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Let us start today with discussing the connection between symmetry invariance and 

conservation principles, which is what I mentioned the last time. Symmetry leading to 

invariance leading in turn, leading in turn to a conservation law; and this is captured in this 

theorem called Noether’s theorem. 

The full power of this theorem is actually apparent only when you do field theory 

continuous number of degrees of freedom both classical as well as quantum. But we will 

talk about it in the context of plain mechanics Lagrangian mechanics; and the idea is the 

following we have kind of scattered around this whole thing back and forth without ever 

formularizing it. 

I mention that in Hamiltonian dynamics, you have a set of constants of motion in involution 

with the Hamiltonian; and if you have a sufficient number of them, then you end up with an 

integrable system. Now, the point is that every time you have a constant of the motion, not 



only do you reduce the difficulty of solving the dynamical equations, but you actually get a 

little more information. 

You get some information about the symmetry of the system; and this is the idea behind the 

constants of the motion. And the idea, the point that they are the significant of the fact that, 

they are in involution with each other helps you by via the live ornal theorem to show 

integrability and so on; and we said, we saw a little bit of what the geometrical implications 

were we should now look like what the algebraic implications are. The idea is that, if you 

have a constant of a motion in Hamiltonian dynamics that quantity serves as the generator, 

as a generator of a group of transformations called the symmetry transformations of the 

system under, which the systems equations of motion do not change at all. 

So, generators of symmetry transformation come from constants of the motion. So, that is 

really what the algebraic significance of the constant of the motion is and we will see 

examples of this. Noether’s theorem helps you to find these constants, so let me start by very 

knive terms by asking what is meant by a symmetry; by a symmetry, I mean by example for 

instance some set of transformations under which the problem does not change in a very 

general sense. If I look at the problem of particle in a central potential then both the kinetic 

energy as well as potential energy are invariant unchanged under a rotation of the coordinate 

axis. So, I would say this problem has spherical symmetry, because transformations, which 

take you from one orientation of coordinate axis to another orientation, do not seem to affect 

the Lagrangian or the Hamiltonian. 

Therefore, you would expect that the set of solutions of the problem would remain 

unchanged not an individual solution that would of course, change. But an individual 

solution would go to some other solution look like some other solution under the 

transformation of coordinates and the set of solution would be unchanged; or the set the 

equations of motion would remain unchanged in form. This is what I would mean by a 

symmetry a dynamical symmetry of a system something, where the equations of motion do 

not change. 

The moment you have this symmetry, it means that there is an invariance under a certain 

group of transformations or set of transformations, Noether’s theorem then tells you how to 



find the corresponding constant of the motion. And this is how it goes, I start by using this 

Lagrangian mechanics you could translate this to Hamiltonian mechanics subsequently. So, I 

start with an L, which is a function of some q q dot and if it is non antonymous system there 

is also a t sitting there then of course, we write the Euler Lagrangian equations down. 
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And the Euler Lagrangian equations are delta L over delta q is d over dt delta L delta q dot 

and this is true for each degree of freedom I running from 1 2 up to n, if you have an n 

freedom system. And this stands here, this short hand, this is short hand for all the q i’s and 

this is for all the q i dot’s. Now, on the solution, on a solution trajectory, this equation is 

satisfied of course, and of course, the solution becomes unique once you specify a sufficient 

number of initial conditions. 

Now, the point is if I make some transformations such as changing the coordinate system or 

shifting the origin of the coordinate system or anything else at all I make some 

transformation of some kind on the variables when I ask, what is the change in Lagrangian 

as a consequence of this transformation?  
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That change let me denote by capital delta L, I do not want to use little delta L, because I use 

that for variations, which led me to derive the Euler Lagrangian equations let us call it delta l 

and I will give the examples. This delta L of course, is equal to delta L over delta q delta q 

there is a summation over I implied here, so we are not going to write this explicitly. If delta 

q is the change induced in the coordinate q under this transformation plus delta L over delta 

q dot, delta q dot, if this change does not affect time. 

Of course, they saw there are transformations, but you may even change the time you may 

scale the time or shift the time origin and so on for the moment let us not look at those cases 

then this is the change in the Lagrangian. L goes to L prime, which is given by this quantity 

here; but now we are interested in what happens on a solution trajectory always therefore, on 

such a trajectory delta L by delta q is satisfies this equation here. 
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And you put that n and you immediately see this by the way is d over dt of delta q because 

this change has nothing to do with time evolution or anything like that. I have one set of 

coordinates I make some change of variables and I have another set of coordinates; and 

therefore, the d over dt operation here commutes with this delta operation. And therefore, I 

can write d delta q dot as d over dt of delta q and I put in this expression here and you can 

see immediately that this becomes a total derivative. 

So, I have assume that I make an infinitesimal change of variables, transformation on the 

coordinates for instance and that is delta q and immediately there is a change in Lagrangian, 

which is d over dt of this guy here, where you recognize that this is just for the if this were q 

i dot this is just pi by definition the conjugate momentum.  
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So, we could write this as d over dt, so let us put in all the i’s d over dt of pi delta qi. So, 

using the Euler Lagrange equations I can write an arbitrary infinitesimal change in the 

coordinates in this form, in the form of a total derivative. On the other hand, I know that the 

action does not change, and the equations of motion do not change, if the change in the 

Lagrangian is a total derivative of some function of the coordinates in time.  
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So, I also know that there is invariance provided the equation of motion do not change 

provided delta L is also equal to d over dt some function of the coordinates in time. And I 

am imagining infinitesimal transformation, so let me pull out that infinitesimal always and 

write this as some epsilon times f of q and t. So, this is just a scale factor to tell me this is the 

order infinitesimal the same order as delta q and delta q dot. So, if is a big if, if under that 

transformation it turns out that the delta L is of this form without using the Lagrangian, 

without using the Euler Lagrangian equations. 

Because that is been used there without equations using this, then on the one hand using the 

equations of motion tells you that delta L must be of this form. Directly calculating 

depending on what the transformation was tells you that delta L is of this form if it is of this 

form.  
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This immediately implies of course, that these two must be equal implies that pi delta qi 

minus epsilon f is a constant of a motion, because d over dt of that is 0 on the solution set. 

This is the content of Noether’s theorem of course, I have said this in the simplest way 

possible the whole thing is made much more general it applies to field it applies to 

relativistic cases and so on and so forth quantum field theory etcetera. But, in ordinary 

Lagrangian mechanics this is the way the theorem goes on. So, please notice the ingredients 



that are borne in. On the one hand, if I take some arbitrary coordinate transformation or any 

transformation, what so ever, and it should turn out first or infinitesimal transformation. 

And it should turn out that the Lagrangian change in the Lagrangian is a total derivative set 

that aside, but then using the equations of motion and fact that L is function of q dot and t 

the change in the Lagrangian is expressible in this form. Then, equating these two fellows 

you conclude that this combination must be a constant in time as the system evolves. So, this 

is how you derive the actual expression for a constant of the motion. 

Now, let us try and apply this right away and let us apply this to a simple case of a particle 

moving in some potential. 

(( )) 

which derivative did I get which derivative. 

(( )) 

If if if it turns out that I have to tell you what the transformation is I put it into the 

Lagrangian and ask, what is the change in Lagrangian directory without using the equations 

of motion. And if it turns out to be this, then these two are guaranteed to be equal. 

(( )) 

Because, d over dt of it must be 0 d over dt of this is equal to that, so d over dt of that minus 

this is equal to 0 total derivative and therefore, it is a constant of motion.  
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Now, let us apply this I know that if I take a particle in some potential say a central potential 

for example. So, let us see what happens then so I start with l for a single particle equal to 

the kinetic energy half m xi dot square x 1 dot square plus x 2 dot square plus x 3 dot square 

if you like or if you like half m v vector square minus some potential v and let us say it is a 

central potential. 

For example, it does not have to be let us say simple potential its clear that if I change the 

origin of coordinates nothing should have happened nothing should happen at all. So, how 

do I show that momentum is conserved as a consequence of this lets take an even simpler 

example free particle no potential at all. In this case the linear momentum is conserved the 

reason is that the system is invariant under a translation of the origin. So, let us go from r to 

r prime equal to r plus a vector epsilon an infinitesimal amount i shift the origin by an 

infinitesimal amount. 

It is immediately clear that v goes to v itself because d over dt of this is 0, therefore this 

Lagrangian is invariant under a translation of the origin. So, let us plug that in into this 

business and what do you get here. It tells you that delta L is identically equal to 0 in this 

case, because there is no change at all r dot is the same as r prime dot. So, delta l happens to 



be 0, which implies if this portion goes away and you left with this and that is suppose to be 

constant, so what does that give you. 

(( )) 
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For each component what does it tell you, it says pi times delta qi that is the epsilon, each 

epsilon independently I take three different directions and I translate and each component p 

1 epsilon 1 is constant, p 2 epsilon 2 is constant, p 3 epsilon 3 is constant, so it tells you this 

implies that p equal to constant. So, this says that, if your Lagrangian is invariant under a 

translation of the origin of coordinates then the linear momentum is a constant. This is the 

rather trivial example, we need to do a little better than this. So, now, let us put a potential 

and see what happens the moment I put a potential linear momentum is not constant 

anymore because there is a force on the system. 

And the rate of change of force, rate of change of momentum is equal to the force, so the 

momentum is not a constant anymore.  

So, let us put a central potential and see what happens minus v of r now this is no longer 

true. But I know that under rotations of the coordinate system, the Lagrangian does not 

change once again, that is obvious just by looking at it, because the rotations of the 



coordinate system keeps distances unchanged. And therefore, v of r is unchanged and 

definitely p squared is the scalar, so that does not change at all now, what does the rotation 

do we have to now look at a rotation matrix and ask, what an infinitesimal rotation does? 
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So, let us do that we have r goes to r prime under a rotation r of n psi, a rotation of the 

coordinate system through an axis about an axis n through an angel psi, we have a general 

formula for this. We should really need just an infinitesimal version of this, which is much 

simpler, but I have not derived that explicitly to write rotation matrixes and do it or we could 

take a special case, we could say the rotation appear occur in the xy plane, then I can write a 

very simple formula for the yz or zx. 

But I want to do the general I want to show you that take an arbitrary direction and I rotate 

and nothing changes now let that direction be the unit vector n.  
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Now, I know that we already have a formula for the rotation of a finite by a finite amount of 

this vector and if you recall this quantity was equal to cos theta times r plus 1 minus cos 

theta cos psi 1 minus cos psi and then it was n dot r n plus sine psi n cross r. This is what a 

finite rotation did through a vector r, I take an arbitrary vector r i rotate the coordinates 

system about unit vector n through an psi and this is the new vector. I am interested in an 

infinitesimal transformation infinitesimal rotation.  
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So instead of psi i replace it by an epsilon and work to first order in epsilon, then what does r 

do? Well, cos psi to first order in epsilon is just 1 itself, so this is r, this goes away this 

cancels out, but this remains and sine psi is psi itself, so plus epsilon n cross r. It is easy to 

verify that this is indeed what happens, if you change coordinates if you rotate by an 

infinitesimal amounts this is what any vector occurs, it is the portion which is proportional 

to n cross r.  
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So, in this case, what we know, what the change in coordinates is, we know that delta r is 

equal to epsilon r n cross r. Therefore, what happens to L then what happens to L? Does this 

change, does this change at all? It is a scalar, so this does not change at all does that change 

it does not, because it depends on r prime is equal to mod r prime equal to mod r. So, that 

does not change. So, delta L in this case is also 0 trivially 0. So, what is the constant of 

motion here you have, you have only this and this is p dot delta r; and you do for epsilon its 

true for every epsilon.  
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So, what is the constant of motion says p dot n cross r is also equal to n dot r cross p. You do 

cyclic permutation or L dot n the component of angular momentum about the direction of 

rotation is constant. But this is true for every n, I could have chosen any arbitrary n 

therefore, angular momentum is crossed. So, this tells you that angular momentum 

conservation is a consequence of rotational invariance. Just as linear momentum 

conservation was a consequence of translational invariance, if the invariance is lost you do 

not have this anymore. 

These were cases were delta L was 0, this portion ended up being 0 let us look at a very 

simple case and even simpler case than all this where delta L is not 0 and you get a constant 

of a motion which may even be time dependent. So, let us look at that in fact, it can help you 

even solve the equations of motion in this case completely trivial.  
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So, let us look at the problem of a particle moving vertically in the vertical direction under 

gravity. So, L is equal to half m z dot square minus m gz the problem dropping from vertical 

height is from a given height, it falls down this is the Lagrangian of the particle I am only 

interested in the z direction in the motion. Now, I ask what happens under z goes to z plus 

epsilon, I know that if I change the reference level the physics does not change add a 

constant to the potential energy it does not change. 

So, I would like to see if this invariance of equations of motion leads to a constant of motion 

or not. The Lagrangian itself changes of course, z goes to z plus epsilon this changes, but 

then you say that is just an addition of a constant to the potential energy. So, if i differentiate 

and find the Euler Lagrange equations they would not change, so it is apparent that they do 

not clear, so let us work this formula and see what happens? In this case, delta l equal to 

minus mg mg epsilon. 



This is the change in Lagrangian, but we also know that delta L over delta z dot this guy 

which is the momentum p times delta q, P times delta z equal to p times epsilon. So, we 

have on the one hand to change in the Lagrangian must be equal to d over dt of p epsilon, by 

using the equations of motion or the Euler Lagrange equation. But, this must also be equal to 

this quantity here which should be writable as a total time derivative and that of course, is 

completely trivial because I can write this as this as d over dt of minus mg epsilon t. So, you 

guaranteed that p equal to minus mg plus constant. 

But that is of course, true it says the velocity depends on what your initial condition is that 

constant of the motion is the initial condition; and it helps you to solve this problem, 

because, if I now put p equal to m z dot it says its initial velocity minus half dt square initial 

position minus half dt square, so on and so forth. So, it solves the equation almost in this 

particular cases, but notice this trick here this was necessary for may be to be able to use this 

as a guaranteed constant of the motion and therefore, find the first integral and solve the 

path. So, here is a case where you need the delta L part it was vital. In fact, that is where all 

the physics was everything was sitting inside here. 

One can now do this in more general cases etcetera you remember we long ago we looked at 

a charge particle in an electromagnetic field then I said under the gage transformation of the 

potentials the Lagrangian change by a total derivative of a function of coordinates and time. 

So, that was a case where you explicitly had delta l with a function f sitting it was in fact, the 

gage function; and now you should ask what quantity is conserved as a consequence of this. 

Well in the mechanics case, it becomes completely trivial unfortunately because now the 

initial portion of it the change in the coordinates, what kind of change do you have in the 

coordinates. 

I make a change in the gage, I do not do anything to the coordinates at all, so in that case the 

initial the first part of this constant of motion the first portion vanishes and its only the 

second part that is important and you get charge conservation. So, we know that charge is 

already conserved, so in a particle picture in a field this is different this is actually give you a 

conserved current. 



It tells you the continuity equation gives you the current the appropriate current. So, we want 

to find the in a field, which is interacting with the electromagnetic field for instance, what is 

the conserved current you have to go through this procedure. And Noether’s theorem will 

give you this conserved current and recall from the conserved quantities things which satisfy 

equations like continuity equations you derive conservation laws. Let me do that recall this 

to you very briefly. 
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If I have any equation like this equal to 0, then the standard way of finding a conserved law 

conservation principle is to integrate over an enormous large sphere. And then assume that j 

vanishes out there, so what we are talking about is currents and charges moving about in 

some finite region of space and I integrate over a very large sphere where there are no 

currents at all. 

Then these things says if I integrate it over dv of this whole thing, I still get a 0 and of 

course, if the volume is one large fixed volume which I am going to let go to infinity 

eventually this first term gives you d over dt of integral p over dv. It is now a total derivative 

because, the range of integration is independent of time and therefore, I can bring it out and 

it becomes a total time derivative and this plus integral j dot ds equal to 0. 



This of course, is the total charge in the system, so or total mass or whatever mass provided 

that, this current vanishes on that surface provided all your devices and charges and currents 

are moving in some finite region of space and the current is actually 0 out there this equal to 

0 implies q is conserved. 

This term may not be 0 sometimes there could be something at infinity or flux at infinity in 

which case you have to include that also. 

So, this is the standard way in which you go from a local equation of continuity to a global 

conservation law in this fashion and this is more fundamental. Because, this is really saying 

something at local point, so suppose this is global integral and all are equations in physics 

are all local statements. 

We always tell you that if you move something here a little bit something near it it is 

affected and so on, rather than global statements any integral statements are actually derived 

from local statements. Like Maxwell’s equation in the local form as oppose to faraday law 

of induction in the global form you have to start with the local statement and then you derive 

global statement the integral form. 

We talked about translation of the coordinate axis, so r goes to r plus some epsilon; we 

talked about rotation r goes to r prime, which is a rotation matrix acting on r. We could also 

ask what happens when t goes to t plus epsilon; I could induce a change by changing the 

origin of time and asking do the equations of motion remain unchanged. 

If the laws do not change with time then I have time translation invariance I am going to 

leave it to you as to work out and find out what the conserved quantity is in that case what 

would it be? It would be the generator of time translations and what is the generator of time 

translations the Hamiltonian, Hamiltonian generates time translations that evolution is given 

by the Hamiltonian itself. 
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So, in this case, it is obvious that this is so in the Hamiltonian picture remember that 

evolution under time under a Hamiltonian was itself a canonical transformation, because we 

know that if q at time 0 qi is 0 pj 0 was equal to delta ij, then we know we are guaranteed 

under Hamiltonian evolution that this is also true. 
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So, evolution under a Hamiltonian is itself a canonical transformation the coordinate at 

some, so if you start here and you go there and this is q at 0 p at 0 and this is q at any time t 

p at time t in some phase space. Then you can look upon this in two different ways one is 

you fix your coordinates, this is your initial state condition and as time evolves this point in 

phase space this state moves to that state, that is one way of looking at it. Another way to 

say is that this is just a transformed version of this in another coordinate system and that 

transformation is a canonical transformation. 

In that sense time evolution is just the gradual unfolding of a sequence of infinitesimal 

canonical transformations. Each q and p and little delta t later gives you another q and p, 

which is the canonical transformation of the original and the infinitesimal one and therefore, 

a symplectic transformation and so on and so forth. As it goes along the analog of this in 

quantum mechanics is that evolution under a time independent under evolution under a 

hermitian Hamiltonian is a unitary evolution. 

Probabilities are conserved, what is conserved here in Hamiltonian flow, in general what is 

conserved? Volumes are conserved the density obeys theorem and therefore, volumes are 

preserved here. Corresponding thing in quantum mechanics is a probability is concerned as 

we will see. We talked a little bit about generators and the algebra of generators not too 

much of it. But what I would like to do now is to move on to relativity introduce special 

relativity talk about the Lawrence group and then try to link some of those ideas with the 

ideas we had earlier about generators. 

We did a little bit about symplectic transformations now we are going to generalize this and 

do a little bit more about Lawrence transformations. And of course, one can do this in many 

ways I am assuming that you already have some familiarity with special relativity; but I will 

state the facts here and then write down the equations and then we will try to look at this 

from the point of view of sym symmetry transformation. 
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This is the way we would like to approach this subject right. The idea is that in Galileo in 

Newtonian mechanics it is been found that the laws themselves do not change if you make a 

translation of the coordinate axis. If you make a rotation of the coordinate axis is a purely 

spatial transformations time itself is suppose to flow in exorably from the past to the future 

and is not a dynamical variable in Newtonian mechanics. 

And these are the two invariance’s, but you also have invariance under of all physical laws, 

when you move from one inertial frame to another inertial frame and this was Newton’s and 

Galileo’s big insight, namely the laws do not change in form if they are written down in two 

different frames of references, which are related to each other and fact that one of them is 

move that each of them is moving at a uniform speed with respect to velocity with respect to 

the other. 

So, anything which is just a pure velocity transformation does not change the form of the 

equations of the motion this is no longer true if you have accelerations, if you have an 

accelerating frame of reference the form of the laws in that accelerating frame may be very 

different from the form of the laws in an inertial frame. Of course Newton’s big input is 

turned out to be not quite right was that he chose a preferred set of coordinate axis frames he 

chose a set of inertial frames he said these are inertial. 



All frames which are fixed with respect to the fixed stars is reported are inertial. So, what 

has happened there is that, what happen was that the set of frames got chosen it is a 

preferred set of frame and there is no such preferred set this is what we know now. So, in a 

sense it was almost there principle of relativity was already there the postulate of relativity 

was missing and this is what we are going to write down. So, let me write this down and say, 

the principle physical laws necessarily it is little vague here, but we make it precise form 

invariant that is you do not change in form in appearance form invariant. 

Translation of the coordinate axis, rotation of the coordinate axis, translation in time in other 

words shift of the origin of time is what I mean by a translation in time, and from one 

inertial frame to another. By that I mean two frames of reference connected by a velocity 

transformation. The other frame moves at uniform velocity with respect to the given original 

frame. 

Of course as I said he defined a set of inertial frames as those frames which are fixed with 

respect to the fixed stars something, now you could ask what do you do on a cloudy day 

when you cant see the fixed stars how do you know you are in an inertial frame. Well, the 

correct way of defining this is to say an inertial frame is one where Newton’s first law of 

motion is valid. If you discover if you roll a ball on a floor and it turns out and it has no 

friction and so on and it keeps going forever at uniform speed, then you know you are in an 

inertial frame. 

Now, this becomes a matter of measuring an precision and so on. So, we are not going to get 

into that on the other hand there is an unambiguous way of defining what an inertial frame is 

in Einstein’s relativity and that is we are working in flat space time no curvature of space, no 

gravitational fields at all, when you can define an inertial frame and other frames inertial 

with respect to it. And there is no such thing as a frame fixed, with respect to the fixed stars 

or anything like that this is not needed; so, you simply examine if your region of space time 

is flat in a specific sense; then all frames moving with respect to you at uniform velocity are 

inertial frames. Now, we already know in Newtonian mechanics that the moment you go to a 

non inertial frame Newton’s law is not valid Newton’s law of motion is not valid, because 

we know that there exist pseudo forces, so if you insist on writing mass times acceleration is 



equal to the force, on the right hand side you have to put the compensating terms to take into 

account the fact that your frame is in acceleration. Those are called pseudo forces they really 

should be called pseudo inertial or non inertial forces or pseudo accelerations and you 

multiply it by a mass and then you get pseudo force. 

So, I am assuming that you are already familiar with the idea that you have a centrifugal 

force and coriolis force or an Euler’s force and so on. So, I would not go into that, but let us 

now focus on this principle here and ask what does this imply. Translations of the coordinate 

axis have three generators the three directions. So, there are three generators here let us 

count parameters we have three here, you have three here three Euler angles or the n and the 

psi we talked about so you have three more here. Translation in time one here one inertial 

frame to another how many components do you have well you could go in any direction this 

velocity could be in any direction with respect to your fixed coordinate system. 
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And therefore, you have three velocity parameters and you have 3 plus 3 6 plus 1 seven plus 

3, so this is a 10 parameter group. And these transformations can be shown to form a group, 

satisfying the axioms required of a group namely. 

(()) 

There is a group composition law, there is an inverse, there is an identity and the group 

composition law is associative. Namely, I compose two elements and then compose it to the 

third; it is the same as doing it in either order g 1 g 2 g 3; that is the group associated one 

and that is also needed for a group as he has pointed out. 

And this group here is called as the Euclidian group sorry, the Galilean group. It is a 10 

parameter group it is a fairly intricate group and its got complicated portions, you can see 

that the translations form an Abelian sub group, where these fellows can be done in either 

order, but the rotations do not and then the question is do these fellows form a group or not 

etcetera, so there are deep technical questions involved. Now, what Einstein’s postulate did 

what is Einstein’s insight did was to add to this the all important postulate of relativity. 
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And since he did this in the context of light of Maxwell equation you specifically interested 

in the invariance of Maxwell’s equations, the postulate was made in turn with reference to 

the speed of light in vacuum. But, actually the statement is independent of that the statement 

is that there exists a fundamental velocity which is same in all frames of reference. 

And so, happens that light in vacuum provides a physical manifestation of this fundamental 

velocity it is an entity which travels at this fundamental velocity, but let us write it in the 

conventional way its constant independent of the state of motion of the source or the 

observer or the receiver is denoted by c. With that single input, this is physical input, now 

please notice that the rest of it had to do with general forms of laws and was not specific to 

any particular phenomenon on the other hand this is specific it is a physical input, it says 

something about a physical parameters. 

It was lucky that we have an entity which travels at fundamental velocity; otherwise it 

should have been much more difficult to discover this invariance here. Now, what it implies 

immediately are the Lawrence transformation equations and I would like to focus on that 

this implies the following and here is the derivation of these equations. Just as you derive 

what rotations do by requiring that a certain form is kept unchanged namely the distance of a 

point from the origin is unchanged under a rotation of the coordinate axis. 



This told you immediately that rotations are orthogonal matrices are represented by 

orthogonal matrices in exactly the same way this is going to tell us what sort of 

transformation can you possibly have, the idea is that if you have two frames of reference in 

which the origins coincide at t equal to 0 and say one frame is moving at uniform speed with 

respect to the other along the x axis for instance. 
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And at t equal to 0 in both frames the pulse of light is emitted this pulse travels as a 

spherical wave then the first person in the frame s and you have s prime moving along this 

in this direction in the frame s c square t square equal to r square. And that is the shape of 

this particle it is a spherical pulse at time t it has reached a distance ct from the origin. In the 

other frame, the c is exactly the same thing c square t prime square equal to r prime square, 

and c is the same in both frames and you would impose this is the content of this statement. 

The moment you do that you have this possibility you have c square t square minus r square 

must be equal to c square t prime square minus r prime square then in Newtonian mechanics 

c is essentially infinite. 

This is only way of sustaining this equation without changing t, if you say t equal to t prime 

which is what Newtonian mechanics does then the only way of sustaining this equation is to 



make c infinite. But in relativistic mechanics and this was Einstein’s insight this is some 

kind of hyperbola, so that is some kind of hyperbola here right it is the invariance of this 

form that is required and this form can be kept invariant in more than one way and the 

second way is that t changes and r changes t becomes t prime r becomes r prime such that 

this quantity is kept unchanged remember for ordinary rotations you insisted that r prime 

square equal to r square. 

Now, you saying this quantity is equal to that and then you ask, what are the possible 

transformations under which this can happen. And this is how the Lawrence transformation 

is derived and its very well known to you that consequences immediately the following in 

this situation I have pictured, where this guy is moving with speed v along the x axis.  
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And we know that this implies that x prime is equal to x minus vt over square root of one 

minus v square by c square, Y prime is y z prime is z and t prime is write t prime in the 

beginning. So, those are the solutions to the equation which tells you this hyperbolic form 

should be kept unchanged and of course, now we want a better notation I would like to 

combine x as well as t x y z and t. 

So, I would like to make this have the same dimensions as length and let us multiply it by c. 

So, you have ct minus xv over c and the same is this correct.  
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And the standard way of writing this is now to introduce a four-dimensional vector. So, I 

will introduce x mu equal to ct x y z and I have call this x not call this x 1 x 2 x 3, I put a 

superscript rather than a subscript become clear, why? This quantity which satisfies these 

equations, these transformation equations is called a four vector and the group of 

transformations under which this that quantity that this form is invariant is the Lawrence 

group just as you had the rotation group earlier. This is the Lawrence group, and it will turn 

out as very shortly that its represent able by 4 by 4 matrices which act on these coordinates, 



because these are like column vectors am going to write one below the other and these four 

by four matrices would not keep or not orthogonal these matrices are not orthogonal, but 

rather they keep this form invariant. And therefore, they are pseudo orthogonal and it is 

written as so 3 1, and this is called the Lawrence group special Lawrence group three and 

one because I am going to introduce a metric. 

And there are three spaces like directions and one time like direction taking into account the 

fact that in this quadratic form there is a minus sign here. So, there is a c square t square 

minus x square minus y square minus z square I want to take that into account. So, this 

quantity I call a four vector sometimes called a upstairs is called a contra variant vector in 

old tensor analysis and it is a superscript of this kind is called a contra variant. 
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Then I define metric tensor g over mu v which is given by such that g is 0 0 equal to 1, g 1 1 

equal to 2, 2 I am doing this very badly I should do this a little more systematically. 
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The square if you have a space time point x mu and a space time point x mu plus d x mu 

then the square ds whole square equal to c square dt square minus dr square is called the 

square of the interval between these two points. Under, under Lawrence transformation this 

interval is unchanged it is a scalar and that was a whole point now this quantity here can be 

written in compact notation. I should now define contraction and so on, let me do this let me 

do this next time slowly and carefully I should define for you the lowering index how to 

lower it, what is meant by a covariant vector and so on, I wanted to do this properly. I do not 

want to just define it as something which is done with genuine I want to show you that you 

really have a vector and you have what is called a co vector in dual space since I want to do 

that properly let me do this next time because we have run out of time and I should do this 

properly. 

Let me ask you how much of how much of relativity are you already familiar with yes you 

went out of transformation in this form and then what Lawrence contraction and time variant 

length contraction and time violation, those are trivial consequences put together. The fact 

that these things form a group is that thing emphasizes the question this is the point this is 

what we must look at let me do that I will do that properly, so let me. You see you have to 

understand that Lawrence transformations involve not only velocity transformations like 

this, but also the rotations of the coordinate axis. 



So, and you do not have to go along the x axis you could go in any arbitrary direction and 

rotate and then you can shift the origin. So, all these are possible and they form a ten 

parameter group once again. So, the set of rotations the set of translations in space the set of 

the translations in time as well as velocity transformations they again form a ten parameter 

group, but the element the group trans the transformations leave a form like this invariant. 

And this is makes all difference now and this group is not a Galilean group it is called the 

inhomogeneous Lawrence group or a (( )) group of which the special Lawrence group this is 

a sub set is a sub group here. And this is the group of homogenous transformations which do 

not change which do not shift the origin of space or time. So, we need to understand that and 

we also need to understand that the structure of this whole thing 

The structure of this group is such that it is not orthogonal not represented by an orthogonal 

matrices, but by kind of strange pseudo orthogonal matrices we need to recognize that. And 

above all it will become clear that the rotations actually form a sub group, but the velocity 

transformations do not and this is important, if I move to another frame moving along from s 

to s prime.  
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And then from here I move to s double prime which is moving with the speed v double 

prime in the same origin then this is s double prime is related to s by an Lawrence 

transformation. 

But if this fellow was moving in this other direction this is s double prime with a v prime in 

the vertical direction then these transformations do not form a group among themselves 

these are called boost, because you give a boost to a frame of reference and get it moved 

here. So, the boost do not form a sub group now that is what complicates matters the 

rotations form a sub group and the boost do not form a sub group. 

But the boost and the rotations together form a big group. So, the complicated things can 

happen. So, you move like this and then move like that it could be as if there is a rotation 

also effectively. So, I my my aim is to make you understand that that this is, this is, this is 

what I would like to focus on, and I would like to use an efficient notation. 

This four vector notation is extremely efficient because it will tell you what is a scalar what 

is a vector what is a tensor and. So, on just like we use scalars and vectors in ordinary 

mechanics and it is much more convenient. I would like to use this notation. So, that is the, I 

have to lay the groundwork a little better I will do that. 


