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Welcome back to the lectures on chemistry as part of the National Programme on Technology 
Enhanced Learning funded by the Ministry of Human Resource Development. This is the series 
of lectures given to students in their college years in engineering and in basic sciences.  
 
The Chemistry module we will continue today is the same as the atoms and molecules. In the last 
lecture if you recall, I introduced the idea that Quantum Chemistry is fundamentally important in 
understanding why molecules form, why molecules undergo transformations to form various 
newer species and how do we understand the structure, properties and the chemical 
transformations of molecules, how do we do this from first principles. If you ask these questions 
then Quantum Chemistry provides the answers. Therefore, the first model on the atoms and 
molecules is meant to expose the use of Quantum Chemistry techniques. I was categorical in the 
last lecture that we are not trying to understand Quantum Chemistry or Quantum Mechanics but 
rather we are trying to follow through a prescription or a procedure by which we use the rules of 
the mechanics and hopefully over a period of time that we will understand why such rules came 
into place. 
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Before I begin my lecture let me welcome you with this acknowledgement to the National 
Programme on Technology Enhanced Learning, my name is Mangala Sunder, Department of 
Chemistry Indian institute of technology Madras in Chennai. 
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We will start studying model problems in Quantum Chemistry and we will start with the simple 
free particles in one and two dimensions. But before we do that, let me just recollect to you some 
of the most important names in Quantum Mechanics. In today’s lecture I will give you names of 
some of the important founders of the mechanics and in subsequent lectures I will also introduce 
you to the illustrious Chemists who have contributed to all our knowledge as of today. 
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The people who made our understanding of the atoms and molecules possible, a few names most 
important ones Max Planck, we introduced Max Planck in the last lecture through his constant 
and his phenomenon of the black body radiation. Albert Einstein, undoubtedly the most famous 
Physicist ever to have lived in the last century whose contribution to Physics in general and to 
Quantum Mechanics in particular are unparalleled. 
 
(Refer Slide Time: 04:25 min) 
 

 
 
Niels Bohr, a Danish Physicist whose name is familiar to all of you from your high school 
textbooks on the planetary model of the hydrogen atom the orbits of the electrons in the 
hydrogen atoms. We recall Niels Bohr who was the first to apply the quantum hypothesis to 



understand the spectra of hydrogen, the line spectra of hydrogen in terms of the lyman series, the 
balmer series, the paschen series and so on. We recall that there was a famous constant called the 
Rydberg constant which Neils Bohr explained through fundamental methods. Louis de Broglie, a 
French Physicist brought in the idea that matter can be treated as both particulate as well as 
wavelike. So this wave particle duality eventually led Erwin Schrödinger the Austrian Physicist 
to ask questions such as what are the governing dynamical equations for substances which 
behaves both wave like and particle like. Louis de Brogile was the founder of this matter the 
wave ideas. 
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Max Born is seen on the left hand side. Max Born’s contributions in Physics in general are very 
well known but in this particular reference to the Chemistry it is his interpretation of the quantum 
mechanical wave function. This absolute square of the wave function is being identified with the 
probability density of the system. We will see those things a little bit more in detail. Werner 
Heisenberg, very well known for his uncertainty principle, we must have heard the joke that the 
Heisenberg may have been here to indicate the uncertainty associated with position and velocity, 
position and momentum, it is a corner stone of Quantum Mechanics. 
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Erwin Schrödinger, the most important name for all the chemist because all the chemists 
quantum chemist, computational chemist, the ones who do theory the ones who tries to 
understand Chemistry from first principles have to solve the Schrödinger equation , have to 
understand how to solve Schrödinger equations both analytically and through the use of 
computers. 
 
Paul Dirac, the man on the right hand side contributed to the development of Quantum 
Mechanics through His relativist theory of electrons. His contributions, in fact he made such a 
famous statement that all of the mechanics as is necessary for the applications of the Chemistry 
are well known and it is only a question of computational difficulty that we will have to 
surmount. Paul Dirac’s name is very famous among computational chemistry for the statements 
he made and for the developments in computational chemistry which has happened in the last 50 
or 60 years. People understand that Dirac gave the basic formulation in terms of unifying 
Quantum Mechanics through his ever famous book called the Principles of Quantum Mechanics. 
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Wolfgang Pauli is the other person that again Chemists know. Pauli’s exclusion principle in your 
high sdhool when you build up the electronic structure of an atom by adding electrons to various 
orbitals you are told that no more than two electrons for any orbitals, no two electrons can have 
all the same four quantum numbers. That is one of the many important things that Wolfgang 
Pauli did and which is fundamental to the atomic structure in Chemistry. Let us go back to the 
lecture that we have today, namely the model solutions of the quantum problems that we 
introduced, the Schrödinger equation that needs to be solved for simple models and from the 
models we try and understand the results in terms of simple physical pictures. And we see that 
the pictures that come out of the solutions are quite different from what we are familiar from our 
realization of what happens around us, what happens in the atoms, in sub atomic, in microscopic 
domain, microscopic dimensions seen so strange that we have to see this only through the 
Mathematics and the corresponding solutions of the mathematical equation as proposed by Erwin 
Schrödinger. 
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So, let we summarize the contents of today’s lecture before we go into the details. We will solve 
the free particle in the box in one dimensional model problem and also in a two dimensional 
problem. And given some time, I would like to give you pictorial representations of the wave 
functions and squares of the wave functions. Let me recollect from the previous lecture the 
Schrödinger equation that we wrote down for a particle in the one dimensional box. You recall 
that there was a kinetic energy term −ħ2/2m (d2/dx2), the operator corresponding to the kinetic 
energy plus the potential energy, V(x) of the particle or of the system that we are interested in the 
potential energy experienced by the particle. All of this was called the Hamiltonian, H which 
represents in classical mechanics this total energy of the system. Quantum mechanical kinetic 
energy plus the quantum mechanical potential energy acting on the wave function Hψ(x) = E 
ψ(x).  
 
This is the equation governing the wave function ψ(x). If we know the particle’s mass and if we 
know the potential energy that the particle is facing then we are able to formulate the 
Hamiltonian of the system but then we have to solve the differential equation Hψ = Eψ where E 
is a constant. This is a model problem. 
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Now, why is particle in a 1D box for chemist? Think about a simple system like conjugated 
polyenes, alternating single and double bond structures. Polymeric if you want to the simplest 
structure for this is butadiene then of course you can put the hydrogen to ensure that the chemical 
bonding of carbon is taken care of. The π-electrons which are in the double bonded structure, the 
π electrons are easily modeled to a first approximation by an equation similar to that of a particle 
in a 1D box equation. If you want to know something about what these molecules do when they 
absorb light or when you excite them where the electrons go and things like that then to a certain 
approximation we can understand all of them by solving the Schrödinger equation for a one 
dimensional particle in a box. Therefore, the relevance is in trying to understand a corresponding 
chemical system. 
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The particle in a 1D model is of course −ħ2/2m (d2 ψ(x)/dx2)+V(x) ψ(x) = E ψ(x). But with a 
specific requirement that this potential vanishes in a small region 0< x <a is the region or the box 
or the length of the box. If the particle moves in one dimension x the length of box is a, you see 
that the potential is 0 in that region and the potential is infinite otherwise so that the particle does 
not escape the box. 
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Simple pictorial representation of the box is something like what you see here. The particle 
moves inside this region, what I had is ‘a’ there in the equation is replaced now by L is length of 
the box, 0 to L, x is the variable the particle is moving in a one dimensional motion. We do not 



know where it is, we all know that it is inside the box it cannot escape the box in that the 
potentials at the ends of the box are infinity, infinite, repulsive so that the particles stays inside 
the box. This is the model we want to solve. Now let us go back to that equation. Since V is 0 
inside the box we can simply rewrite this equation as −ħ2/2m (d2ψ/dx2) =E ψ or we can bring the 
constant to other side and then bring the whole thing back to write this equation as d2ψ/dx2 
+(2mE/ ħ2) ψ(x) = 0.  
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The energy of a moving particle is always positive and therefore this particular constant is 2mE/ 
ħ2 where ħ is h/2π where h is a Planck’s constant. So this equation is, to represent it in simple 
term is d2ψ/dx2 + k2ψ = 0. The particle in the one dimensional box gives you with this kind of an 
approximation gives you the simplest Schrödinger equation to solve. Even from the simplest 
Schrödinger equation some of the consequences that you draw from the solution are rattling, they 
are difficult to recognize as anything familiar. Therefore, even a simple model like this has in it 
the newness, the discreteness of the energy coming out of it as we see in a few minutes. The 
solution of this equation is a simple mathematical equation. It is ψ(x) =A cos(kx)+Bsin(kx), 
using the real functions, where k is of course I have told you k2 is 2mE/ ħ2. If you do not know 
how to get this solution, my suggestion is that you substitute this solution in the above equation 
and see that this ψ(x) satisfies this equation.  
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dψ/dx ,if you recall when ψ is A cos(kx)+Bsin(kx). You know what is dψ/dx. It is – k A sin kx + 
kB cos kx. Therefore, the derivative d2 ψ/dx2, the second derivative is – k2A cos kx – k2B sin kx. 
Which is nothing other than – k2 ψ(x). Therefore, you see that the equation is the same as what 
we started with d2ψ/dx2 + k2ψ = 0. Therefore the solution makes sense, the method of solving 
how we get all these things is not necessarily part of the Chemistry course but you have to learn 
Mathematics at the same time to solve simple differential equations, let me leave that. Our point 
is to make sense out of the solutions as said earlier.  
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Now, given that the wave function is A cos kx + B sin kx. And given the model if you recall the 
model V is ∞ at the ends of the box, x = 0 and x = L. And if we are solving the Schrödinger 
equation for the particle inside the box and we say that ψ(x) is the solution. Then the presence, 
this is infinite potential means the wave function goes to 0 at x = 0, the wave function vanishes, 
goes to 0 at x = L that is a model. Therefore the two conditions that we have ψ(x) =0 at x = 0 and 
ψ(x) = 0 at x= L. These are the two conditions that we have to remember. Since these two 
conditions refer to the motion of the particle with respect to a boundary. You can also call these 
as boundary conditions because the particle is bounded by these two limits.  
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Therefore, let us apply these the boundary conditions to the solution that we have ψ(x) =A 
cos(kx)+B sin(kx) is such that it vanishes at both the boundaries of the box. Let us take x = 0, 
ψ(0) should be 0 and that means A cos(0) + B sin(0) and sin(0) is 0 therefore this term goes 
away. cos(0) is 1. Therefore this is A implies A = 0. One of the two constants is removed by one 
of the boundary conditions. The next condition is ψ(L) = 0 and that implies now since A is 0 you 
recall ψ(x) is B sin kx only. Therefore what is ψ(L)?. ψ(L) is B sin(kL) and this has to be 0 as 
required by the boundary condition. ψ(L) is 0, the wave function vanishes at the other boundary.  
 
Again it is a very simple choice if you want to make, now B can be 0, but the point is if B is 0 
and A = 0 then ψ is a trivial solution is a useless solution. After all this differential equation is 
always satisfied by the trivial requirement that ψ is 0. We are not looking for trivial solutions. 
We are looking for non trivial solutions. Therefore with the condition that B is not necessarily 0 
then ψ(L) goes to 0 only if sin(kL) goes to 0. And that is easy to understand because you what a 
sin function does. A sin function when you plot sin of x as you go from x = 0 or to all the way up 
you see sin(0) is 0, sin(π/2) is 1, sin(π) is 0, sin(2π) is 0, sin(3π) is 0 and so on. Therefore you see 
that the condition kL sin(kL) = 0 implies kL = nπ, where n = 1, 2, 3, 4 etc. Again n = 0 is not 
acceptable for the same reason that B = 0 is not acceptable. So kL = nπ is the requirement that 
you get by solving the Schrödinger equation with the boundary conditions that the wave function 
vanishes at one end of the boundary as well as at the other end of the boundary.  
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So let us write the solution carefully. Therefore k= nπ/L, k2 = n2π2/L2. Now these are purely 
mathematical equations. Now, the equation was ψ(x) = B sin (nπ /L)x.  
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Interesting thing is k2 which we wrote earlier for 2m E/ħ2 is now n2π2/L2 where n = 1, 2, 3 etc. 
Values of n other than integers are not allowed and what is this I told you the total energy, E = 
ħ2n2π2/L2 2m. Now you know that ħ2 is h2/4π2, where ħ is h/2π. Therefore, the final expression 
for the total energy, E = n2 h2/8mL2. So the energy of the particle is the possible solution for the 
equation Ĥψ =Eψ.  
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Now for this particle in a box model with the boundary conditions that ψ(x) is a sin function 
vanishing at the ends of the boundary. But the possible energies that the particle can have now 
are discrete values, not possible for any value of n but only n = 1, n = 2, n = 3 and so on. So the 



energy solution for the particle is h2/8mL2 times n2, an integer. Therefore it is 1, 4, 9, 16, 25 
times this constant h2/8mL2. These are the possible energies for the particle. Therefore the 
discreteness of the energy of the particle appears immediately as a requirement of the boundary 
conditions.  
 
The quantization of the energy of the particle, the quantization of the moving electron in a 
conjugated diene, the electron cannot have any arbitrary energies but if it is bounded by the 
requirement that it stays with the molecule that it does not fly off from the molecule. That 
boundedness requires the electrons to have only specific energies. We are talking about 
Chemistry that we are not talking about the particle in a box only. That is some model which is 
applied to the chemical problem should give you results which are in tandem with the chemical 
observations.  
 
Therefore the simple model which gives you discretization or quantization of the energy arises, 
this discretization arises because of the requirement of the boundary conditions. Therefore 
boundary conditions impose quantization. The second thing, we have solved for ψ(x) as some 
constant, we still do not know what that constant is, we have B sin nπx/L and energy is given by 
that. But before I do that let us just check when we write the energy as h2/8mL2 times n2. h is 
Planck‘s constant, typically of the order of 10 raised to – 34 joules second, h is joules sec and 
you recall joule is kg (meter)2(second)−2. Therefore h is kg (meter)2(second)−1. h2 has a 
dimension that [kg(meter)2(second)−1]2 , m mass of the particle in kilograms.  
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If you talk about atoms if you talk about electrons the mass is approximately of the order of 10 
raised to – 30 kilograms. If you talk about atoms the masses are approximately in the range of 10 
raised to – 27 kilograms again extremely small. But you see that these numbers are no longer so 
small or so big compared to the height of the Planck’s constant. m has the dimension of 
kilogram, L length with the atomic dimensions, all of you know is of the order of the Angstroms 
10 raised to – 8cms, i.e. 10 raised to – 10 meters. this unit h square by m L square leave the eight 



out what is the dimension kilogram square meter to the power four second to the minus two by 
kilogram mass L square is meter square so get all this things out you a get kilogram you get a 
meter square kilogram meter square per second square . So, if L has the dimension of meter and 
h is kg (meter)2 (second)−1 and mass is kilogram. (Refer Slide Time: 30:00 min) By substituting 
all these dimensions, we get the unit as kg (meter)2 (second)−2. Therefore that has the same 
dimension as the energy.  
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This is the unit of energy for the particle in a box, h2/8mL2 is the unit times n2. The quantum 
number, n the discrete integer with 1, 2, 3 as the possible values which we call as quantum 
numbers because it represents the quantization of energy gives you the energy of the particle 
inside the box. Then what about the wave functions? Here, ψn(x) = B sin (nψx/L). Let us do this 
for n = 1, ψ1(x)= B sin 1πx/L meaning that whatever is the value of n that is the same value. So, 
ψ1(x) = B sin πx/L.  
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It is easy to plot this equation, and it is a sin graph between the limits 0 and L. It is a half sin 
wave vanishing at both ends and by this we get the value of B. (Refer slid time 31:54 min). What 
is the meaning of ψ? Nobody knows that ψ has an interpretation. When we solve the Schrödinger 
equation we will have a lot of difficulty in trying to understand the solutions of the Schrödinger 
equation but with a clear conscious mind that ψ does not have an interpretation and that the 
solution we have obtained does not have a meaning. Using ψ but rather the ψ2, i.e. ψ × ψ and if 
the wave function is complex using the absolute ψ2, Max Born provided the interpretation that ψ2 
evaluated in a small region of space is same as the probability of finding the system in that space.  
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What is the meaning ψ?  
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If the wave that we have right now is a sin function but if it is a complex for the some other 
problem the absolute square of ψψ* calculated in a small region of space dτ represents the 
probability of finding the system in a small space dτ. This is the interpretation provided by the 
Max Born. And if you think it is hard you must also understand that Erwin Schrödinger who 
proposed this equation for solving the atomic systems dynamics as well as the stationary energy 
levels. Schrödinger himself did not get the role of ψ correctly. His proposal of what ψ means was 
in fact turned down. 



And several years later it was Max Born who gave the correct interpretation which is now 
accepted universally as the interpretation for the wave function. The ψ does not have a meaning 
but the absolute value of square has a meaning related to the probability.  
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Now, we talk about this small space here, if you recall the particle moves in the box between x = 
0 to L. Therefore for this coordinate any small region is dx, the length dx is intermediate. 
Therefore you calculate the wave function ψ(x) at that point and then interpret the absolute 
square of the wave function. |ψ(x)|2dx represents the probability of finding the particle in the 
small space between x and x + dx. The meaning of ψ is none, the square of the absolute value of 
ψ (since in our case it is a real function) is ψ2(x)dx , represents the probability of finding the 
particle in the region bounded by x and x + dx. It is ψ2(x).  
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Therefore we have a wave function ψ which is a sin function. So we can calculate ψ2 which is 
nothing but the (sin)2 function and we plot (sin)2 as a function of x and then you see that in each 
small region or a strip narrow space that the value of ψ2 gives you the probability of finding the 
particle in that region. If ψ(x) is B sin (nπx/L) where B is a constant then ψ2 is obviously B2 
sin2(n π x/L). So, if you plot that, this is nothing again another oscillatory function, it is a sin2 
therefore it is between 0 and L which is probably something like that. Now, x-axis is x = 0 and x 
= L. What is on y-axis? The maximum value on y-axis is B2 now. The probability of locating the 
particle in a small region between x and x+ dx, and for x is equal to some value here. This small 
region, ψ2dx representing the area of the ψ2 graph in this small space.  
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 Since x is a continuous variable you can represent the probability in any small region of space 
by choosing that value of variable. Therefore what happens is if we add all these probabilities 
that particle here is anywhere in these anyone of the small regions. (Refer slid time 38:17 min). 
Let us add all these probabilities what should we get? That is important because you recall that 
the potential was taken to be infinite at the ends of the box to ensure that the particle stays in the 
box.  
 
Therefore, if you calculate all these probabilities in every region if you calculate the total area of 
this graph, it is like finding the particle anywhere between x = 0 and x = L which is absolute 
value absolutely certain value can be one. Therefore, when you add all these small areas that is 
equivalent to ∫ψ2(x) dx between the limits x = 0 and x = L and that should give you an absolute 
value of 1, certainty. There is no leakage of this particle outside through the boundary, the 
boundary is too steep. Therefore this rigid model first of all gives us a picture of how things are 
different in the quantum world as suppose to the classical mechanical world. 
 
Unfortunately for a chemist all the atoms and molecules that we talk about are microscopic in 
dimensions and they do follow the quantum principles. You have to excite the atoms and 
molecules to a very large value before you think about applying the classical physical laws. 
Spectroscopy for example you have to study this quantum principle in order to understand basic 
standards of spectroscopy. Now, ψ2(x) dx = 1. This tells you immediately that between x = 0 to x 
= L. B2 sin2(n π x/L) should be equal to 1. This is an elementary integral.  
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All of you should know how to solve that. So I leave that an exercise but the answer is B2 ×L/2 = 
1. The value of the integral is L/2. Therefore what is B? It is equal to √ 2/L.  
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So, simple particle in a one dimensional box model now what you have is these two ideas 
namely that the energy is quantized the energy of the particle if you measure it should be one of 
the values that we wrote down h2 n2/8mL2. The wave function is has the meaning that the 
absolute square of the wave function in a small region gives you the probability of finding the 
particle in that region.  



Let me summarize that, therefore the solutions of the particle in a one dimensional box are 
solutions for the Hψ = Eψ, ψ(x) = √ 2/L sin(nπx/L) and E is h2 n2/8mL2 where n = 1, 2, 3 etc. 
Therefore when you try to solve this Schrödinger equation Hψ = Eψ, you did not get one 
solution. You got an infinitely many solutions. So n can be any value from 1, 2, 3,….. ∞. 
Therefore the corresponding wave functions are also there are infinite numbers of such wave 
functions. Therefore the advantage in solving the Schrödinger equation is that you will obtain all 
the solutions you need to know.  
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Therefore ∫|ψ(x)|2dx= 1in between the limits x = 0 to x = L is nothing is often known in quantum 
mechanics as a normalization condition. The normalization condition merely refers to the fact 
that the total probability of finding the system with that wave function everywhere in that system 
should be unity. That is the normalization condition adding all the probabilities and that 
immediately gives you a value for the B in terms of the dimensions of the problem in the 1/√ L, 
the length.  
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You can see here the wave functions plotted for various values. n = 1, already drew this as a half 
wave, sin wave. When n = 2 you see that wave function is a full wave function. Let us plot the 
wave functions, sin π x/L is a half sin wave, sin 2πx/L for n = 2 when x goes from 0 to L then sin 
2πx/L goes from sin 0 to sin 2π therefore it is a full sin wave function. Therefore it goes 0 at half 
of the point. And the next one is sin 3πx/L which is a one and half sin wave. So what you have is 
a one and half sin wave.  
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Now that is for the sin wave. What about the sin2 wave which represents the probability? Here 
there is no negative part. The sin square is looking like that, This is sin square pi x/L. The sin2 



(πx/L) is looking like sin πx/L. Therefore sin2(2πx/L) now has a node which is at the middle, no 
negative part with two equal halves and sin2(3πx/L) has three such equal halves, one thirds and 
sin2(4πx/L) has four one fourths and so on which is what you see in this slide.  
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The above slide shows the sin2 wave, here the first one is sin2 (πx/L) and second is sin2(2πx/L) 
and then sin2(3πx/L) , sin2(4πx/L) and so on. (Refer Slide Time: 45:16) sin pi x sin 2 pi x/L sin 
square pi x sin square 2 pi x/L 3 sin square 3 4 sin square 4 and so on. So this goes on and on as 
the n value increases to very large values. You will see that the graph has practically lots of 
oscillations but very tightly placed that when you try to measure the probability in any small 
region for particles with such large values of n you will get a uniform probability independent of 
the region which is the same as the classical ideas. 
 
That is for large values of n we do not need to solve the quantum mechanical equations the 
classical mechanical equations and the concepts of classical mechanics makes sense. This you 
must have also recognized something as the Bohr’s correspondence principle where quantum 
mechanics and classical mechanics meet. Anyway these are not important for us right now. We 
are looking at it from the point of view of the solutions of the chemical systems. The summary 
for the 1D box now is that the wave function is √2/L sin nπx/L and the energies are (h2/8mL2) n2. 
Particle energies are discrete and particle position inside the box is given by a probability 
description.  
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Let us digress for a minute the probability idea, let me play this movie for you and explain what 
this movie does. Let us assume that we are able to follow the motion of the particle by looking at 
a narrow window inside the box at any point of time. Assuming that all other things to be 
identical if the particle moving with a constant velocity inside the box as we would expect if 
there is no potential energy, Newton’s first law tells you particles in motion will continue to be in 
motion, particles in rest will continue to be in rest, there is no potential there is no force therefore 
the particle will continue to move with its velocity constant.  
 
Therefore if we try to locate the particle by looking at any small region, ∆x1 which is given by 
this band the probability that we will find the particle in ∆x1 is given by this ratio ∆x1 the 
window divided by the total length of the window that is the box length itself. So, P1 = ∆x1/L. 
This is the classical picture that we have in terms of locating the particle in terms of the finding 
where the particle is probably to be present. There is one more movie, and what is important is 
that this P1 = ∆x1/L (Refer Slide Time: 48:21) is independent of where the ∆x1 is and that is 
what the strip which is moving around will tell you whether the ∆x1 is centered at this point or it 
is centered here or it is centered here it does not matter as long as the ∆x1 is same the with the 
probability is the same value.  
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If we increase that band obviously the probability is now much larger and if we can look at the 
whole box we will anyway locate the particle. But what is important in the classical idea is, that 
is independent of the particles velocity, independent of the location of the particle inside the box 
the probabilities are the same so long as you are looking at the narrow region of the same length 
in various elements, this is the classical idea.  
 
Now, what you get out of the quantum mechanical picture? What you have here is on this side 
the right hand side of your picture where you see that this graph represents the particles the ψ2. 
Therefore this is the probability density graph this is not the same everywhere meaning the 
likelihood of locating the particle in this small region is different from this region if the particles 
energy is E1 namely h2/8mL2, n is 1. If n is 2 the particles energies are now different and the 
probability density curve is also different. It is not only not the same in all regions it is also 
different for different energies of the particle. So you see that the quantum mechanical picture if 
the electron to be closely to be located from the hydrogen nucleus the likelihood of finding the 
electron in a region close to the nucleus the likelihood of finding the same electron in a region 
farther away from the nucleus they are not going to be one and the same if we have to follow this 
wave function picture.  
 
Second, even if the electron has the same energy in one orbit for example the analog of boron, in 
different regions of the electrons domain with that same energy the electron is likely to be 
located with different probabilities. Therefore you see the quantum idea the Schrödinger 
equation introduces concepts which are foreign to us. Quantum mechanics itself is a sort of a 
strange idea and the derivations from that give us really strange results which we cannot 
comprehend.  
 
The only way to see that these results are no longer strange is by knowing more and more about 
similar systems by solving more difficult problems and interpreting our results along these lines 
and then finally coming to the agreement that even if I do not understand Quantum Mechanics I 



know how it works. Given a problem I know how to solve that problem and I would be able to 
obtain the solutions for electron densities in a molecule. Eventually that is what we want to do as 
Chemists is two map out the electron densities of the electrons in various atoms and molecules 
and show where are the electron depleting regions where are electron enriched regions where is 
the bonding is the bonding directly related to electron density present in that region or a 
depletion of electron density means no bonding, anti-bonding. 
 
But how do we interpret them using the quantum mechanical ideas? Since we want to get to that 
point as quickly as possible we have to show the basic Mathematics. This is particle in the box 
model it gives you two important concepts namely discretization of the energy as a function as a 
result of boundary condition and that the probability densities being different for different 
regions.  
 
(Refer Slide Time: 52:52 min) 
                                                                                                  

If we have to extend this idea of the motion of the particle in a one dimension to the motion of 
the particle in a two dimensions namely in a plane not along a line but in a plane if you have to 
do that then corresponding expressions for the kinetic energy of the particle if you recall that –
ħ2/2m d2/dx2 represented the momentum (px)2. And in two dimensions what you have is the 
momentum of electron or the particle moving in a plane is not (px)2 the momentum p2 is (px)2 

+(py)2. You recall the momentum p is a vector with px as the component along the x direction 
and py as the component along the y direction and the absolute square, p square is nothing but 
the p dotted p vector.  
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So now you have two components of momenta in two mutually orthogonal directions. Therefore 
this term which is unique for a particle in one dimension has to be modified to be written such 
that you have the two dimensional kinetic energy –ħ2/2m (∂2/∂x2 + ∂2/∂y2). This is the analog 
now of the classical mechanical p square for a two dimensional system. It is a partial derivative 
now meaning that whenever you evaluate the function under this derivative you keep the other 
variable constant. This is the kinetic energy operator for a particle in a two dimensional box. And 
obviously the particles potential energy is now a function of both the coordinates x and y because 
the position of a point in a plane is given by two coordinates. Therefore the potential that the 
particle experiences at that point is given by its value for both these coordinates. Therefore V is 
now a function of x and y. This V(x ,y) is the potential energy.  
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Therefore the Schrödinger equation for this particle is now becomes for the solution Hψ = Eψ. 
To written explicitly the equation is –ħ2/2m (∂2/∂x2 + ∂2/∂y2)ψ(x ,y). The wave function is the 
function of both the variables x and y plus V( x, y) times ψ(x ,y) equals to Hψ = E ψ( x, y). This 
is the equation that we have to solve, a motion in two dimensions. This is for a particle in a two 
dimensional box.  
 
(Refer Slide Time: 56:07 min) 
 

 
 
Some of you might be worried about the fact I am drawing a two dimensional box and I call this 
as a one dimensional model and therefore if I have to draw a two dimensional box model it has 
to be a cubic what does this mean?  



The one dimension here represents the variable with respect to which we are solving the 
Schrödinger equation. We are solving an equation in one variable that is what we call as the 
dimension.  
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This is only a boundary to indicate that the particle cannot escape the box. Therefore, in a two 
dimensional motion likewise what you need to do is not to write a line but a box somewhat like 
that. And perhaps can just tell you that this is something like a box. So now you talking about the 
motion of the particle in two dimensions referring to the fact that one of them is the x variable 
the other is the y variable the position of the particle in this plane or any plane is what is meant 
by the model problem particle in a two dimensional box. 
 
So let me summarize today’s lecture. We introduced to the model problem of particle in a one 
dimensional box and its relevance to Chemistry in terms of following the electron energies in a 
specific example being that of a conjugated dyeing system. There are many other similar 
instances in Chemistry where this model has to be solved. But our purpose is having associated 
the solution with a corresponding chemical problem we went through the motion of the solution 
of the system and what is the meaning associated with the wave functions or its absolute square 
and the fact that the energy is a discrete quantity how do we arrive at that saying that the 
boundary conditions are important for the discretization of energy.  
 
These are the things we have to remember as the consequences of solving the model problem and 
the results being different from our classical perception of the dynamical motion of the particle 
in the sense of classical methods. With these differences in the next lecture I would continue to 
illustrate the particle in a two dimensional box and there will be one surprise namely the concept 
of degeneracy that will arise when we solve the particle in two dimensional box in addition to 
everything that we had done now namely the quantization of energies, the probability description 
etc.  
 



But in addition to that we will have what are called the degeneracy that will arise and therefore 
that is important to recognize as the next important step and till then thank you very much. 


