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Welcome back to the lecture series on the Engineering Chemistry. This is a series of lectures 
given on basic Chemistry under the auspices of the National Programme on Technology 
Enhanced Learning funded by the Ministry of Human Resource Development. Today we will 
continue with the lecture on Harmonic Oscillator, this is the 5th lecture. In the last lecture we 
talked about how to solve or how to study the solutions of Harmonic Oscillator from the point of 
view of Quantum Mechanics. 
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We will continue with the Harmonic Oscillator.  We will look at the solutions and graphically we 
shall represent the functions that were written down in the last lecture. You might recall that 
these were written as Hermite polynomials multiplied by a Gaussian function that is an exp(–x2) 
type functions. So graphically we will see how these functions are represented and the squares of 
these functions. We will also see what represents the probability densities.  
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The summary of today’s lecture as organized for the rest of this lecture is like this: We shall 
discuss pictorial representation of the Harmonic Oscillator solutions and then we shall introduce 
the Schrödinger equation for electron in the hydrogen atom. This is of fundamental interest to 
chemist. Depending on the time we will try and see if we can proceed towards the separation of 
the wave equation in spherical polar coordinates. And the solutions of course will not be done 
today but will be a part of a series of lectures on the hydrogen atom. Let me continue with the 
Harmonic Oscillator. 
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Recollect from the last lecture that we wrote the Harmonic Oscillator solutions ψn(x) as a 
normalization constant Nn and the Hermite polynomial Hn(√α x) where the α was defined in 
terms of the constants which appear in the Hamiltonian √km/ħ2 where k is the force constant and 
m is the mass of the oscillator, ħ is the Planck’s constant/2π that is h/2π and exp(−αx2/2) here. So 
the whole equation is ψn(x) = Nn Hn(√α x) exp(−αx2/2). And remember the solutions for this 
problem, the quantized solutions or the energy levels which are quantized are given by the 
formula hυ(n +½) and υ was given as ½π√k/m. The quantum numbers, n were given from the 
solutions as having the possible values of 0, 1, 2, 3, etc including the value 0.  
 
The simplest of these solutions when we did ψ0(x) excluding the normalization constant right 
now and including the Hermite polynomial and the exp(−αx2/2). The Hermite polynomial for the 
0th order which is a constant so you recall that the ground state Harmonic Oscillator solution was 
exp(−αx2/2). Here ground state referring to the fact that the quantum number is the lowest and 
this is the least possible energy that can be associated with the Harmonic Oscillator if we accept 
that the Harmonic Oscillator is quantum mechanical, if we accept that the Schrödinger equation 
governs the motion of the Harmonic Oscillator both in space and in time we are only looking at 
the spatial solutions.  
 
We accept that we come up with the requirement that the energies for the Harmonic Oscillator 
are non zero even when the quantum number is 0. A solution exp(−αx2/2), you remember that the 
limits of x where from +∞ to −∞. Therefore a plot of this function if we plot symmetrically on 
both side x = 0 we plot this exp(−αx2/2) as an even function meaning that ψ0(x) = ψ0(−x). It is an 
even function and the maximum value of this plot is the constant associated with the ground state 
wave function, the normalization constant and the value of the function exp(−αx2/2) at x = 0 is 1. 
Therefore that is the maximum value of this plot. And the function per say does not any 0s 
anywhere except at both the extremes namely at x = +∞ and x = −∞. The function, exp(−αx2/2) is 
a very well known function in Mathematics, in Physics, in distributions, in the theory of 
distribution and it is known as the Gaussian function or Bell shaped function, in colloquial 
language we can call it as a Bell− shaped function.  
 
The Gaussian function can be normalized. when you talk about this normalization what you 
mean is ∫ψ0(x) ψ0(x)dx since these functions are real we do not need to worry about complex 
conjugation the domain of the harmonic oscillation is +∞ to −∞, this is the normalization integral 
for the Harmonic Oscillator and this whole should be set to 1. The Gaussian function can be 
integrated quiet easily ∫exp(−αx2)dx (with in +∞ to −∞) when you take the square of ψ0(x). This 
should to be set to 1 therefore the value that you get out for this integral which is √π/α this has to 
to be taken into account in the definition of ψ0(x) so that this integral is equal to 1. If we multiply 
this function ψ0(x) by (α/π)¼ then ∫ψ0(x)ψ0(x)dx (between +∞ to −∞) will be equals to 1 and 
therefore this is normalization constant for this problem for this particular wave function. 
Likewise you have to obtain the normalization constants for each one of these Harmonic 
Oscillator eigenfunctions.  
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The summary of the Harmonic Oscillator wave functions are given here for you to refresh. The 
wave function has the normalization constant Nn, Hermite polynomial Hn(√α x),  exponential 
exp(−αx2/2) and the energy is written as En = hυ(n + ½).  
 
(Refer Slide Time: 10:06 min) 
 

 
 

The one other thing that was emphasized in the last lecture was that the Harmonic Oscillator 
energies as n increases from 0, 1, 2, 3, 4 etc are equally spaced for n = 0 it is ½hυ, for n = 1 it is 
3½hυ, for n = 2 it is 5½hυ and so on. So, if you look at the particular picture the Harmonic 
Oscillator energies are plotted here and this is the classical potential energy curve in this picture 
it does not have any role y-axis is the energy axis and x-axis is only to mark the classical spread 



of the potential energy the x value and you see the lines here representing the Harmonic 
Oscillator energies ½hυ, 3½hυ, 5½hυ and 7½hυ and so on. So the distance between any pair of 
nearby energy levels is the same and that is equal to hυ that is En – En – 1 is hυ for all n values, n 
– 1 should be 0 so the lowest level is E0. If you go E0, E1, E2 all of them are equidistant.  
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Now, let us give the graphical representations for these functions for higher that is the wave 
functions for n = 1, 2, 3 etc are what you call as the excited states of the Harmonic Oscillator. Let 
us look at the solution for H1, H1(√α x) is 2(√α x). Therefore the wave function ψ1(x) is without 
the normalization constant is 2x exp(−αx2/2). This is the first excited state wave function we call 
it excited state when the quantum number is not the lowest, is not the least value, when the 
quantum number is 1 or 2 or 3 etc are called first excited, second excited, third excited and so on 
of the Harmonic Oscillator. 
 
The first state the wave function is given by 2x exp(−αx2/2), if you were to plot this you see that 
ψ1(x) and ψ1(−x) are related to each other not by the above exponential factor this is the same 
because it is x square but there is x so that the relation is minus, so ψ1(x) =− ψ1(−x), this is the 
odd function. Therefore with respect to x = 0 whatever is the way the graph is on the positive x 
will be the exact negative of that in the x < 0 domain. (Refer Slide Time: 13:33 min). So again 
with x = 0 if you plot this function because it is multiplied by x at x = 0 the function is 0 and the 
function is negative therefore it goes to 0 as x goes towards –∞ from the negative side and it goes 
to 0 on the positive side from positive values. If you draw this carefully there is no inflection 
here. So this is a continuous function of x, ψ1(x) = 2x exp(−αx2/2) appears like this.  
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So let us see this particular graph where these functions are plotted. There is a node this point is 
called the node because this is where the function goes to 0 that happens at x = 0. The next 
function is the Harmonic Oscillator wave function ψ2(x) is not 2x but rather  (4x2–2)exp(−αx2/2) 
and this is by analogy with the previous wave functions and this is the same, ψ2(x) = ψ2(−x) 
whether x is + or – so this is an even function.  
 
Therefore it looks to be the same both ways x <0 or x >0. If you call this the ψ(x) as x-axis so 
(4x2–2) exp(−αx2/2) therefore at x = 0 the function is a negative function, a negative value this is 
1 and it is symmetrical so the value of the function is normalization constant × –2 it starts from 
somewhere there and then the function goes through a maximum before it goes to 0 on either 
side and these two peaks, maxima are the same.  
 
So you can continue to plot these wave functions as you see here n = 0, n = 1, n = 2, n = 3, n = 4 
and so on. And these functions alternate between odd and even characters, n = 0 is an even 
function and n = 1 is the odd and then the even and odd, even and odd and so on. Much as we 
plot the Eigenfunctions even more interesting is not the functions themselves but the square of 
the functions because the square of the functions calculated in a small region, multiplied by a 
small region give you the probability that the oscillator will be in that region.  
 
So if you look at the square of the functions then that is given on the other side. These are all the 
various quantum numbers n = 0, n = 1, 2, 3 etc and what you have here is the ψ0

2(x), ψ1
2(x), 

ψ2
2(x) and so on. The number of nodes that is the number of places where the functions goes to 0 

is the n value. If n is 1 there is one node and if n is 2 there are two nodes and when n is 3 there 
are three nodes and so on.  
 
Now, this is a picture that we have to see a little bit more carefully with respect to what we 
understand as Harmonic Oscillator in the classical sense. Let me just draw the ψ0

2(x) plot at x = 
0 and on the x-axis one side is the –∞ limit and other side is the +∞ limit and y-axis is the ψ0

2(x).  



What you see here is that the probability of locating the Harmonic Oscillator in the region close 
to x = 0 is quiet high compared to the probability of locating the Harmonic Oscillator in either of 
these regions. The graph is symmetric so it does not matter which x you have + or –, the 
probability decreases the square of the function decreases. So, if you say ψ0

2(x)dx, if you 
calculate this for a small range dx centered at about the value x you see that it is maximum at the 
center and it uniformly gets reduced as we go farther and farther away.  
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What it means is that the likelihood of finding the Harmonic Oscillator in the region centered at 
the equilibrium position is the maximum. Classically if you recall as the Harmonic Oscillator 
vibrates or oscillates between both extremes, classically you know that the velocity of the 
oscillator is 0 at the extreme and therefore this is the point where the oscillator seems to spend 
the maximum amount of time.  
 
The probability of locating the oscillator on either extreme is higher than the probability of 
locating the oscillator right in the middle. It really runs fast right in the middle and at extremes 
you see that it is possible that it spends more time or the likelihood of locating the oscillators of 
either extremes of the classical domain is not what you see in Quantum Mechanics you see the 
contradiction by the way. 
 
The probability of finding the oscillator right in the middle region is high. If this is controversial 
the next state of the Harmonic Oscillator is even worse because the next state when you plot the 
square of the probabilities for this is not the graph you get. The graph that you get for the ψ1

2(x) 
you see that the probability is practically 0, the function goes to 0 anyway, I should be careful in 
saying that the probabilities is not 0 but it is very small for ψ1

2(x) and this is positive x and this is 
the negative x. If the oscillator energy is slightly higher and it is in the first excited state the 
probability of locating the oscillator in the right at the middle region is much smaller than the 
probability of locating the oscillator in either of the regions of maxima or further down.  
 



(Refer Slide Time: 21:41 min) 
 

 
 
What is important in all of these is that the association of the classical ideas with the quantum 
mechanical ideas can get you in trouble very quickly. If we do not understand the solutions as 
they are but rather try to associate what the solutions mean and what classical results mean you 
will see that the classical results and quantum results are at their most variants when the energy 
of the system is low and  when the particle mass is very low. That is, when the quantum effects 
are really important you cannot draw the same conclusions or you cannot draw analogies from 
classical results.  
 
All these are important with respect to molecular vibrations because when you talk about the 
molecular vibrations we do see what the region is of high probability or low probability etc and 
this is particularly useful when one studies electronic spectroscopy later on. So please remember 
that, from the squares of the wave functions and from the plot of the squares of these wave 
functions and from the analogy for the probabilities we have some interesting conclusions that 
need to be kept in mind. 
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 Let me summarize this solution today and then we will move on the hydrogen atom. So, first 
one that comes as a surprise is that the energy is not 0 even when the quantum number is 0, the 
oscillator is never at rest and this was explained in the last lecture. And this is consistent with the 
Heisenberg’s uncertainty principle.  
 
The second is that the wave function does not vanish as you see in pictures like whether it is a 
square of the wave function or it is the wave function you see that the wave functions vanish at 
certain points which are the roots of the Hermite polynomial but they do not vanish otherwise 
and the wave functions are finite even when x is very large. What it means is that even when the 
classical potential boundary has been exceeded the probability of finding the oscillator in 
classically forbidden regions exists in Quantum Mechanics. This leads to an interesting 
phenomenon called tunneling but we will not worry much about it. The boundary for the 
oscillator is endless that is important to remember.  
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And since the wave functions do not vanish the squares of the wave functions are also non 
negligible and that essentially means the likelihood of locating the oscillator outside the classical 
potential boundary regions. All of these are related to molecules when we study molecular 
vibrations and we will see that the molecular vibrational energies are quantized and this will be 
used to understand vibrational spectroscopy at an elementary level.  
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Now we will move on to the most important topic that a chemist always has to worry about when 
studying the Quantum Mechanics namely the hydrogen atom. Obviously it is the most important 
problem for chemist who wants to understand Quantum Mechanics because the hydrogen atom 
solutions or the fundamental solutions based on which the other atomic energy level solutions 
and molecular energy levels are constructed.  
 
All the atomic orbitals which are concepts of hydrogen atom Schrödinger equation are used 
throughout in Chemistry or in everywhere organic Chemistry, inorganic Chemistry everywhere 
in understanding why reactions take place the way they do, why bonding takes place the way it 
does. So the modern concepts of chemical bonding basically originated from the solution of the 
hydrogen atom. Also, from the point of view of history in Quantum Mechanics the hydrogen 
atom is the probably the only realistic system that could be solved analytically using the 
Schrödinger equations.  
 
The one dimensional and two dimensional particles are models, the hydrogen atom with electron 
and proton stuck together due to columbic interactions is the only real problem three dimensional 
problem where you can get exact analytical solutions. Therefore this was extremely important 
and its solutions were studied at great details.  
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We will do mechanically what we have to do for at least the first part of the lecture. 
Mechanically meaning let us set up the Schrödinger equation let us try and see how we can solve 
it. A detailed study of the methods of the solutions of the hydrogen atom is not possible now 
because that will involve understanding differential equations in a different level. We will again 
study only the final solutions but not the method of solving them.  
 
The hydrogen atom, the simplest classical picture you recall from Neils Bohr is that the 
negatively charged electron keeps moving around the positively charged proton. The particulate 
the particle nature of the hydrogen atom was emphasized in Neils Bohr’s treatment rather a very 
ADHOC treatment but it was a first one which looked at the solution from the stand point of 
quantizing some of its energies.  
 
Classically if you represent the hydrogen atom with the electron and proton with a separation r, 
the interaction energy between the electron and the proton depends only on the distance. 
Therefore if you imagine a spherical atom of hydrogen with the electron moving on top of the 
sphere so the interaction energy between the nucleus at the center and the electron anywhere on 
the sphere of radius r is the same.  
 
The kinetic energy of the electron as it moves around in certain orbits classically. Again from the 
classical perspective the kinetic energy is again given by p2/2m where p is the linear momentum 
associated with it even though the hydrogen atoms moves in a bounded region you can still 
associate a linear momentum with it and you can express the classical kinetic energy of the 
hydrogen atom as simply [(pe)x

2
 +(pe)y

2
  +(pe)z

2]/2me,  m is mass of the electron because the 
nucleus is very heavy almost 2000 times heavier than that of the electron.  
 
Let us deal with this problem with the assumption that the nucleus is stationary. If the nucleus is 
not stationary it is moving then you have to include its kinetic energy also in the process. We 
will not have to worry about this but we will treat hydrogen atom as the stationary atom in the 



sense that the nucleus is heavy it does not move. Therefore when you talk about the kinetic 
energy of the system you are only writing the kinetic energy of the electron, one electron.  
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And the potential energy that the electron has in its interactions with the positively charged 
nucleus is of course the columbic interaction –e2/r because this is a nuclear charge with e with 
one positive and I would rather write ze as a nuclear charge, z is the atomic number the number 
protons here and e– and the electron nucleus interaction energy is attractive with a minus sign this 
4πε0 is for taking into account the SI units. ε0 is the permittivity but we will concentrate on these 
√(xe

2+ye
2+ze

2) what is under the square root that is the distance r. If you imagine the electron to 
move anywhere on a sphere and if you associate the origin of this coordinate system with the 
nucleus, the origin is right here (0, 0, 0) with respect to that the electron coordinates are x, y and 
z. Then the potential energy of the hydrogen atom the electron nucleus interaction is –e2/4πε0r 
because the kinetic energy is p2/2m and it is now in three dimensions.  
 
We can write the quantum mechanical equation by changing the p into –iħ d/dx partial derivative 
now and you are familiar with that from a particle in a two dimensional box this has been 
mentioned already therefore p2 now replaced by the three partial derivatives, p2/2m is now 
written as –ħ2/2m [∂2/∂xe

2 +∂2/∂ye
2 +∂2/∂ze

2], the e referring to the electronic coordinate. This is 
the kinetic energy, then the potential energy is already written as −e2/4πε0√(xe

2+ye
2+ze

2) which 
is in spherical coordinate system and it is –e2/4πε0r. Therefore one can write the Hamiltonian of 
the hydrogen atom the electron in the hydrogen atom with the stationary nucleus immediately as 
the kinetic energy plus the potential energy. The kinetic energy plus the potential energy is − 
e2/4πε0r.  
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Then the Schrödinger equation is obviously the equation that we want to solve H si which is now 
a function of the electron position (xe, ye, ze) = E, the constant energy times Ψ((xe, ye, ze). That 
is, HΨ(xe, ye, ze) = EΨ(xe, ye, ze).   
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The solution now is the differential equation containing p2/2m acting on Ψ plus the potential 
energy −e2/4πε0√(xe

2+ye
2+ze

2) acting on Ψ giving you the E Ψ.  
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The differential equation is rather complex so we will not be able to go through the process of 
solving it.  
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The thing that one can find in dealing with such types of equations is where the derivatives are 
all additive, no cross derivative ∂2/∂xe

2 but there is no derivative like ∂/∂xe or ∂/∂ye when the 
derivatives are all additives. And the rest of the terms contain separable quantities. If you use 
spherical polar coordinate system you would see that it contains only r the radial distance in 
spherical polar coordinate systems. Therefore the solution of this problem is probably more 
easily accomplished in spherical polar coordinate system than it is in Cartesian coordinate 



system because in Cartesian coordinate system you have a square root involving all the three 
coordinates.  
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The spherical coordinate system is the spherical polar coordinate system. You need to know θ 
and ø and r, θ, ø, how they are defined and how the equation can be transformed into the r, θ, ø 
representation. This kind of separation is possible because the Coulombic potential energy is 
dependent only on the distance from the nucleus i.e. radius.  
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This is not a sphere but anyway you will see the actual sphere in the animation.  



The construction of the spherical polar coordinate system let me explain with that animation. If 
the z axis or the polar axis is represented like this and the x and y axis this is the right handed 
coordinate system any point r represented by the radius vector r can be decomposed along the x-
axis, y-axis and the x-axis, y-axis and the z-axis through the θ and ø. The θ represents the polar 
angle which is from the polar axis; θ is 0 to π to the negative axis from North Pole to South Pole 
if you recall the association with earth. The ø represents the axis which rotates which is basically 
a circle. When you section this sphere perpendicular to the polar axis the ø represents the 360° 
rotation that is the other coordinate. Let us see it clearly in one of these animations.  
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In this animation that you will see now let me represent to the polar angle θ and ø. The angle ø is 
with respect to the x-axis that is an axis perpendicular to the polar axis, the angle ø is defined as 
0 to 360° so ø = 30°, 60°, 90° and so on and is the ø axis. The ø axis represents an axis that is a 
plane which is perpendicular to the polar axis and represents all the 360° rotations about that.  
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Now the θ axis, the value for θ is with respect to the polar axis that is the θ representation. You 
see that θ is 0 to 180° and ø can be any one of these from 0 to 360°. And if you travel through 
both of these coordinates you generate the entire surface area of the sphere. You generate entire 
surface area of the sphere when you go through this. So the values of the coordinates are for 
spherical system is the radius of the sphere r. 
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Here we have assumed one particular radius and therefore we have drawn a sphere of that radius. 
For that any radius the value for θ the variation are from 0 to π and ø the values are from 0 to 2π 
and the radius of this sphere of course can be from 0 to ∞ so this generates the entire three 



dimensional Universes. These are the accessible regions for the electron in the hydrogen atom in 
exactly the same way that you had accessibility for a particle in a one dimensional box from x = 
0 to x = L or in the Harmonic Oscillator x = –∞ to +∞. Now, the three dimensional region in 
spherical polar coordinate system these are the variables that you have to remember.  
 
Let us now look at the other animations on the coordinates. How we get this r sinθ sinø, r sinθ, r 
cosθ etc. let us write them by looking at the movie carefully. What you have there is an arbitrary 
position or a radius vector r anywhere on the sphere making an angle θ with respect to the polar 
axis z. 
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Therefore its projection along the z-axis is going to be rcosθ and its projection perpendicular to 
the plane, this is an arbitrary position it can be anywhere and this is going to be rsinθ. But now 
the ø value is an arbitrary value ø from the x-axis therefore rsinθ will have a projection along the 
x-axis as rsinθ cosø. That is, the x-axis projection and the y-axis projection is of course (90 – ø) 
is this angle so that is rsinθ cos(90 –ø) or rsinθ sinø. So this is what you have in the final frame 
that the spherical coordinates are x = rsinθ cosø, y = rsinθ sinø and z = rcosθ.   
 
These are the coordinate transformations one has to remember in switching from the usage of (x, 
y, z) coordinates to the coordinates r, θ and ø. Of course you can easily invert them, this 
procedure of inverting them, that is if you want to express r in terms of x and y and z you know 
that if you take (x2 +y2 +z2) you are going to get r2sin2θ cos2ø + r2sin2θ sin2ø + r2cos2θ which 
gives you r2 therefore r is √(x2+y2+z2). Not a surprise you have already used this result in writing 
down the potential energy 1/√(x2+y2+z2) as 1/r it is obvious. What about θ? If you take the ratio 
of y/x you get tanø, y/x is tanø or ø is Arc tan(y/x) or tan−1(y/x). So now you can express r in 
terms of (x, y, z) and ø in terms of (x, y, z) and the last one of course is θ and √(x2+y2) will give 
√[r2sin2θ(cos2ø +sin2ø)]. 
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So what you get is rsinθ and you know z is rcosθ. Therefore the ratio of these two gives you tanθ 
which is √(x2+y2)/z. Therefore θ is Arc tan √(x2+y2)/z here instead of Arc tan you can write tan−1. 
So these coordinate transformations are important because when we write the Schrödinger 
equation in Cartesian coordinates and when we want to change the Schrödinger equation into 
spherical polar coordinates because the potential energy depends only on r so we must remember 
these transformations. You must be able to switch between these two.  
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It takes nearly about 5 to 6 hours to go through the process of deriving the Schrödinger equation 
in spherical polar coordinate system from that of the Cartesian coordinate system only if even a 



single mistake is not made. So let us just get the result of what the equation looks like in 
spherical polar system here.  
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So what you have here is of course both the kinetic energy and the potential energy of the 
hydrogen atom electron represented now using spherical polar coordinate system. The derivation 
of this is not important for these lectures but you should be able to do it when you understand 
partial differential equations and when you understand how to transform between coordinate 
systems using Jacobians etc. This is basically partial derivatives you should be able to transform 
from one set of coordinates to another set of coordinate using the chain rule of partial differential 
equation. We will not worry about that as Chemistry student. We will believe that the Physicists 
and the Mathematicians have done it right and therefore we will take this equation as God given 
or as the Physicist given. We will believe that this is right and let us work on this equation.  
 
The form of the equation is something that we should write down just to familiarize ourselves 
with notation. The Hamiltonian Hψ, now ψ is expressed in terms of r, θ and ø. Then Hψ(r, θ, ø) = 
Eψ(r, θ, ø) is to be written now, the Hamiltonian operator is the expression given –ħ2/2m{[1/r2 
∂/∂r(r2 ∂/∂r)]+[1/(r2sinθ) ∂/∂θ(sinθ ∂/∂θ)]+[1/(r2sin2θ) ∂2/∂ø2]+ [e2/4πε0r x 2m/ħ2]}. Only gives 
you time to write these equations and try and understand this is the operator h containing a 
derivative expression in r, a derivative expression in θ and a derivative expression in ø and the 
potential energy term involving r.  
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The painful process of going through this transformation is to ensure that the wave functions we 
are trying to obtain can be separated into functions depending only on r, functions depending 
only on θ and functions depending only on ø. So what one tries to do is to simplify the wave 
functions by separating them into independent coordinate dependent functions only and this is 
the process you are familiar with from particle in a two dimensional box where you represented 
the wave function for this solution of this equation –ħ2/2m(∂2/∂x2 +∂2/∂y2)ψ(x, y) = Eψ(x, y).  
 
You represented ψ(x, y) as a function X depends only on x and a function Y depends only on y 
and the product of these. And this enabled you to write a two one dimensional Schrödinger 
equations and then study the solutions rather straight forward. So in the same way we tried to use 
the right coordinate system in which the wave functions can be expressed rather simply and then 
study the solutions in that coordinate system. All the atomic orbital pictorial representations that 
I will give are given in spherical polar coordinate systems and the underlying Mathematics is 
given here. Now, there is a notation here, so when you write H si = E si what it means is that this 
operator H acting on ψ. 
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So, if you write this as HΨ this whole thing is operating on Ψ to give EΨ, [1/r2]∂/∂r(r2 ∂/∂r)]Ψ 
what does this mean? It means the following: 1/r2 ∂/∂r(r2 ∂/∂rΨ) that is the first term. And this of 
course is a compact notation and you can expand this in solving the equation you have to anyway 
do this. The differential now will act on uv kind of a product. Then the product is 1/r2(∂2/∂r2)Ψ 
multiplied by r2 and in addition to this you have one more term 1/ r2 (2r ∂Ψ/∂r). Now if the 
differential acts on r2 what you have is 2r ∂Ψ/∂r, which is ∂2Ψ/∂r2+2/r ∂Ψ/∂r. This is the 
expression which is represented by a compact form like that. So that is what is given here when 
you write –ħ2/2m 1/r2 ∂/∂r(r2 ∂Ψ/∂r), what it means is the derivative expression  –ħ2/2m[2/r ∂Ψ/∂r 
+ ∂2Ψ/∂r2]. Likewise when you write –ħ2/2m[1/(r2sinθ) ∂/∂θ(sinθ ∂Ψ/∂θ)], what it means is the 
derivative expression which has to be expanded exactly like what you have done here and it 
gives you –ħ2/2m[(cosθ/r2sinθ) ∂Ψ/∂θ +1/r2  ∂2Ψ/∂θ2].  
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We will not solve the equation today and we will not solve the equation in this course but we 
will rather give the solutions of this equation in the next couple of lectures with corresponding 
pictorial illustrations. And I will also tell you a little bit about the method of solving the 
differential equation, how we separate the wave functions into products of three different 
functions and how we obtain the final result, what is the final result and then we will try to 
picture the final results in this whole process.  
 
So we have discussed about the Harmonic Oscillator continued from the previous lecture by way 
of pictorially representing the Harmonic Oscillator wave functions and the squares of the wave 
functions and we noticed that the squares of the wave functions have certain properties which are 
not what would you except when you associate them with the corresponding classical solutions 
using Newton’s laws. 
 
So the Harmonic Oscillator in Quantum Mechanics presents some things which are difficult to 
digest for a Physicist or a Chemist who is well versed with classical Harmonic Oscillator. This 
was then followed by focusing on the problem of the hydrogen atom, what is it that is going to be 
important for us as a Chemist is that the stationary nucleus with the electron moving around in 
the classical sense being now replaced by a quantum mechanical wave function and the 
Hamiltonian the Schrödinger equation that one needs to solve being the H si = E si.  


