθ  and what we get here is 
this 1/sin2θ goes away and what you get on the other side is –β sin2θ. So now you see that this is 
easily separated into a θ dependent term only by clubbing these two together this first term and –
β sin2θ as a function which depends only on θ and then a function which depends only on ø. And 
then you have the same thing that G1(θ) +G2 (ø)=0. Therefore this G1(θ)  is equal to a constant 
and the other G2 (ø) is equal to the negative of that constant.  

(Refer Slide Time: 26:19 min) 

 

So then the three equations are completely separated. What is the result? Let us go and take a 
look at those equations in the slide here.  

 



(Refer Slide Time: 26:30 min) 

 

So this is the same equation that I have written down with a −ħ2/2m the mass of the electron and 
here the e subscript is not here but you can add that. And this equation is something you have 
seen already.  

(Refer Slide Time: 26:46 min) 

 

And the r part that I have written down of course the constant β here you must have a minus sign 
but it does not matter we will call this as a new constant β so the radial part is the −ħ2/2me has 
been some sort of multiplied out here and this β contains that with some sign changes so the β 
that you have here can be associated with this term that you multiply with –2meβ/ħ2 then this is 
the constant present in the slide.  



(Refer Slide Time: 27:30 min) 

 

The point is that this is a solution for the radial coordinate. And later on we will learn that the 
solutions are given in terms of the orthogonal polynomials known as the Laguerre polynomials.  

(Refer Slide Time: 27:47 min) 

 

Likewise the θ equation 1/sinθ ∂/∂θ(sinθ ∂Y/∂θ) and the separation of this when we did that we 
got this into two independent equations but the solutions Y which contains both θ in blue and ø 
in green these are two variables to show you Y depends on both of them. This solution Y is 
known as spherical harmonics in the Mathematics that we deal with. (Refer Slide Time: 28:15 
min). 



 Let us now look at the radial functions. The radial equation contains a constant called the β, this 
constant is related to the θ equation and the constant also appears in the θ equation. If you look at 
the solution for the θø equation it can be obtained analytically, here this equation has the θ part 
or the ø part and together the sum of this is equal to 0. This can be obtained analytically if this β 
has the special form namely a number integer l(l+1) where l can have values 0, 1, 2, 3 etc 
integers only.  

(Refer Slide Time: 29:59 min) 

 

This l has a result of the solution of the θø equation also controls the radial functions because the 
l appears in the radial equation here. Therefore the radial functions depend on two quantum 
numbers; one that comes with the l from the θø equation and one with the radial equation itself. 
(Refer Slide Time: 30:29 min). 

Radial equation comes out with a quantum number requirement n which is 1, 2, 3 etc and l which 
is 0, 1, 2, 3 etc. But since the l is part of the radial equation coming from the θø so l cannot be 
arbitrary but for any n the l has to have the value 0, 1, 2  etc up to n – 1 only for satisfactory 
solution of the problem, solutions ψ in terms of the radial functions and the angular function.  

This is part of the Mathematics and our purpose is that up to this point we can understand the 
Mathematics of separation.  

 

 

 

 



(Refer Slide Time: 31:50 min) 

 

The solutions are, the radial solutions contain two quantum numbers n and l. The values of n can 
be integers there is no n = 0 it starts with 1, 2, 3 etc where I is bounded by the requirement of the 
n namely up to n – 1. Here l should be 0 which is also allowed. So n = 1then the only solution is l 
= 0. If n = 2 the quantum number l can have two values 0 and 1 and for n = 3 the quantum 
numbers can be anyone of the three 0, 1, 2 and so on.  

(Refer Slide Time: 32:32 min) 

 

What are the radial solutions? Let us look at the radial solutions by the actual functional form 
obtained by solving the radial equation. The radial solutions contain two parts; one which is 
exponential namely exp(–r/na0) where a0 is the Bohr radius. You can look for the expression for 



the Bohr radius in terms of the constants that we have given namely the ħ, the mass of the 
electron, the charge and things like that so this whole thing comes out from the constants in the 
Hamiltonian.  

But the thing is the exponential now has the arguments which are dimensionless that is r/a0 
where a0 being a radius itself of a constant radius 0.53 A°, want to know what it is and the 
quantum number n is 1, 2, 3 etc. There is one part to the radial function and the other part is the 
part of what is known as the Laguerre polynomials. (Refer Slide Time: 34:14 min) 

The harmonic oscillator solution also had two parts, a Gaussian function an exp(–x2). And there 
was a function called Hermite polynomial which keeps changing or it actually is a polynomial 
with increasing powers of x as we increase the quantum number n = 1, 2, 3 etc. The same way 
here the Laguerre polynomials are also polynomials of certain power and the exponential is such 
that the whole wave function eventually vanishes when r becomes very large.  

The boundary conditions are important in all the problems we solve in Quantum Mechanics. The 
boundary condition in this particular case tells you that the wave function must vanish at the 
boundary, but where is the boundary? The boundary is r = ∞. So the wave function must go to 0 
at r = ∞, nothing better than an exponential function. In fact it comes out from the solution 
obtained that it is exp(–r/na0). Recall if you have a function have exp(–r/a0) and if you have a 
polynomial of r/a0 again you see which is essentially r/a0 to the nth power being the leading term 
where n is 1, 2, 3 etc. So we can write it as exp(–r/a0) [f(–r/a0)/(–r/a0)n]. 

Remember that eventually exp(–r/a0) makes this full product vanish. Only one thing is that as n 
increases the value of r/a0 for which the exponential starts dominating over the polynomial 
becomes farther and farther that is higher and higher. For small values of n the exponential drops 
off very quickly but for very large values of n the exponential does not dominate this whole 
product and the wave function stays big or increases for much larger values and then only it 
decreases.  

But for any finite power of n the exponential eventually kills the wave function giving you the 
right boundary that the hydrogen atom wave function the radial part vanishes. Whatever be the 
angular part the angular parts are between theta and phi they do not go to infinity and they are 
bounded and therefore the overall wave function vanishes at the boundaries for a sphere of 
infinite radius irrespective of what the values of the θ and the ø coordinate. So the boundary 
condition is contained in the solution.  

 

 

 

 



(Refer Slide Time: 37:10 min) 

 

Let us try and understand what the solutions convey in meaning they contain the right boundary 
condition, is the first thing. The second part for n = 1 there is only one radial solution, for n = 2 
there are two radial solutions namely corresponding to (n = 2 and l = 0) as one set and (n = 2 and 
l = 1) which is another set. And the successive cases as you increase n to 3, 4 and 5 etc the total 
number of solution is n corresponding l = 0, 1, 2, 3, 4 and up to n–1. So there are n solutions for 
any radial wave function with the principle quantum number n. The values of l of course are 0 to 
n–1 (Refer Slide Time: 38:30 min). 

The other thing is, the radial and angular part also control the other ø part. the ø equation will 
introduce its own quantum number in the solution of the ø part but that quantum number m will 
be limited by the n and l such that if n is 1, 2, 3 etc and if l is 0, 1, 2, 3 etc.  

 

 

 

 

 

 

 

 



(Refer Slide Time: 39:04 min) 

 

The ø part contains a quantum number m which goes from 0, ±1, ±2 up to l for any value of n. 
So this is the hierarchy of the quantum numbers in the case of hydrogen atom. Go back and look 
at the ø equation if you are doubtful. Here is the ø part, you see that θø part contain the sinθ and 
βsin2θ all these things are the θ part and then there is a ø part. So this whole equation on the θ 
part of it if you said it is equal to a constant then this is said to be equal to the negative of the 
constant with that the sum of these two is equal to 0.  

Therefore the ø has a certain constant associated with that and the ø equation ultimately can be 
written as basically −ħ2/2me (∂2Φ /∂ø2) −k2Φ = 0. Such equations are known to have a very 
simple equation. Let me write this in the form of a slightly simpler quantity in the form of (k´)2 
then (∂2Φ /∂ø2) +(k´)2Φ = 0 and this equation also has the boundary condition you remember Φ 
depends on the value ø and the value of ø is between 0 and 2π that is our spherical system.  

Therefore any other value of ø for example 4π or 6π or anything greater than 2π should be 
represented for what you call as the single valued and continuous function the wave function ø 
part must satisfy (ø+2nπ) where n can be 0, ±1, ±2 etc.  

 

 

 

 

 



(Refer Slide Time: 41:52) 

 

Therefore this introduces a quantum number for the ø part m just written down here as 0, ±1, ±2 
etc up to l.  

(Refer Slide Time: 42:05 min) 

 

So, given hierarchy of all the equations and the results now let me look at the radial part first 
then we will look at the angular part and then we will go to the angular part with the ø part.  

 

 



(Refer Slide Time: 42:23 min) 

 

The radial solution 2(Z/a0 )3/2 exp(−Zr/a0) for n = 1 and l = 0 has of course the charge and the a0 
the Bohr radius a0 and here (Z/a0 )3/2 is a normalization constant which makes the wave function 
ψ*ψ dτ integral into unity. But the wave function is exp(−Zr/a0) where z which is a nuclear 
charge and the n = 1 here is r/na0 is the general form for the exponential equation.  

For n = 2 there are two solutions l = 0 and l = 1. Let us look at the   l = 0 case, the l = 0 case has 
an exp(–Zr/2a0) the n appears here. And it has a simple function (1 – Zr/2a0) so this is a 
monomer that is a function to the rth 1.  

(Refer Slide Time: 43:39 min) 

 



The other one n = 2, l = 1 is also (Zr/a0)exp(–Zr/2a0). But the point is, this function is 0 at r = 0 
and it never goes to 0 for any value of r other than r =∞. This one on other hand n = 2, l = 0 
which contains (1 – Zr/2a0) exp(–Zr/2a0) does not go to 0 at r = 0 in fact at r = 0 it is simply this 
constant this exponential is 1 so this is simply 1 but it does go to 0 when r = 2a0/Z, where Z is 
charged therefore when r = 2a0 this function goes to 0.  

Therefore it has a radial node at an intermediate value. The radial node is there for the function l 
= 0 n = 2 is not there for the function l = 1, n = 2. (Refer Slide Time: 44:40 min) 

What about the n = 3? You see that the pattern of the Laguerre polynomials and the exponential 
is such that the exponential is exp(–r/3a0)for n = 3, l = 0 you have that for     n = 3, l = 1 you 
have that again.  

(Refer Slide Time: 45:02 min) 

 

And for n = 3, l = 2 you have that again Zr/3a0 but looking back from this side you see that the l 
= 2 contains an r2 which goes to 0 at r = 0 but never anywhere else other than infinity. (Refer 
Slide Time: 45:20 min). 

So n = 3, l = 1 and if you look at this it does go to 0 at r = 0, r =∞ and also one r in between them 
where this particular function 1 – Zr/6a0 is 0. Therefore this has one radial node for l = 1. (Refer 
Slide Time: 45:37 min). 

The function for the n = 3, l = 0 is a quadratic function multiplying an exponential which does 
not go to 0 at r = 0 but it goes to 0 in two other places in between and then of course that r =∞. 
So this function has two radial nodes corresponding to the two roots of this quadratic equation. 
So the pattern now should be clear, immediately what it is for n = 4 for example. (Refer Slide 
Time: 45:10 min). 



For n = 4 and l is maximum 3 you must have a term something like r3 exp(–Zr/4a0) here this n is 
always the principle quantum number associated with that. For l = 2, n = 4 you will have a 
function r and an equation something like r2(r/a0 −c)exp(–Zr/4a0) that is it will have one radial 
node.  

(Refer Slide Time: 46:50 min) 

 

For n = 4, l = 1 you will have when you do the Mathematics and expand the Laguerre 
polynomials rightly it is r (quadratic in r)exp(–Zr/4a0) has two radial nodes.  

(Refer Slide Time: 47:34 min) 

 



And for n = 4, l = 0 you have a (cubic in r) exp(–Zr/4a0) and this has 3 radial nodes but this 
function is not equal to zero at r = 0.  

(Refer Slide Time: 48:00 min) 

 

l = 2 is 0 at r = 0, l = 3 is also 0 at r = 0 and of course all of these go to 0 at r = ∞. So you have 
the number of radial nodes which you can immediately see for these functions the number of 
radial nodes other than 0 if it is applicable of course you see it does not exist for the l = 0 case 
and other than 0 and infinity, it is not a node because it is just where the function goes to 0 
forever. And what you have is (n – l – 1) this is the number of radial nodes that you have. So 
when you have a function with l = 0 quantum number you have the maximum number of radial 
nodes corresponding to the l value maximum. In n – 1 if n is 4 and l is 0 it is three radial nodes. 
If n is 4 and l is 2 then one radial node and so on. So the pattern of these functions should be 
recognized. If we are unable to solve this equation using simple Mathematics we must 
understand how these functions were derived or how do they behave for different choices and 
recognize the pattern from them. Now, it is easier if we recognize this using a graphical 
representation of the same thing.  
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Before I do the graphical representation I would also want to point this namely the energies for 
the hydrogen atom i.e. E that you calculate which is a part of the radial equation. You remember 
that the Hψ = Eψ that E got associated with the radial equation and not with the angular equation. 
The energy E turns out to be exactly the same expression as what Neils Bohr calculated using his 
ADHOC approximate or the method with the approximation that the angular momentum is 
quantized or the energies 1/n square form. 

The quantum number of course in this particular case arises naturally by assuming that the wave 
function the Schrödinger equation is correct. The arbitrariness here is that we do not understand 
why the Schrödinger equation is correct. But if we understand that or we accept that it is correct 
then the rest of the solutions are naturally applicable and are derived from rigorous Mathematics.  

This means that we are replacing the hypothesis of Bohr by the hypothesis that the Schrödinger 
equation itself is valid. but unlike that of the Bohr hypothesis the Schrödinger equation is found 
to be working for all atoms not just hydrogen atoms and the electrons in the hydrogen atom 
according to the Schrödinger equation is described by three quantum numbers and three only. 
This is a non relativistic Schrödinger equation and the three quantum numbers are n, l and the m 
and we are concentrating only on the n and l.  

 

 

 

 



(Refer Slide Time: 51:28 min) 

 

I would in passing make a remark which is very important in recognizing the fundamental 
contributions of Paul Adrien Maurice Dirac the English Physicist, the father of quantum 
mechanics introduced clear and concise mathematical ideas in quantum mechanics. He also 
generalized the Schrödinger equation to the relativistic motion of electron and derived the spin 
quantum as the 4th quantum number through his formalism for which he eventually shared the 
Nobel Prize in 1933.  

His book of course is one of the best known and probably the most Mathematical rigorous book 
on the principles of Quantum Mechanics. Dirac’s book is still a classic book. Let us just quickly 
look at the plots of the radial function namely the exp(–Zr/a0) in this case how does it look for 
the radial n =1 and the l = 0 in this case. 
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The radial part if I plot this as a function of r you see it is a straight forward exponential. There is 
nothing and as r/a0 goes to something like 5 or 6 this wave function goes to 0.  
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The next one is n = 2, l = 0 and the radial function is (1–Zr/2a0)exp(–Zr/2a0). Now as you 
increase from r = 0 to higher values you see this function becomes smaller but this function is not 
0 it goes to 0 at r = 2a0 and then it is negative for all values of r greater than r = 2a0 it is negative.  
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It goes down to 0 from a maximum to r = 2a0 and then of course it stays negative it keeps 
increasing but the point is the exp(–Zr/2a0) will eventually reduce it to 0, bring it to 0. Therefore 
this function has the radial node at this point r = 0. 
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 Here n = 2, l = 1 is simply r times exp(–Zr/2a0), it starts from 0 increases as r increases but this 
eventually tapers of the function so what you have is starting from 0 and it goes from 0 to a 
maximum value and then it goes back to 0 as r increases, this is the radial function for n = 2, l = 
1. 
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And then n = 3, l = 0 is a quadratic exp(–Zr/3a0) if you plot this then this quadratic has two roots 
so the first root and the second root are such that the function is negative between the first and 
the second roots. The function can be written for n = 3 and l = 0 as a function (r – a1)(r – a2) 
exp(–Zr/3a0) where these are the roots to the quadratic. And if we assume that the a1 < a2 and if 



this is the radial function R(r) you see that the radial function is when r is less than a1 and a2 
from 0 to a1 this (r – a1) function is positive between the a1 and a2 this (r – a2) function is 
negative and at a2 this function is 0 and when r is greater that a2 this function keeps on 
increasing as r2. But eventually the exponential goes down and this function goes to 0. (Refer 
Slide Time: 55:41 min)  

Therefore what you have is you have a positive part, a negative part and then a positive part. n = 
3, l = 0 it starts from a non zero value goes to 0 at a1 increases but then decreases at a2 it 
becomes 0 but it keeps on increasing at r2 but the exponential eventually decreases you can see 
that. So these are the two radial nodes for the quadratic function that you have here. And it is 
quiet clear that when you do this for n = 3, l = 1 you will have one radial node namely it starts 
from 0 increases up to a certain value and then this function eventually for a value of r = 6a0/Z 
this whole thing goes to 0 so you will have one radial node and then this function is negative and 
it goes back to 0 at infinite r.  
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And the last one is n = 3, l = 2 is r2exp(–Zr/3a0), you see where the maxima occurs the maxima 
keeps on shifting because it is now r square and the function grows much more before it is killed 
by the exp(–Zr/3a0),. 
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So you have no radial node for this but it is starts from 0. You can see this together,  
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In the case of n = 2 you see the radial function for the l = 0 and l = 1 case together and likewise 
see the three together namely n = 3, l = 0, 1, 2 all three of them. 
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The 0 is the one that starts from non zero value at r = 0 and the rest of them are both from this 
value 0 and you see there is one radial node in this pink colored or whatever this pink colored 
function whereas the green color shows you that there is no radial node l = 2, this is l = 1 and this 
is l = 0. These are the radial functions that we have. Now the angular part we have not done yet, 
in the lecture we will continue this with the angular part. 

The angular part now contains two quantum numbers l and m and the wave function for 
completeness let me write in this lecture before closing it. The wave ψ depends on three quantum 
numbers n, l and m and is written by the two quantum numbers Rn

l(r) corresponding to 1, 0 all 
these things and the angular quantum numbers Yl 

m(θø). This is the complete solution. The radial 
parts we have described today, the angular parts we will describe in the next lecture along with 
the pictorial representations for the real part the angular distribution and the angular wave 
functions. And these are the shapes that you normally see for the s orbitals, p orbitals, d orbitals 
etc.  

With that we will sort of understand qualitatively why the Schrödinger equation hydrogen atom 
has the solutions that it has and how it could be obtained from the spherical polar representation 
of the Schrödinger equation Hamiltonian. And then we will move on to doing simple 
calculations by using these in order to understand a little bit globally the Mathematics associated 
with the hydrogen atom.  

It is very important for Chemist and people who understand Chemistry or who require chemical 
understanding at a slightly higher level to see that the angular shapes and the radial shapes come 
from exact solutions to the Schrödinger equation to the hydrogen atom.  


