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So, let us recapitulate where we ended last time. The Maxwell equations implied that you had 

two equations for scalar and vector potentials del dot A plus del square phi equal to minus row 



over epsilon naught; this is the first equation. And the second one was one over c square delta 

phi over delta t plus del dot A, was there a gradient of this outside, gradient of this plus instead of 

del square let me write box A equal to the right hand side mu naught j; is that a plus sign or a 

minus sign, plus sign, where this box is l one over c square d 2 minus del square. It is the four 

dimensional analog, it is the analog and the space time as we will see when we do relativity of 

the Laplacian operator. This operator which I just call a box is more properly called the 

d’Alembertian analogous to the Laplacian and as I said it is the wave equation essentially the 

operator that governs the wave equation. 

So, if you did not have this it would just be the wave operator on A equal to mu naught j. These 

were the two equations and then I pointed out that this set of equations is true for every pair of 

potentials A and phi. So, the same equation is true if you had A prime phi prime everywhere and 

so on and you could choose the A and phi in such a way that del dot A was equal to zero, could 

always do this and that was gauge invariance. So, in the Coulomb gauge del dot A is equal to 

zero. Of course that does not fix uniquely A itself because you could always add to this A 

something once again something which satisfied del dot that new vector field equal to zero and 

of course you will still be in the Coulomb gauge. So, it is a family of gauges really. 

In the Coulomb gauge this thing goes away and then you are left with Poisson’s equation. Now 

how do you solve Poisson’s equation? The only point you have to remember here is that this will 

imply del square phi of r comma t equal to minus rho of r t minus rho the function of r and t over 

epsilon naught and there is t dependence but then I am going to argue that this t dependence is 

just a spectator because whatever t appears on the left appears on the right as well and this is true 

for every t. You could treat this t as a parameter in this equation and really what you have to 

worry about is the r dependence the fact that this is a partial derivative with respect to space 

variables and that is the leading a function of r on the right hand side.  
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Now let us go right back and see what we know from Coulomb’s law for a single point charge. I 

know that if you have a single point charge at the origin and I ask what the potential is at any 

point r in space, this is the scalar function, this is the electrostatic solution we are looking at just 

Coulomb’s law and what is this equal to, what is the potential at any point? It is q divided by 4 pi 

epsilon naught r. That is the potential due to a single point charge at the origin and that is 

Coulomb’s law. Now of course if you had many charges you would superpose the potential due 

to each of these charges and that would be the answer. So, once again I have for example some 

charge density on the right hand side, I superpose that each of these objects and then an equation 

of the form del square phi of r is equal to rho of r divided by epsilon naught minus.  
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This kind of thing is solved by saying that phi of r at any point r is equal to an integral over all 

the charges that you have and if the charge is at some point r prime then it is rho of r prime d v 

prime volume element at the point r prime divided by 4 pi epsilon naught modulus r minus r 

prime that is the solution. If you have a distribution of charges in space somewhere and this is a 

typical point r prime and you are asking for the potential at a point r, then all that matters is the 

distance between r and r prime multiplied by the volume element of charge here that is rho of r 

prime d v prime integrated over all r prime. So, the entire extent of the charge distribution and 

divided by this kernel mod r minus r prime. So, I know that the solution to this equation is that 

that is the free solution and the solution is the one that is appropriate of saying phi of r vanishes 

at r equal to infinity. 

So, boundary conditions have been put in, in writing that solution down and the boundary 

condition that has been put in is that phi vanishes when r tends to infinity when the distance 

tends to infinity. So, with that boundary condition, I know that this Poisson equation has that 

solution. Of course, if you specify finite boundaries and the potentials on the finite boundaries 

and so on, you must change the solution to Poisson’s equation, but this is a free solution, and I do 

the same thing here. Now the fact that this is a mathematical equation which has phi of r comma 

t equal to rho of r comma t is completely irrelevant as far as this free solution is concerned and it 



is quite clear that for every t this equation is true. So, I could certainly write this in the right hand 

side 

Sir second order equation, that is right, how many boundary conditions do you need? Good 

point, the second order differential equation how many boundary conditions do you need? Well, 

in the theory of partial differential equations all second order partial differential equations have 

been classified and such equations you have to specify you have to find out first whether it is 

well posed or not, whether the solution exists or not, whether its unique or not. It turns out that in 

this case this kind of equation is called an elliptic equation in this theory. It suffices to specify 

phi at all points at infinity, so really it is an infinite number of points and what I am saying is that 

the boundary conditions specified is that phi of r tends to zero as mod r tends to infinity. And of 

course that is such spatial infinity in all directions that is like a big boundary. So, imagine the 

surface all these charges are enclosed inside some finite sphere and then you let the radius of the 

sphere go to infinity impose the boundary condition that on the surface of the sphere the potential 

is zero, then it is a well posed problem. 

What if the boundary is finite? Pardon me. That is what I said if the boundary is finite if for 

example somewhere you have a plate and that plate is earthed and the potential on that is zero 

then that is not the solution to Poisson’s equation. You have to ensure that you add extra terms to 

it in order to make the potential zero at this point but we are talking about free space and we are 

talking about free boundary conditions at infinity. These are natural boundary conditions at 

infinity the potential is zero. Then this is the solution but this is only for illustration. The point I 

am making is that, given a set of boundary conditions appropriate set you can solve Poisson’s 

equation; that is all I am trying to say and I wrote the solution down without actually trying to 

solve this equation. The simplest way of solving this would be to go to Fourier transforms and 

then this del square operator would just get multiplied by k square and then you invert the 

Fourier transform and so on. Since that would be a course on Green’s functions in partial 

differential equations I do not want to do that right now. 

Sir, is there a retarded potential? Pardon me. Since it is a referent of time, now he has brought up 

an interesting point which is what I was going to do, he has anticipated me. You see I have 

convinced you that if you did not have this t dependence electrostatics Coulomb’s law we know 



is actually valid and therefore that is the solution and now I argue that for every t this is true 

because t just acts as a spectator and then let me paraphrase the question which I think is going to 

bother him its bothering him and that is the following. This potential leads to the field because 

the physical field E depends on this potential. Now the rho of r prime t is over the entire charge 

distribution at every point in space. Suppose I have a charge distribution on the other side of 

environment or galaxy and somebody there changes it. The potential here is affected 

immediately because you see no matter how far r prime is from r, if this potential is changed a 

little bit from the other side of the galaxy, then the potential here is affected immediately and this 

seems to violate relativity. 

What would you say? Pardon me, but this is what the equation says and that is the solution. It is 

very easy to verify that that is the solution to this equation. Exactly, E does not depend on phi 

alone E also depends on the partial derivative with respect to time of the vector potential. So, 

remember this formula; remember that E is equal to minus delta A over delta t minus grad phi 

and we have not yet solved for A. So, when you solve for A you will discover that these A causal 

effects are cancelled out. So, this is another illustration of the fact that phi itself is not physical. It 

contributes gradient of phi contributes to the electric field but it is not the whole story. You also 

have this piece which you have to now solve for. So, that is a good point good observation. In 

any case, once that solved then the idea is that you put in the solution for phi here and move this 

to the right hand side and del dot A is zero in the Coulomb gauge and then you have to solve the 

wave function. 

Now the next question you are going to ask is what is the solution to the wave equation? For this 

I have to write down the Green’s function, may be we will do it later in the course but right now 

I do not want to get into this because it is going to take me a while to write down the solution to 

this equation. Laplace equation was not so bad Poisson equation because we already know 

Coulomb’s law and I just convince to do that; that is the solution that is it, but this is going to 

take a little more doing, solving an equation of this kind it is not a elliptic partial differential 

equation, this is called a hyperbolic partial differential equation. This minus sign here is very 

crucial and things are a little mess here but you have to take it from me as an article of faith that 

there is a well-defined technique to solve this equation as well and the problem is solved in 

principle. 



But Maxwell’s equation pi is not electrostatic potential? No, it is not phi; phi is the scalar 

potential. Pardon me. What are you trying to do with the electrostatic potential? No no no, I said 

let us go back instead of solving Laplace Poisson’s equation here, I have an issue I said let us go 

back and recall our knowledge of Coulomb’s law and electrostatics where I switch off all the 

time dependences and I just have del square phi is equal to minus rho of r and I said I know the 

solution I know Coulomb’s law. I put that down and then my superposition that integral turned 

out to be the solution and then I said t is just a parameter in the exact equation here the general 

case and I just put that down there. So, that was just to show you that that is the solution can be 

written down and in this case I am not even doing that. I am just saying that the solution can be 

written down. We will not do that at the moment. 

So, in the Coulomb gauge we know in principle how to solve the Maxwell’s equations. There is 

the other gauge which is the Lawrence gauge. In that Lawrence gauge this combination is zero 

then you start by writing down the solution to the wave equation with j as the source term for the 

vector potential; put back in here, this will no longer be zero here and then del square phi is equal 

to the given function rho plus a known function and therefore once again you solve Poisson’s 

equation and the problem is solved in principle. Now this is not my primary concern. We will 

come back to this when we do relativity because we would like to find out what is the meaning 

of this gauge and I might as well say it here right now.  
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It turns out that this quantity this set of quantities phi over c and A together form what is called a 

four vector a four dimensional vector just as a vector that you have used to in three dimensions is 

defined as a quantity a set of three quantities which transforms exactly like the coordinates 

themselves do under rotations of the coordinate axis. In exactly the same way this set of four 

quantities will transform like the space time coordinates do like time and the free space 

coordinates do under Lawrence transformations and then this would be called a Lawrence vector 

or a four vector. So, this combination itself has a specific transformation property just as ct and r 

have a specific transformation property under Lawrence transformations. I put a c here because I 

would like to have all the components of a given vector to have the same physical dimensions 

and once I multiply t by velocity fundamental velocity this has dimensions of length.  

So, this length and those three lengths here x y z transform under Lawrence transformations by 

the rules of Lawrence transformations and my assertion is that this set of quantities transforms in 

exactly the same way. They form the four components of a four vector, the time like component 

and the three special components but you can find other such combinations. For example c rho 

and j itself, so it turns out that the charge density multiplied by c and the current density have 

exactly the same physical dimensions and that combination also transforms like a four 

dimensional vector. So, that is the reason why electromagnetism looks so complicated when you 

write it in terms of three dimensional vectors as we have done here. 

Once you write it in the four vector language it is very very simple, it is very straight forward 

and the equation were very elegant indeed. You could also ask what the gradient operator is; 

what is the analog of the gradient operator four dimensions and just as we had in d’Alembertian 

operator here, one would like to define 1 over c delta over delta t and of course the del operator 

but for a reason it should become clear later it is minus the del operator. This quantity would 

transform like a four dimensional vector. That is the appropriate four dimensional divergence 

four dimensional del operator and it is not hard to see that if you take the del operator and dot it 

with itself you would get this d’Alembertian and the dot product has to be defined in a specific 

manner which we will do when we do relativity. 

So, the point I want to make is that this combination here turns out to be the four dimensional 

divergence of this four dimensional vector and it would be written in the form del mu A mu 



where mu runs over the values this index runs over the values zero one two three, zero for time, 

one two three for the space variables and therefore setting this equal to zero is equivalent to 

setting this equal to zero and this is a scalar. So, this means under Lawrence transformations the 

numerical value of this quantity is the same in all frames of reference all inertial references. 

Therefore, once you set it equal to zero in one frame its zero in all the frames. In other words 

once you are in the Lawrence gauge in one initial frame you are also in the Lawrence gauge in 

all initial frames; that is the great advantage of the Lawrence gauge. That advantage is lost here 

because del dot A does not remain unchanged when you go to another inertial frame, it changes 

from frame to frame. 

So, if it is zero in one frame it is non-zero in another inertial frame and you can make it zero 

once again by making a subsequent gauge transformations but it could get tedious. So depending 

on the problem that you have you have to choose either the Lawrence gauge or the Coulomb’s 

gauge or any other gauge; find your own gauge and solve your own problems. So, its infinite 

amount of freedom that is available; you have to observe some other rules but otherwise the 

choice of gauge is extremely useful and you saw here how useful it was but I emphasize once 

again that physical quantity measurable quantities in classical electromagnetism would depend 

on the fields on E and B. 

If they depend on A and phi you must make sure that they do not change under gauge principles; 

so that is important as we saw. So, you can use this freedom quite a lot but then the fields should 

not change and indeed if you recall what the energy density of the electromagnetic field is it is 

epsilon naught e square plus 1 over mu naught B square multiplied by half and it does not 

depend on A and phi; directly it depends A and B and that does not change. Similarly the point in 

vector which tells you the momentum density is E cross B apart from some constant and again 

depends only on the physical fields. So, this is important to remember and with this let us do the 

following. Let us go back and ask what could possibly be the Lagrangian for a charged particle 

in an electromagnetic field. I am going to write the Lagrangian down and then explain where it 

came from. So, let me just first write it down; I will just assert that this is a Lagrangian and later 

we will justify, I will justify it post factor based on the invariance considerations. 
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So, for a charged particle in an electromagnetic field the L for the particle and for the moment I 

am focused only on the particle; I am not worried about the field. The field is applied from 

outside could change with space and time but I am interested in the equation of the motion of the 

particle. So, what can the Lagrangian depend on? It depends on the coordinates of the particle 

and the velocity of the particle q and q dot but instead of q I really have the three coordinates L r 

and the velocity is v. It could depend on time explicitly because the fields that I apply could 

change with time. I could switch on an alternating current or something like that an alternating 

voltage in which case I must include this t explicitly and this is equal to again the kinetic energy 

one-half m v square and it is not t minus v and the reason is the magnetic field produces a force 

which is velocity dependent q v cross b and this is not within the purview of the normal t minus v 

kind of thing slightly different and I will write the Lagrangian down and we will see where it 

leads us. 

This Lagrangian is q; this is the charge in the particle. So, charge q and the particle are assumed 

to be non-relativistic. So, this entire formalism is valid non-relativistically. So, even though the 

fields would obey Maxwell’s equations which have speed of light buried in them, the particle 

itself is assumed to move always at a speed much slower than the speed of light; that is an 

assumption. Of course we could write it down in the relativistic case but we will do that after we 

study relativity plus q times A dot v minus q times phi. That happens to be the Lagrangian for a 



charged particle in an electromagnetic field very strange combination of this kind. Now let me 

just try post factor to justify slowly where it comes from. The Lagrangian is a scalar as was 

pointed out. So, all terms on this are scalars. We are trying to describe the interaction of the 

particle charges charged particle with the applied field. So, it is reasonable that the some 

property of the charged particle and some property of the field getting coupled to each other. 

This is the charge and that is the potential scalar potential q times v is the current due to this 

charge and the current is getting dotted with the vector potential. You can already see this is 

looking like starting to look like a dot product of some property of the particle and the dot 

product with some property of the field and indeed if you recall that j mu is zero and j current 

density and the vector potential A mu is phi over c A, the four dimensional analog of the current 

density and the four dimensional analog of the vector potential here the four vector potential, 

then this combination here is nothing but j mu A mu. It is the four dimensional dot product of the 

current with the vector potential; that is the reason for this Lagrangian. 

But again at the moment you have to take this Lagrangian from this given a matter of given 

quantity and later we will justify it a little more but I thought I should mention this here as to 

where this comes from, what is the rationale behind it and later on we will justify it more 

rigorously. So, here is the Lagrangian but this is not a very simple Lagrangian because this 

quantity could depend on space and time it could change. And similarly here plus q of A r, t dot 

v and remember r is the coordinate of the particle, v is the instantaneous velocity of the particle 

and this is the Lagrangian.  
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Now what is the set of equations of motion? Well, the Euler Lagrange equation say delta L over 

delta each coordinate x y z, etc delta L over delta x must be equal to d over dt delta L over delta 

x dot; x dot is v sub x by definition the x component of the velocity and similarly for the y and z 

coordinates. So, you have three equations of motion for each. How are we sure that it is d by dt 

rather than del by del dt; how are we sure that del L by del x dot does not depend on time? It 

would depend on time; it does depend. It does not depend on other coordinates. It does depend 

on other coordinates; that is why it is a total derivative that is the whole point. This is a total 

derivative; it is not differentiating just the partial derivative. 

In fact if you did not have time dependence in the Lagrangian if you had an autonomous system 

then this thing here would be zero if you had a partial derivative and that is not true. It is a total 

derivative; absolutely it is very important. It is a good observation; it is the total derivative with 

respect to time. So, if the coordinate’s changes with time then you have to differentiate the time 

derivative would the non-zero; it is crucial, it is the total derivative. Now let us see where this 

gives us and so on and similarly for y and z. I could use the index notation and do this but let us 

just do this with x y z so you become familiar it looks familiar.  
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And let us compute what is delta L over delta x dot equal to, what is this going to be? Well, there 

is going to be a derivative here because it is half m v x square and if you differentiate it you get 

m x dot; that is from this point here. Remember v y v z are independent of v x as dynamical 

variables so you differentiate with respect to v x alone and you differentiate only half m v x 

square here which produces a factor two cancels this and gives you that but there is also 

dependency here and this is A x v x and if you differentiate it you get plus q A x. I will suppress 

the r and t dependence inside, it is understood and what is delta L over delta x equal to. There is 

nothing from here because these are velocities but there is dependence in here on x y as well as z 

of every component. 

So if I write that down you get q delta A x over delta x v x plus delta A y over delta x v y plus 

delta A z over delta x v z; that is this term here if I differentiate with respect to x and then there 

is derivatives here; so you cannot forget that. So, it is minus q delta phi over delta x this 

expression. Now we plug it into the Euler Lagrange equation and it says this quantity is equal to 

on this side the time derivative of this the total time derivative. So that is equal to m x double dot 

plus q d A x over dt total derivative and this is the equation of motion. So, now permit me to 

erase this part then rewrite it. 
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And you get mass times the acceleration m x double dot equal to or let us write m d v x over d t 

equal to, move this to the right hand side and let us see what happens. So, you have minus q d A 

x over d t but that can be written as minus q delta A x over delta t and then delta A x over delta x 

d x over d t and so on but let us bring that last term here first. So, that is minus q delta phi over 

delta x. So, that takes care of the last term and then I have to keep track of all the other terms. So, 

plus q times delta A x over delta x v x plus delta A y over delta x v y plus delta A z over delta x 

v z minus the terms that were left out from here the special derivatives and the first of these was 

delta A x over delta x d x over d t that is v x itself minus delta A x over delta y d y over d t that is 

v y and minus delta A x over delta z v z. So, that is the full set of terms; painful doing it 

components, easier to do it with index notation but this should illustrate what is going on and of 

course this term cancels and then you begin to see what is going on. 

This is equal to minus q rather plus q. What is minus delta A x over delta t minus delta phi over 

delta x. Remember that E was equal to minus delta A over delta t minus grad phi; so the x 

component of E is minus delta A x over delta t minus the x component of the grad of phi which 

is minus delta phi over delta x. So, you see this is immediately emerged. This is q times E sub x 

it has immediately emerged plus q times and now let us take terms together. So let us take the v y 

terms here and you have v y times delta A y over delta x minus delta A x over delta y minus v z 

times delta z minus delta A z over delta x, so that takes care of these two terms here. But what is 



this equal to? Well remember B equal to curl A. So B y B z is equal to delta over delta x A y 

minus delta over delta y A x in cyclic order of one two three.  

So, this quantity is equal to B z and similarly this quantity equal to B y. So, therefore this says 

this is equal to q E x plus v, v y B z minus v z B y that is equal to v cross B the x component of 

it. So, it says the x component of m d v vector over d t is the x component of q E plus the x 

component of q times v cross B and now it is true for every component because I choose the x 

component arbitrarily and its true component by component. So, this immediately tells you that 

the equation of motion is m d v over d t equal to q E plus v cross B as vectors, this is the 

Lawrence force. So, the Lagrangian has given us the correct equation of motion. We work 

backwards I mean shamelessly wrote this Lagrangian down in order to produce the right 

equation of motion but this is the way it is derived and as I pointed out the Lagrangian itself is 

obtained by invariance considerations. 

So, there is something fundamental about the whole thing, the fact that the four dimensional dot 

product of the current with vector potential is the Lagrangian. It is called minimal coupling, it is 

the least you can do and it is been experimentally verified to incredible accuracy, ten decimal 

places or something like that in quantum electrodynamics. So, we know this is true and we have 

good reason to believe that this is exact but the fact is that we work backwards we really said we 

have the Lawrence force as an experimental observation and what is the Lagrangian that gives it, 

well that complicated velocity dependent Lagrangian happens to give it but now with your 

perceptive you should ask the obvious question. I wrote this Lagrangian down and that is a very 

very deep point.  
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Remember that the Lagrangian that I wrote down was one-half m v square plus q A dot v minus 

q phi; two questions arise. You could ask what about the electromagnetic field itself that could 

change and it should also come from Lagrangian. I should write a Lagrangian density for the 

electromagnetic field; yes indeed you can but we are not finding the equations of motion of the 

electromagnetic field. We assume we know them already, what are they; the Maxwell equations. 

So, I have not derived the Maxwell equations from a Lagrangian density; that is a little more 

complicated exercise. It requires classical field theory; we have not done that. But the fact is for 

the particle non-relativistic particle this is the Lagrangian; does something strike you funny about 

this Lagrangian, does it make you uneasy a little bit? Pardon me. It depends on the auxiliary 

variables, it depends on A and phi; does not seem to depend on E and B directly and yet we are 

producing a physical equation here. 

Please note the equation here is in terms of E and B; these are physical quantities measurable 

quantities on both sides. We started with these auxiliary quantities which are not unique. So it 

should bother you that the Lagrangian is not unique not in the trivial sense of adding a constant 

which does not get differentiated but serious non-uniqueness because it is in terms of A and phi 

which I can change by gauge transformations and the question is how are we sure that this is 

going to remain as it is eventually. Well the answer of course is trivial because if I put any other 



A and phi exactly the same thing would happen because E and B are gauge invariant quantities 

and we know that under gauge transformations E and B do not change. 

So, just B as B is curl A, B is also curl A prime and E is minus delta A over delta t minus grad 

phi also minus delta A prime over delta t minus grad phi prime. So, it does not matter. On the 

other hand you could ask what happens to the Lagrangian itself if I make a gauge transformation. 

Now that is a serious question, so what happens to this L? And this leads us to the non-

uniqueness of the Lagrangian. Under a gauge transformation L goes to L prime is equal to one-

half m v square plus q A prime dot v minus q phi prime where A prime is related to A by 

addition of a gradient of chi. So, this is equal to one-half m v square plus q A dot v minus q phi 

plus q grad chi dot v because that is A prime plus q delta chi over delta t because phi prime was 

phi minus delta chi over delta t and this is the extra piece in the Lagrangian.  
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So, this is equal to one-half equal to L the original L plus this quantity here now what does one 

make of it. Well, please look at it and realize that it is equal to q times d over d t of chi because 

the total derivative of chi which is a function by the way of r and t in general as we know is equal 

to delta chi over delta t plus delta chi over delta x d x over d t and so on and that is just this. 
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And I have written this simple thing down that d over d t of a scalar function is plus v dot del. 

When you act on a scalar function on the right hand side this is exactly what you get and you are 

familiar with the second term in fluid dynamics, it is called the convective derivative. So, the 

total time derivative is the partial derivative with respect to time plus the convective derivative. It 

is just a rule of calculus here. Well let us take this q in and write it as d over dt of q chi. So, the 

lesson we have learnt over here is that if you make a gauge transformation the Lawrence force 

equation would not change. 

It is in terms of physical quantities but the Lagrangian changes by the total derivative of a 

function of the coordinates and time in general; that does not change your equations of motion. 

This is a general statement not restricted to electromagnetic fields or anything like that. In 

general the Lagrangian is non-unique through the extent that you can add to it an arbitrary total 

time derivative of an arbitrary function of the coordinates in time; that is true for any system and 

if you go back here and look at how we found the equations of motion it will become obvious. 
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We started by saying I define an action t 1 and t 2 equal to integral t1 to t 2 L dt and L was a 

function of q q dot and t in general. I go back to the notation q for the coordinate; I do not want 

to use it here because I used it for the charge and now if I write A prime is t 1 to t 2 L prime d t 

this is equal to the original A plus an integral t 1 to t 2 d F of q and t dt. So, the original 

Lagrangian to that if I add a d F over dt I get L prime as L plus d F over dt for an arbitrary 

function of the coordinates and time and that is what A prime becomes. In the equations of 

motion the Euler Lagrange equations were found by varying A and claiming that the first order 

variation is zero the principle of extremal action. So, I varied it between time t 1 and time t 2 by 

any path whatsoever no variation of the q’s at these points, delta q was zero here and zero here.  
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But then what does this give you? This is equal to A plus F of q of t 1 t 2 rather minus F q t 1 t 1. 

I can integrate this out the precisely because it is a total derivative term and then it is the two 

points at the ends. And now our variation to derive the equations of motion permit all possible 

variations inside with the end points kept fixed and at the end points there is no delta q and since 

this extra piece depends only on the q’s at the end points, these two terms do not contribute to the 

variation at all. Therefore, the equations of motion do not change. Now of course you should ask 

what kind of transformation is this, what does this mean, what kind of transformation is this? It 

will turn out; I will explain this as we go along, it will turn out that this electromagnetic example 

is a very, very useful one because it is very instructive, it tells us what is going on in the general 

case. Well, it was a gauge transformation here. 

So I could in some sense continue to call that a gauge transformation. By that I mean to the 

Lagrangian of a system, I add the total time derivative of an arbitrary function of the coordinates 

and time and the equations do not change, not velocities also please notice. I have not allowed 

for you to add a function of the q dots here. This could be done but then I have to start putting 

conditions on this f but without any conditions this is the general case. It is called profound 

implications because when we do the Hamiltonian framework it will turn out that this same 

freedom of adding to the Lagrangian the total derivative of such a function would be called a 

canonical transformation in Hamiltonian mechanics. 



So, there is a close link between what was on here and what we are going to study a little later 

and then it will become much more natural in that framework, but already you can see that the 

Lagrangian is not unique, you can add the total derivative and in the electromagnetic case in this 

case physically a gauge transformation is equivalent to adding the total time derivative of an 

arbitrary gauge function to the Lagrangian; does not change the equations of motion. That is a 

lesson worth keeping in mind. Is there somewhere we could have expected this? Well you can 

put a q dot but you will have to put further conditions on it. It would have to be a suitable 

symmetric function and so on but not getting into that right now, but this is the simplest case. I 

am not sure if I have answered your question. 

So, in this language it is obvious; I mean in this language once I say there is no variation here, it 

is quite clear you can add something which depends only on these end points and then the 

equations would not change. So, in that sense we could have predicted this, but it is going to 

have physical implications. The implication of that in this context were precisely gauge 

transformations but that would come about from other transformations as well. So, we are going 

to look at that. There could be other symmetry transformations on the Lagrangian which would 

leave the equations of motion unchanged and the necessary condition for that would be that the 

Lagrangian should change only by the total time derivative of a function.  

So, it will get linked to various other quantities; we will see we will get back to this. This brings 

me. Does Lagrangian exist for every dynamical system? No, no, I am looking at only that class 

of dynamical systems for which you can write down Lagrangians for which the equations of 

motion arise as Euler Lagrange equations. So, that is a restricted class of dynamical system. So, 

in between I also went and did general dynamical systems for which you cannot write any 

Lagrangian or anything out. So, you can push that to some extent but once you have a 

Lagrangian structure you can push things much much more, so certainly not all dynamical 

systems. This brings me to a very very important observation and that will take us back to 

general dynamical systems and that is the following. 
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When I wrote the Euler Lagrange equations down let us rewrite this thins. So I have this L of q q 

dot and t and from this I had equations of the form delta L over delta q i equal to d over dt delta 

L over delta q i dot and i was equal to 1, 2. We looked at systems with a finite number of degrees 

of freedom. So, these were Euler Lagrange equations. And now one of the most crucial things in 

solving general dynamical equation is to find the constant of the motion. The moment you find 

the constant of the motion, as we saw in the case of harmonic oscillator, we had just the energy 

as the constant of motion and immediately that gave us the phase trajectory as ellipses. So, the 

important lesson is every time you have a constant of the motion you have solved part of the 

problem. You would like to find more and more constants of the motion. 

Now in this problem the face space is two n dimensional, the trajectory is a two n dimensional is 

a line in this 2 n-dimensional space. It is like a piece of thread moving around in this two n-

dimensional space. To specify this line in a two n-dimensional space, how many constants of the 

motion should I have? I should have 2 n minus 1 because if I have one constant of the motion 

some function of the q q dot equal to constant that gives me a surface of 2 n minus 1 dimension. 

If I have another independent constant of the motion another 2 n minus 1 dimensional surface, 

the mutual intersection of these is generically 2 n minus 2 dimension. Just as in ordinary three 

dimensions I have a sphere surface of a sphere that is two dimensional; I have a plane that is two 

dimensional. These two cut each other and the result is a circle in general which is one 



dimension. So, every time you have two surfaces intersect the dimensionality of the intersection 

is lowered. 

Now you want to go from two n-dimensional face space to a one dimensional object you need to 

have 2 n minus 1 constants of the motion. So, every time you have a constant of the motion you 

solve the problem a little bit. Sometimes you can use and they are going to be closely linked to 

symmetries and that is one of the things I want to emphasize in this course. We would like to 

find the constants of the motion; this is very very important. In fact in a sense all dynamical 

systems of this kind are governed by their constants of the motion. Once you have done that job 

is done. One of the things that happen in Lagrangian mechanics is that sometimes you may have 

a situation where the Lagrangian does not depend on a coordinate on a particular coordinate such 

a coordinate is called cyclic coordinate; for reasons i would not go into it right now. So, if L is 

independent of a particular q j, let us say so I avoid confusion with I, some particular q j then q j 

is an ignorable or cyclic coordinate. What does that imply ones from this equation? 
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This would imply d over dt delta l over delta q j dot is equal to zero but that equation is solved 

immediately and what does that imply? I am going to use this C.O.M for constant of the motion. 

So, it says delta L over delta q dot that particular q dot is a constant of the motion, does not 

change. Its numerical value would be the same for a given initial condition would remain 



constant in time. The numerical value would depend on the initial conditions and once you 

specify that it remains exactly the same. 

Therefore, a very very important thing is to find cyclic coordinates because then you find 

constants of the motion and every time you do that you won the battle a little more, you have 

gone a little further. Let us look at motion of a particle in a plane two dimensions and let us 

assume for example that the force the particle sees is a conservative force and that the force is 

always directed to the center of the attraction or the repulsion the central force, what the kinetic 

energy would look like. 
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So, I have motion of a particle in a plane and these are the x and y axis and I look at polar 

coordinates plane polar coordinates rho and phi. This is the square root of x square plus y square 

and that is tan inverse y over x. I use this rather than r and theta because I want to reserve that for 

spherical polar coordinates. The Lagrangian of this particle is a function of the coordinates x y, x 

dot, y dot but I could also write it in terms of rho phi rho dot phi dot and let us assume that it is a 

constant potential in the sense that it is time independent and always acts in a central fashion. It 

is a function only of the distance from the origin of rho. So, this is equal to the kinetic energy 

half times m times v x square plus v y square but I should write this in plane polar coordinates. 

What is v square in plane polar coordinates? Rho dot square because there is a radial velocity rho 



dot square plus rho square phi dot square; that is the kinetic energy minus the potential energy v 

but now I am going to say this is a function of rho alone central potential. Is there a cyclic 

coordinate? Phi is the cyclic coordinate immediately it follows that phi is a cyclic coordinate. 

So, you are absolutely guaranteed phi is a cyclic coordinate and that implies that delta L over 

delta phi dot is a constant of the motion and what is delta L over delta phi dot. Now we are 

coming to that, it is angular momentum. So, if I differentiate it here I get a phi dot here and if I 

differentiate the two goes away. So, it is equal to m rho square phi dot and of course you 

recognize that this is the moment of inertia of the particle about the origin and that is the angular 

speed angular velocity. So, this is equal to the angular momentum of the particle about the origin 

and we guaranteed it is constant. Of course we know that in a central force there is no torque and 

therefore the angular momentum is constant but it is nice to see that it comes out automatically 

as a trivial statement. Phi is a cyclic coordinates, so the angular momentum is constant. 

Incidentally let me call this in anticipation of the notation p sub phi to show that it is the 

momentum conjugate to phi. You are going to use this word conjugate repeatedly; I will explain 

what it means but let us anticipate this a little bit. 

So, it says this is a constant of the motion; that is a big help. In this problem how many degrees 

of freedom are there; two. What is the dimensionality of the face space; four. Now you like this 

problem to be solvable. How many constants of the motion do you need? You need three. How 

many do you have? We have found one but we also know in the back of our minds that the total 

energy is going to be constant, actually the total Hamiltonian is going to be a constant. So, we 

have a second one and we need one more. We need one more and that is not always easy to find 

in this problem but let me anticipate things again by saying that in problems of this kind if you 

have a two n-dimensional face space sometimes if you have n constants of the motion that is 

enough, you can find the rest. They are called integral but I am jumping ahead little bit but this is 

an example of such a system. These two are enough; they are independent, the angular 

momentum and the total energy are independent. You can specify each of them independently 

and therefore, this problem is in some sense solvable.  
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Let us do the same thing for three dimensional motion we will look at what happens. In three 

dimensions I have to use spherical polar coordinates and I am again going to assume why do I 

always put x here y there and z there; we could have done it the other way. Why do I do that? 

Pardon me. Well, why do not I choose x from right hand side and why outside the board and put 

setup there. I would like to choose the right handed coordinate system, like to choose it just. No 

special reason but I would like to make sure that when I twist from x to y I go upwards and there 

is no special reason. It is a left-handed coordinate systems are just as good and this reminds me 

of this famous TV scene about George Bush because every time in class I explain right handed 

coordinates I always use the left hand because the right hand is chalk but then George Bush does 

this when he says well the right hand does not know what the left hand is doing; this is very, very 

famous scene.  



(Refer Slide Time: 58:06) 

 

So, here we are going to have L of r theta phi r dot theta dot phi dot and that is equal to one-half 

m and now there is a r dot square plus r square theta dot square plus r square sine square theta 

phi dot square minus v of r alone; that is a central potential, is there a cyclic coordinate? Yes, it is 

a cyclic coordinate. So, once again the azimuthal angle phi is a cyclic coordinate. This implies 

that the derivative with respect to phi dot is a constant. So, it implies that m r square sine square 

theta phi dot equal to p phi equal to a constant of the motion. What is that quantity? It is in fact 

the angular momentum but in three dimensions angular momentum has three components unlike 

in two dimensions where it has just one component 

 In three dimensions angular momentum has three components and therefore this is just one 

component the azimuthal component of the angular momentum and buried here although we do 

not see it as cyclic coordinates, there are other constants of motion. There is actually the total 

angular momentum that too is a constant but that is going to involve theta, it is going to involve 

other components as well. So, this is just one component and in this problem by the way how 

many constants of the motion do you need to solve this problem? You need five but like I said 

these are systems where three would do. We have the total energy the Hamiltonian, we have this 

P phi and we need one more to solve it and it will turn out to be the square of the total angular 

momentum. 



Now once you have that the problem is solved. Incidentally that is the reason why when you go 

to quantum mechanics the hydrogen atom is specified by a principle quantum number and 

arbitral angular momentum quantum number and a magnetic quantum number because constants 

of the motion translate into quantum numbers in quantum mechanics. This is the connection 

between these two which we will see. So, once again I will stop here. We see that the existence 

of cyclic coordinates is extremely helpful. We discovered the cyclic coordinate here by changing 

to spherical polar coordinates; had we looked at it in Cartesian coordinates, this would not have 

been apparent. So, you also begin to see the advantage of using symmetry to choose coordinate 

systems appropriately. So, let me stop here and then we take it up from this point; we are ready 

to do the Hamiltonian problem.  


