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Let us begin where we left off last time. You recall that we were looking at this toy model of
N coin tosses and just to recall to you; N coins and then you had H heads, T tails and the
probability of getting H heads was given by N C H 1 over 2 to the N. For a fair coin
otherwise it was something like P to the power h, g to the power N minus H, p equal to
probability of H, q is equal to probability of t. So, this was the expression we had in the last
time. And we also discovered that the generating function f of x which by the ways a
function of n also because it is for a fixed number of coins. This was equal to px plus q to
the power n, and it followed immediately that H was equal to N p, delta H was equal to

square root of Npq is the standard properties of the binomial distribution.

Now, what we would like to do now is to ask, what does this distribution look like, what
does this thing look like and in particular what dominates for very large values of N. You
would expect that as N increases you are going to get a distribution which gets more and
more sharply peak about the mean value and make it less and less probable for large



deviations to occur this is what one would expect. If you toss two coins it is quite a chance
that you are going to get both heads or both tails quarter in each case and then a probability
half that you are going to get on head and one tail. On the other hand if you toss a 100 coins
the probability that you are going to get all 100 tails or all 100 heads is one over two to the

hundred which is extremely small.

On the other hand the probability that you are going to get say approximately 50 heads and
50 tails is overwhelmingly high the question is how overwhelming is this?
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How peak is this distribution going to be and if I plot this, if | plot the probability of P of H
versus H, you start with 0 here and of course, could have N, you get a histogram and the
idea is that as as you get this is approximately N over 2. For even values of N N over 2 is a
possibility. This is going to very sharply peaked and then you are going to get something
which comes down, fairly, rapidly till it becomes extremely small here.

What | would like to show is that, this is exponentially smaller than this, as N increases for
this we need to have an approximation for the binomial coefficient N C H, because this thing

here P of H equal to N factorial over H factorial N minus H factorial and then p to the power



H g to the power N minus H. And we would like to find out what does this number do as N

becomes very, very large; we need an approximation for this.

Well many approximations exist, but the point the best one of them the one that is
practically a formula is the following. If you took your pocket calculators which have
possibility of showing your numbers up to 10 to the power 99 and you press this factorial
button, what happens where does it stop?

Around 69, so 70 factorial shows you an error. This means you cannot compute even a small
the factorial of a reasonably small number like 70 it is already big greater than 10 to the
power 99. So, the factorial increases extremely large extremely rapidly and the question is

how fast does it increase, how do you make an approximation.
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So, what is a what is n factorial for very large n? And the answer is provided by a formula
called sterling’s formula sterling’s approximation. It is an extremely good formula and this
is where what does? It provides an asymptotic expansion for n factorial in terms of
quantities which you can calculate quite easily. And of course, one would like to know what
the leading term is it is clear n factorial by it is very definition is N times N minus 1, N
minus 2 etcetera. So, if you took out a factor n from each of them, we wrote n factorial equal



to n times n minus 1, n minus 2 up to 3, 2, 1. And you wrote this as n to the power n times 1
minus 1 over n, 1 minus 2 over n dot, dot, dot. Then, it is clear that in the leading

approximation if n is very large should left out these terms then it would go like n to the n.

But of course, as you go get closer to 3, 2, 1, etcetera, you are leaving out terms like the last
term is going to be 1 minus n minus one over n and it is not fair to leave out n minus 1 over
n relative to one of course. So, this is an over estimate n to the power n is the overestimate
and you have to compensate for it; and this form of this suggest what the compensation is
and in fact, this thing turns out to be n to the power n e to the minus n.

So, there is a compensating factor, this grows extremely fast it is grows like e to the n log n,
this decays like e to the minus n. Of course this dominates over that, but still there is a
substantial shrinkage here. And then it is multiplied by 2 pi n that is a very very small factor.
If you took a log in the log scale you can see this better log n factorial is dominate term is n
log n and then you subtract n and then you add half log 2 pi n, so there is a correction of
order 2 pi n. The actual formula itself goes like this its one plus one over oh | forgot now
what this factor out here is, it is 1 over 12 n plus 1 over 300 and something or the other n

square plus etcetera, | am not too sure about this factor and work it out with...

So, this is what it actually looks like it is a big series, it is an infinite series, it is an
asymptotic series and you can see that there is the first correction here if n is of order 100. It
is already only point one percent one part in a 1000. So, you can immediately see that this is
an extremely good formula, very good formula. And it gets better and better as n increases,
what is the smallest value of n for which we could try to apply this? Well if you want 10
percent accuracy 92 percent accuracy, we would leave this out because 1 12. It is going to be
correct to 92 percent, if you put n equal to 1 in this formula, it is already going to be
extremely good, so let us do that just for fun.



(Refer Slide Time: 09:28)

If n equal to 1, then the question is 1 factorial equal to 1 to the power 1 e to the minus one
square root of 2 pi. So, the questions you are asking is e approximately equal to square root

of 2 pi.

And it is so correct to 92 percent, so even at 1, this is pretty good at 10 it gets better you get
a 1 percent error. At 100 you get point one percent error and at 10 to the 24, you can forget
about this can completely forget about this. So, sterling’s formula is very very good even for
mediocre values of n and of course, becomes truly large then you can completely forget
about.

That is the reason why a lot of formulas in statistical mechanics will work because of the
power of this factorial; the fact that this thing here is an extremely good approximation to n
factorial. So, good that for most of the practical purposes I take the log of this, I can forget
about this after all for a million log million n base 2 is base 10 is only 6.

You can just ignore its very, very slowly growing function and the rest of it is completely
negligible. So, you could in fact, write n factorial is approximately n to the n e to the minus
n, we will leave it like this. By the way how do you get this formula, how do you get this
formula, where do you get this formula? Remember we are in our imaginary dessert island



and we forget sterling’s formula, we would like to derive this formula; it is a good thing to
know how to derive this it would be digress to do this, because there are other formulas

which you can find by a similar trick.
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And it goes like this, so | start by saying n factorial is defined as O to infinity dx, e to the

minus X x to the power n when n equal to 1, 2, 3, etcetera certainly.

By definition this is true, this integral is equal to n factorial trivially. Now if | put n equal to
0, here in this formula you still get one on this side, so in fact, this formula could be used to
define 0 factorial as 1. Otherwise you do not know what how to define O factorial | define it
as one because of this. Incidentally as you know the gamma function interpolates between
the integers and provides a function of which the factorial is a special case for positive

integer values, non negative integer values.

But if I now took this and | wanted to know what does this do for a very large n, then you
see the argument goes like this, if | plot this integral e to the minus x is a function that comes
down in this fashion, function of x this is e to the minus x. On the other hand x to the power

n is a function, which increases rapidly in this form. This is finite here this is 1 therefore, the



product is O at the origin and it goes down exponentially fast because, this dominates for

very large values of x.

And you have one very large increasing factor and very large decreasing factor, when you
multiply the 2 the answer is that both n functions is going to be essentially be 0, and in the
middle there is going to be a maximum of some kind. So, this product is going to look like

this and as n increases this is going to get steeper and steeper.
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So, let us do the following let us write e to the minus x, x to the power n is e to the n log x
plus n plus n log x write it in this form. And that is equal to e to the minus X minus n log x
and let us take this function let us put f of x is equal to x minus n log x and ask what does it

do, where does it have a maximum.

I expand this function and what would it do as a function of x and this is equal to where does
where does it is derivative vanish by the way, where does it have a extreme? x equal to x
equal to n x equal to n because this derivative is 1 minus n over x and you put that equal to 0
you get x equal to n. So, let us expand it and at x equal to n it is n minus n log n plus, so f of

x is that f prime of x equal to 1 minus n over x f double prime of x is equal to n over x



square and so on. So, the first term proportional to x minus n is going to be 0, because the

derivative vanishes at that point since derivative is exactly 0 at x equal to n.

And then next term is X minus n the whole square over 2 factorial multiplied by this f double

prime at x equal to n and that is equal to one over n.
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So, let us put that into this integral and this becomes equal to 0 to infinity, dx e to the power
minus n minus n log n that that whole factor is just a constant, so let us take this whole thing
out. It is n to the n e to the minus n integral O to infinity dx e to the power minus x minus n
the whole square over 2 x and its corrections. You can pull those corrections down and write

this as 1 plus dot, dot, dot, I leave that to you as an exercise to find the next corrections.

Now, this function here x it is like a Gaussian peaked at x equal to n; and as n becomes
larger and larger this guy here sitting in the denominator becomes larger and larger and
becomes peak becomes sharper and sharper. And therefore, for a very large n we could
actually approximate this integral which look like this the function looks like this. You could
extend the range of integration from minus infinity to infinity and make exponentially small

errors.



So, in the next step this becomes equal to n to the n, e to the minus n into the minus infinity
to infinity dx e to the minus x minus n whole square by 2 n and its correction and its 1 plus
correction. This is a Gaussian integral and | can shift this the centre of this integration, I can
shift variables to x equal to n because it is running for minus infinity to infinity. So, this
integral is a same as e to the minus x square, that is a standard Gaussian integral e to the
minus a x square minus infinity to infinity is square root of pi over a, it is a Gaussian
integral. So, therefore, this is equal to n to the n e to the minus n square root of 2 pi n into 1
plus corrections. This is order one over n actually that is not trivial to show, but | leave you

to show this that is sterling’s formula.

What | used there is a form of Gaussian integral simple basic Gaussian integral and | have
assumed that and then of course, the rest follows them. So, this is going to be used over and
over again in statistical physics, this formula sterling’s formula for the log of factorial of a
very large number in that form. Incidentally we used the Gaussian integral here, you know

how to derive that when using, yes everyone know this.
What do you do?

Square the integral and go to the polar coordinates is a brilliant trick, it is a brilliant trick
square the integral is one would think of that one would think of integration by parts and
then you get a linear relation of some kind. But, this is square and too this is a non trivial
trick it takes a non trivial person to find it Poisson found this in 1815 or something like that,

so it is long, long ago.
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So, much for sterling’s formula and if you use that then I leave you to figure out the rest of
this distribution to show that, that if you plot H versus P of H, then indeed when n becomes

extremely large, this distribution goes sharper and sharper and has something like this.

It is almost a continue because n is very large and H is goes to takes on very large values
then the discrete nature of the integer H is becomes relevant and starts approximating more
and more distribution, which looks like this goes up and comes down and is very, very
sharply peaked.

We will do this at a later stage we will start with a binomial distribution and I will show you
that a binomial distribution goes over into what is called a Poisson distribution, which then
the deviation from the mean goes over in to a Gaussian distribution. Incidentally we could
do this right away we could do this right away and let us do this in a physical context instead
of P of H.
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| asked the following question, | have a gas in a container of volume v, so let us take an
ideal gas in a container of volume v. And the gas has a large number of particles n and of
course, the particles are moving about inside here it is at fixed temperature where everything
IS constant.

Then, | could ask what is the probability that if | took a small sub volume v, what is the
probability that | have a number n of particle inside this sub volume v; if | took an
instantaneous snapshot of all the molecules in this room froze them and just looked at them,
then what is the probability that the number of particles inside the sub volume is little n. And
that as you will see is a binomial distribution, because | want the probability that inside the

volume v, | have n particles.

Probability that v contains n particles, what is this equal to, well what is the probability that
a given particle is inside the sub volume v and these are assumed to be uniformly
distributed, they are equally likely to be anywhere. So, the probability that a single given
particle is inside the sub volume v is in fact, v over v. And you assuming that all the
particles are moving independently of each other therefore, the probability that there are n of
them inside is indeed this. But that is not enough the rest must be outside.
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So, they cannot be inside because | want the probability that you have exactly n particles
inside, so the other particles must be failures. They must be tails instead of heads that is
equal to 1 minus v over v to the power n minus n and of course, it does not matter which of

the particles is inside you are not asking that question.

And therefore, there is n ¢ n and that is precisely the binomial distribution once again with

little p replaced by capital V over V and of course, we could get rid of this little bit.



Because, | would like to see what happens to this for very large n. So, let us put let rho equal
to n over v the number of particles per unit volume in this huge gas and that some constant is

given to you.

Since capital N and capital V are both constants with some fixed thing therefore, this is
equal to N C n and I could write this as rho rho V N. So, this says 1 over V equal to rho rho
by N and | am going to use that here it is right 1 minus rho V by N to the power N minus N

where we are and that is a binomial distribution.

How did we get this well if a given particle is equally likely to be anywhere in this entire
volume, then the probability that it is inside this sub volume is just the fraction of this sub
volume to the total volume right. This is a not a trivial statement, but it is a sort of intuitively
obvious proving this regressively is little harder you need some notions of geometric
probability, you have talked about measures and. So, on which I do not want to do.

But other things being equal, if it is likely to be anywhere as likely to be in one part of the
volume as in any other then | would say the probability apriori probability that its inside
here. For example | divide this room into halves two half probability that is in the left or in
the right is half and the reason is, it is the ratio of the sub volume to the total volume.

We are not talking about, we are ignoring all these things we are ignoring interactions we
are ignoring we are simply saying it is an ideal gas, there are these points dots everywhere |
take an snapshot an instantaneous snapshot and ask | count how many of them are there at

some instant of time.

Of course that will change from instant to instant, it will fluctuate very rapidly where some
fixed instant of time, what is in probability that there are exactly n of them inside it. And
little n can go all the way from 0 up to capital N, so that is the sample space for this random
variable. The random variable here is little n and | am talking about it is probability
distribution and that is a binomial distribution here everything will be suppose to be given

and you have given this the idea.



And now, | would like to know what happens to this as capital N tends to infinity and capital
V tends to infinity, but keeping the density fixed that is important I should keep the density
fixed, density is an intensive quantity.
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Then this becomes p of n becomes as n tends to infinity N C n, so N C n is n factorial over
little N factorial n minus n factorial. And we will start putting a approximation here, so this
is n to the power n e to the minus n if you write square root of 2 pi n divided by little n
factorial, you cannot do a sterling for that, because little n could go all the way from 0 to
infinity, but capital N minus n. So, one could do that one could do capital N minus n to the

power N minus n e to the power minus N plus n root 2 pi N minus n.

These are irrelevant factors we put them in any way and then rho V over N to the power
sorry there is an N here to the power n here. And then 1 minus rho V over N to the power N
minus n and now do a sterling do simplify this simplify this expression here | leave that to
you a an exercise. And this thing here will finally, go over to p of n goes over into e to the
minus n that you can already see emerging from here sorry no this e to the minus N will
cancel it will go to the following. So, let me write the answer down and then we will justify
it e to the minus n bar n bar to the power n over n factorial, where n is 0, 1, 2, add infinite

term because capital n has gone of to infinity and n bar equal to rho v.



So, | leave you to do the rest of the algebra and show that it reduces to this expression here,
what is this expression called? It is called the Poisson distribution. N bar and what is the
physical significance of n bar? Well, it is the average number density multiplied by the

volume the sub volume therefore it is the average number of particles inside the sub volume.

The Poisson distribution is characterized by one parameter namely the average value itself
and indeed it looks like this. And now little n has sample space running from 0 to infinity

because it is an infinite volume, but with fixed density.

So, what you have to do, no no little n sample space goes from 0 to infinity now what you
have to do is carefully use sterling’s approximation, these factors that is why | did not do
anything here, I left this term here. So, this thing is regress true in the limit when capital N
goes to infinity and you must do the algebra carefully and make sure you do not make an
invalid approximation of the kind you talking about and then this is indeed the formula that

emerges | want you to do this exercise.

And of course, in that in that formula capital V would not appear anymore and capital N
would not appear anymore, because they are both gone off to infinity their ratio is taken to
be a number rho some fixed number. By the way this is called the thermodynamic limit of a
statistical system when you let the number of particles go to infinity, the volume go to

infinity such that the density is finite.

And statistical mechanics will reduce to thermodynamics in the thermodynamic limit, this is
when fluctuations disappear completely. And there is a reason why we are going to pay a
little more attention to this. The Poisson distribution is going to appear also in statistics very
often. And | wanted to appreciate some properties of the Poisson distribution right away. So,
let us do that.

We have now assumed that these guys are all very plain ordinary particles, no quantum
statistics, no these things between none of those complications do not assumed any of them.
This thing here this distribution is that distribution of density fluctuation of gas in this room

in a classical ideal gas. So, it is telling you that the density locally the number density



changes it fluctuates and it tells you what is the distribution in this simple situation. No
correlations, no complicated interactions nothing is going to be assumed.
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Just a couple of quick words about the Poisson distribution; for a random variable n which
runs from 0, 1, 3 possible integers the Poisson distribution given by P of n is given by e to
the minus n bar n bar to n let me use another symbol e to the minus lambda lambda to the
power n over n factorial lambda is the average value of n and that is not hard to show. P of n
summed from n equal to zero to infinity is equal to one because sigma lambda to the n over

n factorial is e to the plus lambda and that cancels this here.

It is very easy to show that the average value is equal to n n there and this lambda here and
what is the generating function f of x equal to summation n equal to 0 to infinity P of n x to
the power n what does this work out to? Well, it just multiplies this and becomes lambda x
to the n and then it is e to the plus lambda x. So, it is easy to see that its e to the lambda

times X minus 1.

F of one is indeed equal to 1 for consideration of the total probability f prime at x equal to 1
is lambda what is the variance, what is the variance in this case? It is lambda itself.
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So, the Poisson distribution has its interesting property that the variance is equal to the
mean,; therefore, the relative fluctuation which is a standard deviation divided by the mean is
one over the square root of the mean. So, you see yesterday we saw this one over square root
of n appear in the denominator and it is characteristic of these distribution such distribution.

These are all uncorrelated and that is the reason why this is happening. So, it is a very

interesting property of the Poisson distribution that the variance is equal to the mean. What



is the generalization of the variance and what is the idea behind the variance in any case?
Since we are doing statistical mechanics we are going to know little bit of statistics what is

the idea behind the variance for random variable?

See, if you have a variable that goes up and down in this fashion it fluctuates about some
mean value then of course, you would like to know, what is the strength of these
fluctuations? And then if you add them up you might get you will get 0, because the guys on
top cancel the guys below, so what you do is square it first and make the thing non negative
and then take the average value and take its square root. And that is the standard deviation
that will tell you the size of the fluctuations relative to the mean. So, that is the idea behind
the variance and of course, you would like to make this a little more general and go to higher
orders and so on. For instance if you look at the third moment then there are pieces of the
third moment which come about, because of second moment in some sense just as there are

pieces in the mean square value you remove.

So, what I do is remove this, | remove this thing. So, this is also equal to n square minus n
whole square and then | get an idea of the true fluctuations in exactly the same way for the
third moment you remove pieces which come from the lower moments for the fourth
moment you remove pieces which come from first three moments and so on and so forth,
those are called cumilants, they call the cumilants of the distribution. And one of the most
interesting properties of the Poisson distribution is at all the higher moments or all the higher
cumilants are equal to the mean and that is it; so just a single parameter distribution. In the
case of Gaussian the third and higher cumilants vanish identically we have just the first two
cumilants, we have the mean and the variance and that is how the Gaussian is defined in

terms of the mean and the variance. We will come back to these things little later.
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The point | want to make right now is that if you took this thing here and let n bar become
very large then this Poisson distribution, which has the shape of this kind. It is a, it is a
histogram actually p of n it has some probability that n is 0 some probability that n is 1
etcetera, etcetera. And then reaches some value and comes down sort of exponentially, it
comes down in this fashion. Now, if you let an n bar is approximately somewhere in the
middle. If you let n bar itself become very large, so this whole thing shifts when the
deviation from the mean about this point here starts looking like this and takes on a
Gaussian shape.

So, you can actually go from the variable n to the variable n minus n bar and call that a
continuous variable if n bar is very large it is of the order of 25 million then plus or minus 1
does not matter it is practically a continuous variable. And then it turns out and this again
uses sterling’s formula that from this formula you can get an expression for the probability
density of variable x which is n minus n bar the deviation from the mean of a Poisson

variable.
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And this will take on an expression which looks like p to minus x square over 2 sigma
square over normalization factor, it will start looking Gaussian. So, this is how in this simple
instance, the distributions change from one shape to another you start with a binomial
distribution of Bernoulli trials and then from that you take the number of particles number of
trails to be very large. And you take the probability of success in a trail to be vanishing the
small that was my limit n over v, because remember p was equal to v over v and n was the

number of trials.



So, | start with like tossing a coin it is exactly like that; the probability of success in a trail
the probability of being in the sub volume is going to be 0, because capital V is tending to
infinity. The number of trails the number of particles is increasing such that the product of
these two guys is finite and that is my rho times little v, then a Bernoulli trial goes over in

true, Bernoulli binomial distribution goes over into a Poisson distribution.

Then, if the mean value of the Poisson distribution is very, very large compare to unity the
deviation from the mean is approximately a continuous variable that has a Gaussian shape
goes over into a Gaussian shape. So, this is how the Gaussian appears in these problems
where we start with integers and then eventually it ends up with Gaussian distributions.
There are other fancy ways of saying this invokes what is called the central limit theorem,
but we do not do that right now let me do with what we are doing. But, | want you to
appreciate this fact that the probability distribution can move into another probability

distribution shifts over now with this preliminary.

Let us get down to where we had ended the last time. So, we go back to our problem in
statistical mechanics of an isolated system in thermal equilibrium and | pointed out that we
have a postulate now and we are going to use this fundamental postulate of equal apriori

probabilities to see where we can get.
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| already told you what kind of system we have a huge system with a total number of
particles capital N. Let me call it n total for reason which will come here the volume of this
system is V total and the energy of system is E total, right now I do not want to give other
attributes to this system except there is some collection of particles may be interacting with

each other classically.

And you have these parameters given to you and it is an isolated system in thermal
equilibrium. So, all its micro states are equally probable; and it has a large number of micro
states omega total, this is the number of accessible microstates of this huge system. The
probability of system being at any instant of time in any one of the micro states is one over
this omega total that is the assumption that is gone in not derivable from mechanics it is

gone.

Now, | ask suppose | come along and for reasons which will become clear, | imagine that
this is system is really made up to two sub systems. So, let me call this total system, sub
system A and sub system B, it is really made up of these two sub systems imagine an
imaginary partitions in the middle of this huge container like and this is really made up of

two sub systems.

Each of them is a very large system and they are evidently in equilibrium with each other,
because they are isolated from the rest of the universe. Now, the energy of this let us say N
V and E are the corresponding parameters for this sub system and on this side you have N
prime V prime and E prime for that system.

And you have trivial relation, which says N plus N prime equal to N total, V plus V prime is
equal to V total, E plus E prime is E total. E plus E prime is not quite E total, because now
you should say look if these particles are interacting with each other, then this is very subtle
that is where everything is buried like in all these things E plus E prime is not necessarily E
total; because | cannot define E, | cannot define E. Even if you had one particle on this side
and one particle on this side and they were interacting with each other I cannot define E and

E prime why is that?



Yeah, because there could be a potential energy the kinetic energy of each particle are quite
unique, but the potential energy is a common property and depends upon the coordinates of
both particles. So, if | have two particles charge particles | can tell you the total energy of
the system, I can tell you the kinetic energy of particle one the kinetic energy of particle two.

But | cannot tell you that one third of the potential energy belongs to this particle two third
belongs to that I cannot tell you. So, you cannot do this portioning. So, there is that problem.
But now | am going to argue that let us assume that the interactions are reasonably short
ranged. Let us further assume that if you have a particle here and here near the boundary

then definitely there is a potential energy of interaction between these two guys.

And there is exchange of energy between the two systems at some instant of time this side
may have more energy more particles the other side may have less energy fewer particles
and so on this is possible. So, there are rapid fluctuations on both sides the totals are kept
constant. However, if this is the number of particles here and its very, very large and
imagine really putting a take a three dimensional volume and put a partition here. Some kind
of a screen or a mesh or whatever what do you think is the number of degrees of freedom
which are actually interacting on either side.

If you have a volume with n particles then on a wall how many of these particles would be
close to the wall? I have 10 to the 24 particles in this room. How many of them do you think

are close to the walls of this room at any instant of time?
Of the order of 1 over n

No no, what do you think is the answer, | have capital N 10 to the 24 particles in this room,
how many are in how many of them do you think are close to the walls at any instant of

time.

N to the power n to the power two-thirds, because that is the surface to volume N to the 2
3rds. So, 10 to the 24 at any given instant of time 10 to the 16 of them are close to the walls
of the order of. Therefore, this ratio of surface to volume is 1 over 10 to the 8 and is
negligible in exactly the same way at any instant of time the number of degrees of freedom
that are in interactions across this partition is of the order of n to the 2 3rds.



And | am going to neglect that compared to capital N itself. That is the level at which the
fluctuations are in and as capital N becomes larger and larger remember we really talking
about astronomically large systems here the numbers of particles. And that is why this is
completely negligible am therefore, going to say that | can do a good approximation
partition the total energy into E and E prime. So, without a very good approximation
certainly 1 am going to write that. Then | ask the following question at any instant of time,
what is the probability that the energy of A is equal to E. So, P of E equal to probability that
A has energy E. Now, what is this equal to given no other information given just this, what
is the probability that this is going to happen?

When 1 argue that this is equal to its equal to the probability it is equal to the number of
microstates of this entire system such that A has energy E. See, once | write down the
energy of each particle write down a microstate | know everything about the system. So
now, exactly the same argument has little v over capital v all micro states are equally
probable. Therefore, all I have to do is to count that fraction of microstates for which of the

total system such that the sub system A has an energy E.

(Refer Slide Time: 46:05)

So, this is equal to omega total number of microstates of a system omega total such that A
has energy E. This is divided by and of course, the rest such that A has E and the rest of



them have E prime. So, let us use the symbol subscript total for the total system no subscript
for the sub system A and a prime for the subsystem B that is my notation. So, this is omega
of E this tells you the number of microstates for which a has energy E multiplied by omega
prime E total omega prime E prime.

So, this is like saying particles in the sub volume, particles outside sub volume the product
of these probabilities. But, it must be normalized this whole thing must be normalized. So, it
must be normalized by omega total of E total why that is it that is it because, this is already
factored. So, what | should have put is a symbol omega subscript total such that A has
energy E a prime has energy B had energy E prime and that quantity the numerator and

factored into a property of A times property of B.

So, there is no square, so this is directly follows directly from the postulate of equal apriori
probabilities that is it. These functions are not known to me. | do not know these functions
and | do not know that function in particular and this is possible if this huge system is a

container of oil oil drum sitting inside an atmosphere of this kind a bigger room.

Then this and that may have very different degrees of freedom altogether. So, the function
omega and the function omega prime may be very different functions. One describing the
possible microstates of oil and the other describing possible microstates of air | do not care |
still do not care. The only assumption is all the microstates of the total system are equally

probable then it immediately follows that this is the probability.

And our next task is to analyze this probability we have to impose the condition of
equilibrium this is something we are going to do. So, let me stop here today since some
people may have a test may be day after this and we will start from this point and see where
we go. Is this convenient to stop or we go, because | have no idea of what is it is it quiz for

people is a test, so perhaps its test as well we will stop here today.
So, this is my starting point, | believe there is a holiday coming up?

We have a class on Wednesday next, next Tuesday is a holiday next Wednesday we meet

and then we will discuss. Yes we will take it up from there.



