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Welcome back to the lectures on chemistry as part of the National Programme on Technology 
Enhanced Learning, a programme sponsored and funded by the Ministry of Human Resource 
Development. 

I have been lecturing on the basic principles of Chemistry for the engineering students as well as 
the students of basic sciences. In the last two lectures we have got ourselves introduced to 
Quantum Chemistry principles, the principles that we will use again and again and the principles 
that we will become familiar by examples.  

In the last lecture the first and the simplest example namely the particle in a box was discussed. 
The relevance of the particle in a one dimensional box if you recall I mean an association with 
the energy levels of electrons to be more precise in a conjugated polyene system. That is a linear 
system and motion is one dimension of it. Today we will generalize this to the motion of the 
particle in two dimensions.  
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This is a course on Engineering Chemistry, my name is Mangala Sunder I am from the 
Department of Chemistry in the Indian Institute of Technology Madras Chennai and this is my 
electronic mail address mangal@iitm.ac.in 

(Refer Slide Time: 2:59 min) 

 

This is the third lecture on the first module Atoms and Molecules. We are studying the model 
problems in Quantum Chemistry, the free particle in one dimension was discussed in the last 
lecture. We will discuss about the free particle energies in two dimensions today and the 
discussion continues from the last lecture. 
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The contents of today’s lecture are the solutions for the particle energies in two dimensions and 
the wave function. This is the solution of the time independent Schrödinger equation. 

The wave functions and the squares of the wave function will be represented by some pictures in 
this lecture. Pictorial representations or visualizations are very important in all of Science and all 
of Engineering. Wherever possible we will try to draw a graph or give a plot of the surface of the 
wave function if it is more than one dimensional and so on. 

The second most important aspect of today’s lecture will be the calculation of the expected 
values or the expectation values in Quantum Mechanics. From the last lecture please recall that 
when we talk about experimental measurements Quantum Mechanics comes up with the rule for 
the average or the excepted value of whatever we are trying to measure through a formula. We 
will illustrate that formula and follow that with one or two examples to chemical systems. 

Given sufficient time I would try to explain the Heisenberg‘s Uncertainty Principle but in all 
likelihood this will go to the next lecture. 
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Recall for yourself the one dimensional particle in a box results. Let me quickly summarize these 
things from the last lecture. 

For a box of length L and the particle with no potential inside the box the wave function was 
derived from the last lecture as 2/Lsin(nπ/L) where n is 1, 2, 3 etc integers. 

The energy of the particle in the solution of the wave equation Ĥψ = Eψ the energies turn out to 
be quantized, discretized by the n’s with a unit for the energy h2/8mL2 where m is the mass of the 
particle, h is Planck’s constant. So the result was particle energies are discrete, particle position 
inside the box is given by a probability description which we saw in the last lecture. 

(Refer Slide Time: 06:31 min) 

 



In the last lecture I also introduced the Schrödinger equation for the particle in a two dimensional 
box in a manner analogous to the particle in a one dimensional box. Remember, that the motion, 
the one dimension refers to motion in one direction which we call as a coordinate x. A two 
dimensional box refers to motion in two orthogonal directions namely a planar motion the 
particles position anywhere in a plane, the particles energy due to the two degrees of freedom 
that it has, the wave function corresponding to these two degrees of freedom for the special case 
that the potential in a certain region is 0 and it is ∞ everywhere else.  

So the model was that we will solve this particular problem −ħ2 ∕2m (∂2∕ ∂x2 + ∂2∕ ∂y2) ψ(x ,y) 
which is nothing but the kinetic energy times ψ(x ,y) + V( x, y ) times ψ(x ,y) which is the 
potential energy times the wave function. so what we have on this side is the Hamiltonian acting 
on the wave function ψ giving you the energy times the wave function ψ, this ‘a’, so it is 0<x<L, 
0<y<L and the potential is infinity everywhere except the box this is the model. (Refer Slide 
Time: 08:09 min). 

Let us do a little bit of writing to see how we solve this problem. Inside the box the equation that 
we want to solve is −ħ2 ∕2m (∂2∕∂x2 + ∂2∕ ∂y2) ψ(x, y) = E ψ(x, y). This is linear second order 
partial differentiation equation. ∂2∕ ∂x2 it is linear there are no cross terms involving x and y. 
There is a method in Mathematics called the method of separation of variables which allows 
these equations to be solved quickly.  

Separation of variables: The variables here are x and y for the solution.  

(Refer Slide Time: 09:25 min) 

 

 According to this method if we write ψ(x, y) as a function, let me write the function using an 
appropriate symbol X which depends only on x multiplied by another function Y which depends 
only on y. This is possible by an examination of this equation and this is from the calculus of the 
solution of the differential equation. 
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We will adopt that and we will write down the solution for the wave function almost 
immediately. What is the role of ψ(x, y) = X(x) Y(y)? The wave function is expressed as a 
product of two functions each of which is a function of only one variable and this when you 
substitute in the differential equation it allows you to simplify the differential equation very 
quickly. Therefore, when you write −ħ2 ∕2m (∂2∕ ∂x2 + ∂2∕ ∂y2) acting on a function X(x) Y(y) 
giving you E X(x) Y(y) this is a proposal for the wave function that we assume that the wave 
function ψ is expressed as a product of two one variable functions one variable dependent 
functions.  

(Refer Slide Time: 11:51 min) 

 

If we do that what are that consequences.  



You know this is a partial derivative and the partial derivative on x, of course does not change 
function y. The partial derivative of y does not change function of x. Therefore this equation can 
be immediately written as −ħ2 ∕2m [(∂2X∕ ∂x2)Y + (∂2Y∕ ∂y2)X] = E X(x) Y(y) where Y is a 
multiple, X is a multiple. (Refer Slide Time: 12:41 min).  

Now, if you divide both sides by the product X and Y the result will be −ħ2 ∕2m [1/X (∂2X∕ ∂x2) + 
1/Y (∂2Y∕ ∂y2)] this is the X which is the function and this is the x which is the variable where 
this X is dependent on. Y is a function of the variable y. Therefore this quantity is equal to E. It 
is a very simple method of separation of variables and the argument now is that these two terms 
1/X (∂2X∕ ∂x2) + 1/Y (∂2Y∕ ∂y2) are two independent quantities. Therefore this equation can be 
satisfied only when this whole thing first term is equal to a constant and this whole thing second 
term is equal to another constant such that the two constants add to give you the value E.  

(Refer Slide Time: 14:00 min) 

 

 

Therefore the equation turns out to be −ħ2 ∕2m (∂2X ∕ ∂x2) 1/X = E1 a constant, −ħ2 ∕2m (∂2Y∕∂y2) 
times 1/Y = E2 a constant such that E1 + E2 = E the total energy. The solution is −ħ2 ∕2m 1/X 
(∂2X ∕ ∂x2) this whole thing is a constant E1. Likewise the other term is another constant E2 such 
that E1 + E2 = the total E. Now, what is this? This is the variable x between 0 and L the length of 
one side, y is also a variable in the other orthogonal direction between 0 and L for a square box. 
You can have any other arbitrary box but let us stay with the square box to simplify things.  
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 So what you have here is now two one dimensional problems, two particles in one dimensional 
box problems exactly similar to what you had in the last lecture. Therefore the solutions of this 
can be immediately written down with one exception, the exception is that E1 and E2 each of 
which are given by independent quantum numbers you recall that the energy is h2/8mL2 times n2. 
These two equations are two independent equations. Therefore there are two independent 
quantum numbers E1 is proportional to n1

2 and E2 is proportional to n2
2 another quantum number, 

it does not have to be the same except that the sum of the two energies should be equal to the 
total energy E.  

(Refer Slide Time: 17:10 min) 

 

So the result is immediately obvious namely E1 is h2/8mL2 times n1
2 and E2 is h2/8mL2 times n2

2 
ψ1(x) which is X(x) you remember that is our notation and that is going to be √(2∕L) sin(n1πx∕L) 



exactly the same as the one dimensional problem ψ2(y) which is the function Y(y) is √(2∕L) 
sin(n2πx∕ L) such that the overall wave function ψ(x ,y) is X(x) times Y(y) and the overall energy 
E is E1 + E2. 

(Refer Slide Time: 17:46 min) 

 

This is a result that comes from the use of an appropriate mathematical technique known as the 
method of separation of variables which works well in this particular case because the equation 
is of that type, the partial second order linear differential equation in two variables does not have 
any cross terms therefore the solution comes out like this.  

(Refer Slide Time: 18:12 min) 

 

The summary of this result is, the wave function now depends on two quantum numbers n1 and 
n2 you recall that is because of the x dependent quantity depending on a quantum number n1 the 



Y dependent quantity depending on the quantum number n2 and the wave function is the product 
of these two functions therefore it is indexed in general by two quantum numbers n1 and n2 such 
that it is X(x) times Y(y) and energies are the sums of the squares of the quantum numbers 
namely h2/8mL2 times (n1

2 + n2
2) is what you have here. 

Let us quickly see how to represent these wave functions in a simple pictorial form and how to 
represent the squares of the wave function in a pictorial form. And afterwards we will examine 
the consequences of this solution in terms of the most important concept for today’s lecture 
namely degeneracy of the energy levels.  

(Refer Slide Time: 19:21 min) 

 

What I have here are two plots. Let me go back to my notes. Remember, Xn1(x) is √(2∕L) 
sin(n1πx∕ L) since n1 is 1,2,3,….etc you have obviously X1(x) you have X2(x) , X3(x) and so on 
all possible functions.  
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Likewise you have the Yn2(y) = √(2∕L) sin(n2πx∕ L) also running into the indices Y2(y), Y2(y) and 
so on. Therefore the wave function ψ which is a function of n1 and n2 let us take the first one 
namely n1 is 1, n2 is 1 and x, y is obviously the product of X1(x) Y2(y). You remember that this 
X1(x) is a half sine wave, Y2(y) is a half sine wave and both these half sine waves you remember 
you plotted them in the last lecture in one dimension. (Refer Slide Time: 20:56 min). Now, since 
this is a two dimensional function to plot this function in two coordinates x and y the value of the 
function in the third coordinate the plot is obviously a three dimensional plot and not a two 
dimensional plot. That is the plot which is you now see here.  

(Refer Slide Time: 21:15 min)  
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ψ11(x, y) meaning n1 is 1 and n2 is 1 is equal to 2/L sin (πx/L) sin (πy/L). In this first one is a half 
sine wave so if you are looking at this direction this is the x direction the other is orthogonal 
direction the y direction. Therefore if you plot this function sin (πx/L) sin (πy/L) in the graph in 
the computer what you will get is a half sine wave like when you project this plot on this plane 
you get a half sine wave here when you project this on this plane you get a half sine wave so you 
get a surface plot. It is a surface plot because it is a function of two variables.  

It is going to be a much more complicated plot if we are going to discuss the motion in three 
dimensions like in the case of hydrogen atom it is where we are going to go soon. If we take the 
square of the wave function which you know represents the probability density the square of the 
wave function in a small region gives you the probability of finding the system in that region. 
Therefore, if we plot the square of this wave function you see also get more or less similar plot 
except to that there is a little bit shallow on the ends because sin square goes to 0 very quickly on 
both sides and that is why you see the plot is slightly different. 

What is the next wave function? The ψ12(x, y) is ψn1n2 (x, y) meaning n1 is 1 and n2 is 2 along the 
x direction the wave function is √2/L sin πx/L along the y direction is √2/L sin 2πy/L therefore 
you get a 2/L. So what you have is a sin( πx/L) sin(2πy/L) which tells you that along the x axis 
or the projection is a half sine wave whereas in the y axis or y direction if you project it is a full 
sine wave and that is exactly what you see in this graph namely it is a full sine wave in the y 
direction with up and down. And in the case of x direction it is a half sine wave that it goes 
through minuses and plus because this function takes those values. But you see when you project 
to this on this orthogonal direction side you get a complete sin wave and you get a half sin wave 
on x-axis.  

Now, if you square this function there is no negative part to this function everything will become 
positive and therefore the negative part which is a dip that you see here now becomes a nice 
positive node. This is now you see that it is a sin square wave. You recall the one dimensional 



plot again. You recall the one dimensional plot for ψ2(x). Here it is a line joining two ends here 
and this there is a node at center therefore the wave function is a sine wave and ψ2

2(x).  

If you remember the probability was that there is no negative part to it and it is again in the 
middle you have something like that and the negative part is squared up and of course the 
shallow continues like that and this is the kind of plot that you see long the y direction and along 
the x direction you obviously see the half sin wave. So, this right side is the surface plot for the 
square of the wave function representing the probability density ψ22.  

(Refer Slide Time: 25:14 min) 

 

Now you know that it is 2 in the x direction the quantum number n1 is 2 the quantum number n2 
is also 2 therefore it is a full sine wave in both directions and therefore you see the full sine wave 
form in both directions and when you square them up correspondingly you see the two hums 
here, the negative parts becoming positive throughout because the function is squared up and you 
see the two hums. In x direction it is quantum number 2 and in y direction also it is quantum 
number 2. So the probability density now is very seriously changed from region to region from 
place to place.  

In a plane there are regions where the particle is likely to be found much more certainly and there 
are regions where the particles where less likely to be found. There is only a point or nodal line 
where the density goes to 0 that is the square of the wave function goes to 0. You never talk 
about the probability of finding the particle at a point or on a line for a problem where the 
variable is continuous. You always take the probability density to be represented in a small 
region of space.  

Therefore the probability density is never ever 0 in a region it is very small it is 0 at point or 
along a line but there probability in a certain region for finding the particle whether it is one 
dimensional or two dimensional is never 0 and is never negative. 
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Likewise for ψ22 quantum number in the x direction is 2, the first one and the quantum number in 
y direction the second one is 3 therefore you should see a three sine half waves in the y direction 
and a two sine half waves in the x direction and if this is not clear when you square the function 
when you square this particular function you see immediately that there are three hums along the 
y direction when you see that and along the x direction you see these two hums indicating that 
this is the probability density function for the particle in a two dimensional box, a square box 
with quantum numbers n1 = 2 and n2 = 3. 

What is the other important consequence? Let us write the energy level expression once again E 
is h2/8mL2 (n1

2 + n2
2) for ψ11(x, y) here the quantum number n1 is 1 n2 is 1 therefore E, let me 

also put n1n2 here to index the energies according to the numbers that we put in here. Therefore 
E11 is two times the h2/8mL2.  
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ψ11 is obviously 2/L sin(πx/L) sin(πy/L).  

(Refer Slide Time: 28:35 min) 

 

What about the next? The ψ12 is 2/L sin(πx/L) sin(2πy/L). What about E12? It is h2/8mL2 and n1
2 

is 1, n2
2 is 4 so you get 5h2/8mL2.  
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This is for n1 = 1 and n2 = 2. Now let me look at the case n1 = 2 and n2 = 1. These are the 
possible quantum numbers for the system. The wave function for this state n1 = 2, n2 = 1 is 
different from the wave function for the state n1 = 1 and n2 = 2.But what about the energies? E21 
is obviously 5h2/8mL2. But ψ21 is not equal to ψ12. This is precisely what is called the degeneracy 
of the energies the system that may have more than one wave function that may be represented 
by more than one state but both of which have or all of those states have the same energy. Such 
states are called degenerate states.  

(Refer Slide Time: 30:21 min) 

 

E21 = E12 represents the degeneracy of order 2. It is not possible to have higher degeneracy here 
because we started with a two dimensional problem. The degeneracy in the case of a three 
dimensional system and of order 3, you recall in a case of hydrogen atom from your elementary 



descriptions of the hydrogen atom the 1S orbital is non degenerate, the 2S orbital is of course and 
the 2P orbital all four them have the same energy. You know that the degeneracy in the case of 
the hydrogen atoms is n2 where n is the principle quantum number that is associated with the 
hydrogen atom. You have studied that in high school. Those conclusions will come out of this 
Mathematics neatly when we do these hydrogen atoms as we go through this process now from a 
particle in a 1D to 2D to a hydrogen atom you will see how the degeneracy is and this quantum 
numbers build up.  

The next important aspect for the model problems is how do we calculate average values for the 
quantities that we measure? The energy we know, energy is a solution of the Schrödinger 
equation we do not need to calculate the average values of energy. You will get already when 
you do that you will get the energies that you get out of the solution of the Schrödinger equation. 
But there are the other things and there is no momentum in this model of course then the average 
position of the particle, then how do we calculate the average position of the particle using the 
prescriptions of the quantum mechanical principle. 

(Refer Slide Time: 32:15 min)  

 

So how do we calculate the expected values or expectation values? For a particle in a one 
dimensional box we will start with that and then extend the same thing for 2D and 3D model.  
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Remember that in Quantum Mechanics every experimentally measurable quantity is represented 
by an operator. This is a statement from first lecture. The average values in that lecture was also 
given as the ∫ψ*Â ψ dτ/∫ψ*ψ dτ the operator Â corresponding to what you are measuring. (Refer 
Slide Time: 33:11 min) 

How do we do this for a particle in a one dimensional box what is the average value for the 
position of the particle. The verbatim formula if you substitute is the ∫ψ*(x) x ψ(x)dx/∫ψ*(x) ψ(x) 
dx. Now, we have to put all the integrals in the appropriate form. Now you recall what is ψ*(x) 
or ψ(x). It is √2/L for the particle in a one dimensional box it is ψ(x) is √2/L sin nπx/L. What are 
the values for x? So, x goes from 0 to L in one dimension. Therefore the integral when you talk 
about the integral dx the average value x is now from x = 0 to x = L is 2/L ∫sin πx/L.  

(Refer Slide Time: 34:17 min) 

 



If you want to put in an n you can put an n for the arbitrary state ψn, x that is the operator 
corresponding to the position, sin nπx/L dx / (x = 0 to x = L) 2/L∫sin(nπx/L) sin(nπx/L)dx. So 
<X> = 2/L∫sin(πx/L) x sin (nπx/L) / 2/L∫sin(nπx/L) sin(nπx/L)dx in between the limits x = 0 to x 
= L.  

(Refer Slide Time: 35:21 min)  

 

If we have to calculate the average value for the momentum operator you have to put the 
operator for the momentum between the two wave functions that is sandwiched by the two wave 
functions. The operator for momentum is –iħ d/dx.  

Therefore it is extremely important where you put that operator and quantum mechanical rule 
tells you that the operator should be placed in the middle of these two wave functions ψ* on one 
side ψ on the other side, do not ask me why, that works, there are no problems with that kind of a 
prescription when we calculate the averages experimentally we seem to have no inconsistencies 
of any kind. This is an elementary integral for you to solve. The average value of x in terms of 
the integral on the numerator and the integral on the denominator, of course this you know, this 
is how you got 2/L sin(nπx/L)sin(nπx/L)dx was nothing but the ψ2dx which is the probability of 
finding the particle in a small region. And when you integrated the probability completely you 
got 1.  

Therefore this automatically is equal to 1 from your previous calculations. You only have to 
calculate the other, I will leave the result as for you to calculate but the average value of x will 
turn out to be for no ones surprise L/2 which is the middle of the function, no surprises here. 
What is the average value for a particle which is moving with a constant energy kinetic energy 
between the ends of the box right in the middle but what is the average value for the momentum 
of the particle? The average value for the momentum p is exactly the same problem 
2/L∫sin(nπx/L) form 0 to L, now the operator for p is – iħ d/dx sin(n π x/L) times dx. So, <p> = 
2/L∫sin(nπx/L) (–iħ d/dx) sin(nπx/L)dx from 0 to L.   
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You do not need the denominator because the denominator where I showed you is already 1. So 
if you calculate this value for the momentum which I would give you as problem for solve the 
answer is 0. The average value for the particle’s momentum as it is moving in the box is at every 
point the particle’s momentum can either be in this direction or in that direction. And therefore it 
looks like the momentum vector is all added up to give you on the average when you make 
infinite measurements.  

(Refer Slide Time: 38:00 min) 

 

This angular bracket refers to the fact that it is an average over many theoretically or in principle 
infinite number of measurements. The average value for the momentum turns out to be 0. So this 
how we become sort of operational in Quantum Mechanics.  
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Now, let us consider two numerical examples for the rest of lecture. To illustrate why we have to 
worry about these things in the molecules and why we do not have to worry about these things in 
real life, in day-to-day life. Let us take two examples, let me read two examples again with the 
particle in a one dimensional box model, the calculations for the two dimensional boxes are very 
similar.  

 So let us consider two examples of molecular systems as illustrative examples of the particle in 
the box model. The first problem: let us consider an electron confined to move in an atom in one 
dimension over a distance of 2 A0 Angstroms. So this gives since it is constrained to move in one 
dimension over a distance of 2 A0 Angstroms the interpretation is that the box length is 2 A0 

Angstroms neglecting the potentials due to other electrons and nuclei for the moment which is 
equivalent to saying that inside the box that the particle is moving with no potential experience 
by it. Of course in the atom there is a positively charged nucleus and the electron moving in the 
absence of the positively charged nucleus is a fictitious problem. It is an imaginary problem.  

What we want to show is where Quantum Mechanics is important and where it is not. So let us 
assume for the moment the electrons and the nuclei do not interact with each other. It is a very 
non chemical assumption but we will do that. Let us calculate the energy levels of the electron 
how are they composed of, you remember that the energy level for the particle in a one 
dimensional box is h2/8mL2 times n2. So let us calculate that with the mass of the electron given 
as 9. 011 times 10 raised to – 31 kilograms, so near substitution of the numbers.  
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En is of course given by (h2/8mL2)n2, h is 6.626 times 10 raised to – 34 joules second and h2 is 
square. And the mass of the electron is 9.011 times 10 raised to – 31 kilograms. The dimension 
given to you is 2 A0 Angstroms or 2 × 10 raised to – 10 meters it is L2. Therefore you have the 
meter square here. So you have kilogram meter square and we want to calculate the energy. And 
at the top you have kilogram (meter)2 (second)−2, joule is (second)−2 times second therefore this 
unit is (kilogram)2 (meter)4 (second)−2. The result is number of joules, 1.506 times 10 raise to – 
18 n square joules where n is the quantum number. Therefore the energy levels are separated by 
this factor. (Refer Slide Time: 41:56 min) 

Now let us draw the energy levels E1 is h2/8mL2, E2 is h2/8mL2 times 4, E3 is nine times this 
whole quantity h2/8mL2 and so on. So in units of this if you call this as a unit of energy E2 is 4E1, 
E3 is 9E1, E4 is 16E1 and so on. Therefore the energy level diagram if you draw and if this is the 
increasing values of energy this is E1 and E2 the difference between E1 and E2 is 3. E2 and E3 is 
5, the difference between these two is 5 because E3 is 9 times the E1. This is the difference 3 E1, 
E3 is nine times E1 and E2 is 4E1 so the difference between the two is 5E1. The next is of course 
E4 is 16 E1. So the difference is 3, 5, 7, 9, 11, and so on. So the energy levels increase with the 
spacing between the energy level increasing.  

The difference between any pair of successive energy level which is 2n + 1 where n is the 
quantum number associated with that pair. Here it is 3 so n is 1, 2n + 1 is 3. So n is 2, 2n + 1 is 5, 
n is 3, 2n + 1 is 7 and so on. Therefore the energies of the particle here are functions of n2 and 
the energy levels difference is of the order of n. With this energy for the electron in the atom 
1.506 times 10 raised to – 18 joule it is a measurable energy it is possible to distinguish such 
energies. 
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So E1, 4E1, 9E1 can be easily separated can be understood you can see them through 
spectroscopic measurements. Thus the discreteness that you have in terms of the energies can be 
directly seen by a spectrometer by a spectroscopy experiment. Therefore the proof of the 
pudding is in the eating as we say in English the proof of the Quantum Mechanical calculation is 
the result that it gives are measured or observed by the experiments and confirmed by the 
experiments. So these are perceptibly different energies. Let us take the next case where it is not 
possible to have such clear distinction.  

(Refer Slide Time: : 45:20 min)  

 

This country is mad after cricket so let us take the cricket ball as an example. This is an 
approximate distance I am not a player of cricket therefore I do not know the actual distance 
between the two ends of the stumps and so on so approximate figure I am going to give you 20 



meters may be it is not, 22 yards I do not even remember what it is. Let us consider a cricket ball 
of mass of 250 grams may be it is heavy or light but it is of the order of magnitude a ¼ kg 
confined to move in a field of length 20 meters. Let us assume that the ball never flies off the 
batsman or off the bowler that the ball is only between those regions and let us ignore the 
gravitation and all other potentials. Let us assume that the ball has only kinetic energy between 
the batsman and the bowler.  

Let us only try to know the energy levels of the cricket ball to give you an order of magnitude 
where Quantum Mechanics is important.  

(Refer Slide Time: 46:28 min) 

 

Again the energies are (h2/8mL2)n2. So, what is our particle now? The particle is a cricket ball, 
what is the box now? It is a box of 20 meters and the two ends of the box are on one side is the 
batsman and other side is the bowler, the ball does not go off either of them. That is not a very 
interesting cricket but we will just see that what that example tells you in terms of energy levels 
of the macroscopic objects. Assuming that and also leaving aside all the interactions that the ball 
has with the ground and so on if we do this simple model calculation you see what kind of 
energies we get. Much as the model itself is ridiculous the energy levels are even more 
ridiculous.  
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En is (h2/8mL2)n2, h is a Planck’s constant, you see this is 10 raise to – 34 joule second square. 
Now the ball is 0.25 kilograms and the length of the box is 20 meters. Therefore the length is 20 
(meter)2 times n2. So, if you calculate all these things you see that the energy levels are a number 
0.549 times 10– 69 impossible to measure no matter what the values of n are so n has to be at least 
1030 or 1040 in order for this energy level these types of energy levels to be perceptibly different 
which means that the discretization of the energies of this ball the kinetic energy of the ball when 
you consider Quantum Mechanics the discretization is so small so immeasurable that it is 
unimportant.  

The motion of the ball can very well be considered by a simple classical mechanical problem we 
do not need the finer details of Quantum Mechanics. Since h is extremely small number 10–34 its 
smallness is a large measure for the atom where you have the other quantities also extremely 
small the mass of the electron is 10−31 kilograms. The length the atomic dimensions is 10–10 
meters.  

Therefore h2/8mL2 becomes a meaningful quantity for the small value of h only when the masses 
and the lengths that you talk about are very small. When the masses or the masses of realistic 
value the lengths or the dimensions that our eye can measure you see that this discretization is no 
longer important that the particle in a box is no longer relevant for the real physical macroscopic 
object problems. Perhaps, that the reason was never discovered.  
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So the conclusion is that E1, 4E1, 9E1 what is 4E1 and 9E1 for this number? This is four times, this 
is nine times, this of course you cannot see any of these numbers therefore they cannot be 
distinguished by any measurement apparatus we have today.  

The energy levels of the cricket ball are continuous for all practical purposes even within this 
trivial model. What this means is that for macroscopic objects we do not have to worry about the 
fineness the grained structure of the quantum mechanical equations we do not need them. 

Classical mechanical equations are sufficiently accurate for us to follow the description. 

Let us review having gone through the last three lectures some new ideas and concepts which are 
quite foreign to us. Let us review them and I suggest some problems for you to do as a back up 
exercise to the lesson that are being broadcast. 

We suggest review problems based on what has been done up to now. The first one, derive the 
normalization condition for the wave function ψ(x) particle in a one dimensional box. What does 
that mean? Show that the integral 0 to L, sin2n(πx/L) dx = L/2. This is the normalization 
condition and this is what we used in writing the wave function as √2/L sin nπ x/L.  
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The next problem is; does the wave function have a dimension like length, mass, time does it 
have any dimension? If it does then what are the dimensions for the wave function for 1d box 
and 2d box problems? Can you generalize this to n dimensions? The answer is the wave function 
has dimensions but you can find out what the dimensions are or please refer to text books 
accordingly. The third question is on the average values. The average value for the particle 
position x is given by the integral limits 0 to L in one dimension 2/L ∫sin2 (nπx/L) x dx.  
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The value for x, what is <x>? The average value or if I give you the answer verify that the 
integral gives you that answer the answer is of course <x> is L/2. 



The fourth one: think before you do this, what is the average value for the energy of the particle 
in the one dimensional box?  
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Now, if you recall our definitions for the <A> is ∫ψ*(x) A ψ(x)dx between 0 to L because for the 
particle in the 1d box denominator is of course is equal to 1. Let us write this out anyway, this is 
anyway is equal to 1.  
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So when you talk about the average value for the energy what is the operator that you want to 
use you have to use the Hamiltonian operator. The operator associated with the momentum is –iħ 
d/dx.  



The operator associated with the energy is of course the Hamiltonian. The operator associated 
with the position is x. Likewise when you want to calculate the energy <E> and if you put the 
Hamiltonian operator ∫ψ*(x) Ĥ ψ(x)dx between limits 0 to L you should not be deriving the 
integral but use the class lectures to write the answer immediately, that is the challenge. The fifth 
problem is calculating these quantities for the particle in a two dimensional box. These quantities 
like the average value of the position x the average value of the position y the average value for 
the momentum etc for the particle in a 2d box, 2d box problems.  
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And lastly, of course as a model let me define an error in the position measurement by the 
quantity Δx the error as square root of the average of the square of the position minus square of 
the average value for the position, √ (<x2> − <x>2).  
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Calculate Δx average I should write this as the average value for <Δx> itself. Calculate Δx for 
the particle in a one dimensional box. Also defining the average value for the momentum Δp as 
√p2 average value minus the average of p2, calculate Δp. 

What is your result for the product <Δx> <Δp>?  
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