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Good morning, in the last class we were discussing quantum tunneling. We have a 

particle of energy E incident from the left, on a potential barrier of height V, which is 

more than the value of the energy. The potential is zero in this region from minus infinity 

to x equal to 0. It is also zero from a all the way to infinity. So, if you analyze this 

situation using classical mechanics, you will find that all particles that are incident here, 

will be reflected back, because they do not have sufficient energy to overcome this 

barrier. The initial energy, the total energy of the particle, is not sufficient to overcome 

this barrier. The energy is smaller than the value of the potential. So, if you do a classical 

analysis, you will find that all particles are reflected back. Now, we are discussing what 

happens if you do a quantum analysis of this problem. And a quantum analysis is 

required, if you are dealing with a microscopic particle like an electron incident on a 

potential barrier. And in the quantum analysis you have to represent the particle using a 

wave. and we have three different kinds of solutions, three different solutions; One in 

this region, where it is a free particle, one inside the potential barrier, and the third 

solution again in the region where it is a free particle, on the right hand side. 
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So, we had written down the three different solutions, the time part is the same in all of 

these, and this is the solution in region one, where it is a free particle. This is the solution 

inside the barrier. In the region one where it is a free particle you have an oscillating 

wave function. The wave function is a plane wave. It is a superposition of two plane 

waves; one travelling to the right, one travelling to the left. This represents the incident 

particle, this represents the reflected particle. This is the wave function inside the 

potential barrier, inside the potential barrier as the potential is greater than the energy, 

the wave function has two parts; one varied decays exponentially, one varied increases 

exponentially, and these two parts have got coefficients A 2 and B 2. Again when the 

particle emerges from the potential barrier, there are two possible. Thus the wave 

function is a superposition of two possible solutions; a right propagating solution, and a 

left propagating wave. This represents a particle with momentum plus p, this represents a 

particle with momentum minus p.  
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Further the situation which we are dealing with. There are particles incident only from 

the left. There is no particles incident from the right. There are particles incidents from 

the left, and we are interested in finding out, if there is a probability for the particle to be, 

to somehow get through the barrier, and appear on this side. So, is there a probability, of 

finding this particle which is incident from the left side, in this region over here, which is 

beyond the potential barrier. There are no particles which are being sent in like this.  
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The fact that there are no particles which are being sent in from here tells us that, this 

part of the wave function, this part the amplitude of this part of the wave function has to 

be zero, because this represents particles incident from this side, and that has been. We 

do not have particles incident from this side, so this amplitude has to be zero. 
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And let me show you what the wave function looks like in the three regions. So, here we 

have the plane wave solution. Here we have the exponentially decaying solution. And 

again here we have the plane wave, as we shall see shortly the amplitude of this plane 



wave is going to be much smaller than the amplitude of this incident plane wave. So, this 

has both the incident and the reflected plane wave. This is the plane wave that emerges in 

region three, and it is this that gives you the probability of finding the particle in this 

region. Particle the incident here, we were interested in the probability of finding the 

particle in this region, and it is this phenomenon where the particle gets through a barrier 

potential barrier, which is higher than its energy, which is referred to as quantum 

tunneling. This is a phenomenon which occurs only if you do a quantum treatment of the 

problem. So, what we are interested in, is basically finding the probability of calculating 

the probability of finding the particle here, and the probability of finding the particle here 

depends on the amplitude of the wave function in that region which is A 3. And the 

amplitude of the incident functions. 
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See if you look at the ratio of this amplitude to this amplitude, the amplitude of the 

incident wave function to the amplitude of the tunnel tunneling wave function. So, what 

we were doing is, we were finding relations between these amplitudes, between the 

amplitude here here here here and between these and these two amplitudes. And I told 

you that such relations can be found, by applying suitable boundary conditions. So, let 

me show you what are the boundary conditions that you have to apply in general. 
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So, at any boundary the wave functions on the left hand side. This in particular refers to 

the boundary at x equal to 0. So, at this boundary, the wave function in region one. So, 

we are looking at the boundary between region one and region two. And in the last 

lecture, I told you that the wave function should be continuous across the boundary, and 

it is first derivative should also be continuous across the boundary, which is what I 

showed over here. So, at x equal to 0, the wave function on the left hand side should be 

equal to the wave function on the right hand side. Also, the spatial derivative the first 

spatial derivative of the wave function on the left hand side should be equal to the first 



spatial derivative of the wave function on the right hand side at the boundaries; boundary 

is x equal to 0. So, these are the two boundary conditions that we have to apply, and 

applying these boundary conditions to these two wave functions. 
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The boundary is at x is equal to 0. So, applying the two boundary conditions to these 

wave functions we get these relations between the coefficients. So, this is the first 

relation, which arises from the requirement that the wave function should be continuous. 



This is the second relation which arises from the requirement at the derivative of the 

wave function should be continuous, which we have simplified and written in. sorry this 

is not the right thing; the boundary x equal to 0.  
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These are the conditions at the boundary x is equal to 0. So, at x equal to 0 this is the 

condition from the equality of the wave function on the two sides. The fact that the wave 

function should be continuous across the boundary. And this is the condition from the 

fact that the derivative; first derivative should be continuous across the boundary. We 

have simplified this and written it in this way. So, these are the two boundary conditions 

that we get at the boundary x equal to 0. These are essentially relation between the 

coefficients of the wave function on the two sides A 1 B 1 and A 2 B 2 A 1 B 1 are the 

coefficients of the wave function on the left hand side. 
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A 1 and B 1 are the coefficients of the wave function on the left hand side. This 

represents a right propagating wave, the incident particle this represents the reflected 

particle. 
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A 2 and B 2 are the amplitudes of the two different wave functions on the right hand side 

in region two. And what we get from the boundary condition; a relations between the A 1 

B 1 and the A 2 B 2. Similarly, if we consider the boundary at x equal to A. Sorry not 

this one again.  
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If you consider the boundary at x equal to A, the continuity of the wave function across 

the boundary gives us this relation. The continuity of the first derivative across the 

boundary gives us this relation which again we have simplified and written over here. 

So, this gives us relations between A 2 B 2 and A 3 B 3 is already said to 0, because 

there are no particles incidents from the right. So, we have two relations between A 2 B 

2, and A 3. This comes from the continuity of the wave function this comes from the 

continuity of the derivative, first derivative. 
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Now, we had also made an assumption, the assumption which we had made was that ‘the 

potential is much higher than the energy of the particle. So, we had made this assumption 

that the height of this potential, is much larger than the energy of the particle V, is much 

greater than E. 
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So, under this assumption the momentum of the particle p, which appears in the wave 

function in the region where the particle is free. So, the momentum appears here and 

here, here and here p. p is the square root of two m E the energy of the particle. It has 

nothing to do with the potential, and if you assume that the potential is much larger than 

the energy; the quantity q, let me remind you what q is. Q is what appears over here, it is 

the exponent which decides how fast the wave function decays, and how fast this 

increases this constant q. 
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So, q is what decides the nature of the wave function inside the potential barrier, and if q 

is defined to be 2 m V minus E. If you assume that the potential is much greater than the 

energy, this is approximately equal to square root of 2 m V. And further the ratio p by q 

which is square root of E by V is much smaller than one. So, we are going to make this 

assumptions; that q is approximately square root of 2 m V p by q is much smaller than 

one, because the potential is much higher than the energy. So, with this assumption, let 

us first look at the second boundary. So, we are going to first consider the second 

boundary the boundary at a. 
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So, we are going to look at the second boundary x equal to a. The second boundary is at 

x equal to a. and at that boundary we have these two conditions. Now, let us first look at 

the second boundary condition, which comes from the continuity of the first spatial 

derivative across the boundary. And note that on the right hand side, we have the ratio p 

by q. Now we have assumed that p by q is much smaller than one, what it tells us is that 

the right hand side of this expression is approximately equal to zero, because this is a 

very small number. So, tells us that this is the difference of these quantities, has to be 

extremely small, because p by q has been assumed to be a very small number. So, if you 

make this assumption it essentially tells us, that are approximately equal to this, under 

the assumption that we are that this p is much smaller than q. This is approximately equal 

to this.  
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So, what it tells us, the boundary condition at x equal to a. The second boundary 

condition at x equal to a what it tells us is that A 2 e to the power minus q a by h cross is 

equal to B 2 e to the power q a by h cross. So, it tells us that these two factors have to be 

equal.  
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Now if you take this and use it in this expression, which comes from the requirement that 

the wave function has to be continuous across the boundary. So, what we have seen is 

that this is equal to this. So, if I take this and apply it here, what it tells us is that this is 

equal to this. So, I can replace this term by this term.  
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So, what it tells us, is that A 2 e to the power minus q a by h cross is twice A 2 e to the 

power minus q a by h cross is equal to A 3 e to the power i p a by h cross, or A 3 is equal 



to 2 e to the power minus i p a by h cross e to the power minus q a by h cross into A 

2.So, what we have now is a relation between A 3 and A 2. 
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Remember that A 3 represents the wave function on the right hand side of the potential 

barrier, and it is the part of the wave function, which represents this part of the wave 

function, represents the particle going out with positive momentum p. So, this is the 

tunneling wave function. This represents the particle that manages to penetrate through 

the barrier, and we have obtained the relation between this amplitude and this amplitude. 

We also see in this analysis that the amplitude of A 2 of this decaying part of the wave 

function.  
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So, inside the potential barrier, the wave function is a superposition of two parts; one 

which decays exponentially, and one which increases exponentially. What we see here is, 

that B 2 is equal to A 2 into e to the power minus 2 q. So, this I can write it here also. 

This also tells us that B 2 is equal to e to the power minus 2 q a by h cross into A 2. So, 

what it tells us, is that the part of the wave function which increases exponentially has an 

amplitude, which is much smaller than the amplitude of the part of the wave function, 

that decreases exponentially. So, this is the dominant term in most of the region. 
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So, B 2 is much smaller than this. So, what it tells, is that the wave function is essentially 

decays exponentially inside the potential barrier, which is what I have drawn here. 
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The amplitude of the part that increases are much smaller, which is what we have seen 

here. So, we have analyzed the boundary x equal to a, and using this we have obtained a 

relation between the coefficients on the right hand side of this boundary, and the 

coefficients on the left hand side of this boundary. Let us now analyze the boundary 

conditions at x equal to 0, and see what it tells us. So, x equal to 0, is what you are going 

to look at next. 
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So, these are all x equal to a. I can shift it here. Now we will look at x equal to 0. So, at x 

equal to 0, we have these two boundary conditions. And what we can do is, we can add 

these two relations, and if we add these two relations, we will get 2 twice A 1 twice A 1, 

because B 1 is going to cancel out, twice A 1 is going to be equal to A 2 into. Let us see 

we have A 2 into 1 plus i q by p.  
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Before that, we just saw that B 2 is much smaller than A 2. So, when we deal with these 

two. Since B 2 is much smaller than A 1, we can ignore B 2. It is much smaller than A 2, 

for that reason we can ignore B 2 and deal only with A 2.  
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And when we add these two relations what it tells us is, twice A 1 is equal to. This gives 

us twice A 1 is equal to 1 plus i q by p into A 2.  
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Now we have also made the assumption that p by q is much smaller than 1, or q by p is 

much greater than 1. So, q by p is much greater than 1. So, what we can say is that, we 

can ignore this one, because this term is much greater than 1. So, what we get is that 2 A 

1 is approximately equal to i q by p into A 2, because this q by p is much greater than 1. 

We have ignored this factor 1 over here. keeping it would not have made a big difference 

it would just have made the algebra a little more complicated, that is all, but we can 

ignore it, to the order of accuracy which we are working. So, we have now a relation 

between A 1 and A 2.  
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And if you use this relation between A 3 and A 2, we get a relation between A 3 and A 1. 

So, what we are going to do is, we are going to use the relation between A 2 and A 1. In 

this relation between A 3 and A 2; to finally, get a relation between A 3 and A 1. 
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So, let us do that. So, if you do that what it tells us, is that A 3 is equal to. So, we have A 

3 is equal to 2 e to the power minus p i a by h cross. So, 2 e to the power minus i p a by h 

cross, and then we have E to the power minus q a by h cross E to the power minus q a by 

h cross into A 2, and A 2 is equal to 2. Then I have minus i p by q into A 1. So, we have 

expressed A 2 in terms of A 1. A 2 is, I have taken the i on to the other side which gives 

minus i p in the numerator q in the denominator. So, finally, we obtain a relation between 

A 3 and A 1.  
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The final relation between A 3 and A 1 that we get is A 3 is equal to minus i 4 p by q p 

by q e to the power minus i p a by h cross e to the power minus q a by h cross into A 1. 

So, by applying the boundary conditions, by matching the boundary conditions across 

these boundaries, we finally have a relation between A 3 and A 1. A 1 is the amplitude of 

the wave corresponding to the incident particle. A 3 is the amplitude of the wave 

corresponding to the particle, which emerges on the other side of the barrier. So, let me 

show you these again. 
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A 1 is the amplitude of the incident wave. So, A 1 represents the particle coming in. B 1 

represents the reflected particle, and A 3 represent s the particle which comes out on this 

side, and A 1 B 1 and A 3 are the amplitudes of these corresponding waves. Now, 

remember how to convert amplitudes into probabilities. The probability is the modulus 

of the amplitude squared. So, if you ask the question, what is the tunneling probability or 

the transmission coefficients?  
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So, let me write it here, the tunneling or transmission. The tunneling probability, or the 

transmission coefficient T, is the probability that the particle incident from the left hand 

side tunnels through the potential barrier. 
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So, the tunneling probability or the transmission coefficient, is the probability that the 

particle that comes here, is found in this region, and this probability of finding the 

particle in this region is the ratio of the modulus of A 3; the amplitude of the transmitted 

wave divided by the amplitude of the incident wave. This is the transmission coefficient 

or the tunneling probability.  
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So, this tells us, what is the probability if I send the particle from the left hand side, what 

is the probability. I send the particle from here what is the probability of finding the 

particle in this region. 
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We are now in a position to calculate this. So, let us calculate it here. So, we see that the 

tunneling probability T is the modulus square of this. So, we haves 16 the modulus of i 

minus i is 1. The modulus of this factor. It is a face factor e to the power i phi that is also 

1. The modulus of this squared, is going to be e to the power. I have the square of this 

first. So, I have p square by q square e to the power minus 2 q a by h cross. So, this is the 

transmission tunneling probability, or the transmission coefficient. This tells us the 

probability that the particle will get through the barrier. You can also ask the question, 

what is the probability that the incident particle, is reflected back, and this is given by the 

reflection coefficient.  
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R which is 1 minus T. The total probability of the particle getting reflected and the 

particle tunneling through has to be 1, because these are the only two option open; the 

particles has to either tunnel, and get on to the other side, or it has to be reflected. So, the 

reflection coefficient which tells us the probability of the particle getting reflected, is 1 

minus the transmission coefficient, or 1 minus the tunneling probability. 
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Now, let us analyze the tunneling probability. To do that let us write it in terms of the 

energy of the particle and the height of the potential barrier. Remember we are working 



in the limit, where the potential barrier is much higher than the value of the energy. So, 

this ratio p square by q square.  
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If I put in the fact that p square is 2 m e q square is 2 m V, then the tunneling amplitude 

T can be written as 16 p square by q square is E by V, and we have assumed that this 

ratio is very small. So, the tunneling amplitude is a very small. The tunneling probability 

is very small. Most of the particles are going to get reflected into e to the power minus 2. 

Then q is the square root of 2 m V into a divided by h cross.  
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So, that is the probability that a particle incident from the left tunnels through, and is 

found on the right. Now let us ask the question how does this tunneling probability 

change if I increase or decrease the potential barrier. And it is clear over here that if I 

increase the potential barrier keeping the energy of the particle fixed, the tunneling 

probability is going to decrease on two counts. It is going to decrease, because of this 

one by V factor over here. So, as I increase the potential the tunneling probability falls of 

as 1 by V over here. It also falls off as the as through this exponential factor, because this 

e to the power minus 2 m square root of m V into a divided by h cross. So, this by 

increase V this is exponent is also going to fall, and the tunneling amplitude falls, 

because of both of these. So, the basic message is that the higher the potential barrier, the 

smaller the probability of the particle getting through the potential barrier. Now, let us 

ask the next question, there are two things that we can vary the other thing that can vary 

here, is the width of the potential barrier. How does the tunneling probability change if I 

vary the width of this potential barrier. 
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So, what we see is that, if I make the width of the potential barrier larger that tunneling 

probability decreases exponentially. So, this tunneling phenomenon is going to be 

particularly important if I have a barrier which is quite small. If the barrier is very small; 

the smaller the barrier. The smaller the width of the barrier, the thinner it is. The larger is 

the probability of the particle tunneling through and getting on to the other side. So, we 

seen that if you make the potential higher. The tunneling probability falls if you make the 

barrier wider again, the tunneling probability falls and tunneling is going to be 

particularly important if the barrier is quite thin. 
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Let me also remind you that the calculation that we have done, has made an assumption. 

It has assumed that the potential is much higher than the energy if you do not make this 

assumption m. you can again repeat the same calculation matching all the boundary 

conditions. Just that the algebra gets a little more that is all, but you can still calculate the 

tunneling probability. It will have the same kind of dependence on the potential and the 

width, and you will recover the expressions that we have obtained if you take the limit 

where V is much larger than E. Another point which I wish to make is, that you can draw 

a some messages from this simple calculation, which you can carry over to a situation 

where we do not have a Step barrier, but we have a more complicated looking barrier. 

(Refer Slide Time: 35:46) 

 

  



(Refer Slide Time: 35:56) 

 

So, the barrier could in general be more complicated looking for example. I had drawn a 

picture like this, and you can calculate the tunneling probability, the transmission 

coefficient, reflection coefficient in a situation like this also. 
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The calculation is going to be a little more complicated, but you can take the same kind 

of message. If you increase the height of the potential barrier, the tunneling probability is 

going to go down. If you increase the width of the potential barrier, the tunneling 

probability is going down, and you have the phenomena of tunneling. Now, the 



phenomenon of tunneling occurs, in a variety of situations in nature. It also has various 

technological applications. For example you have alpha decay, where a nucleus 

spontaneously emits an alpha particle. Now, you can get an understanding of this process 

alpha decay, in terms of the phenomena of tunneling.  
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So, inside the nucleus the alpha particle, is bound. So, this is the nucleus, and this is 

outside of the nucleus. And an alpha particle alpha particle is a helium nucleus to 

neutrons and to protons. So, inside the nucleus the alpha particle experiences a potential, 

which is sufficient to keep it bound. To come out from the nucleus the alpha particle has 

to surmount a barrier, because the particle is held inside by nuclear forces. So, to come 

out from it, the alpha particle has to surmount a barrier. So, if you could give this energy 

to the alpha particle from outside, the alpha particle would be able to surmount this 

barrier and come out. But what happens in alpha decay is that, the particle somehow is 

spontaneously comes out from the nucleus, without any external energy being provided. 

And you can understand this as a tunneling process. So, this alpha particle which is their 

inside this potential well, finite potential well, it tunnels through this barrier. So, it 

tunnels through this barrier and it comes out. So, this is the alpha particle. It tunnels 

through this potential barrier, and it comes out. So, you can get an understanding of this 

alpha decay of nuclei in terms of tunneling, so this is alpha decay. Let me also tell you 

about another technological application of the phenomena of tunneling. You might have 

heard of the tunneling diode, but I am not going to discuss that, the application that I am 



going to discuss, is the scanning tunneling microscope. So, there is a technological 

application a device call the scanning tunneling microscope, which is a very interesting 

application of the phenomena of tunneling. 
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So, let me draw a schematic diagram of a scanning tunneling microscope, and then 

explain to you how it works. So, you have a sample in this scanning tunneling 

microscope, you have a sample. So, for any kind microscope you always have a sample, 

which you wish to image. So, this shows the sample of the scanning tunneling 

microscope. This is the sample, and the microscope has a tip. This is the tip which is the 

part of the microscope. This is the sample, which is not a part of the microscope, which 

is. So, this is the sample which is being imaged by the microscope, and there is a tip 

here, so there is a very sharp pointed tip which is used in a scanning tunneling 

microscope. The tip is of the order of few Armstrong, so this is the tip. The tip over here 

at the edge is of the order of few Armstrong. And this is put all put in a circuit.  

So, there is a circuit here, where there is an ammeter and a bias, there is a bias applied, 

there is a positive voltage applied to the sample, and there is a negative voltage applied 

to the tip. If you draw a section, then the sample looks like this. I am drawing a section 

and the tip is held just above the sample. It does not touch the sample; there is a gap 

between the tip and the sample. So, the tip is over here, and there is a gap between the tip 

and the sample. Now, let us try to understand what will happen in a situation like this. 



The circuit over here is not closed. There is a gap, this circuit is not closed, because there 

is a gap between the tip and the sample. And as a consequence you do not expect 

electrons to flow. It is like a capacitor, because there is a gap over here. So, you might 

think that this is like a capacitor. Now let us draw the potential which an electron 

experiences inside the tip, in the intervening region in between, and again inside the 

sample. 
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Now, if I had, let us just discuss this situation, if I have a capacitor for example, these are 

two capacitor plates, and I gave a positive bias voltage to one, and I gave a negative 

voltage to the other, why does not a current flow across the capacitor. After all we have 

applied a negative potential here. So, there are electrons here, if the electrons could jump 

from here to this plate they would go from a negative potential to a positive potential, 

and they would gain energy in this process, and the circuit would be closed. So, the 

question is, why do not the electrons jump from this metallic plate from this surface to 

this surface. The circuit would be closed and the electrons would gain energy in this 

process, and then they would, I mean lose the energy also, because of resistance, but 

there is a force acting on the electrons on this surface, because this side is positive. So, 

why do not they leave the surface and go on to that surface.  

If we just think about it, you will realize that the electrons inside this surface have to be 

given, are at a lower potential than a free electron outside. If you take a metal surface, 



the electrons on that surface metal surface, are not free to leave the metal surface at will. 

They have to be given some energy, and if you are familiar for example, with the 

photoelectric effect, you will know that this energy is referring to as the work function. 

So, electrons inside any metal, or inside any material for that matter, are not free to leave 

it at will. You have to impart some energy to these electrons, so that they can overcome 

this potential which is holding them inside the material. So, for a metal this is called the 

work function, if you give that much energy to an electron on the metal surface, it will 

come out. And if you can give it by shining an ultraviolet ray, or you can heat the metal 

and cause some electrons to be emitted. 
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So, the reason why you do not have a current here, is because the electron has to be is 

inside a potential well in this region. It is inside a potential well in this region, and the 

two regions are separated by a potential barrier, because the free electron has a higher 

energy than the electron which is inside the tip, or the electron which is inside the 

sample. So, let me draw the potential of an electron inside the tip, in the vacuum in 

between and again in the sample. So, an electron inside the tip has experiences some 

potential. This is in the tip. Now, a free electron does not experience a potential. So, 

outside the tip, you can think of the electron is being free. So, the potential outside, 

inside the tip is going to be lower than the free electron. So, a free electron is going to be 

at a higher. So this is vacuum, and this is again the sample. The sample is at a lower 

potential than the tip, because it has been positively biased. So, an electron inside the tip 



is at a lower potential than a free electron. If the tip were metallic for example, and you 

wanted to get the electron out you would have to give this much energy, and this is what 

is called the work function. Similarly an electron inside the sample is also at a lower 

energy than an electron outside. And you would have to impart this energy difference, if 

you wanted the sample to, an electron to come out form the sample. So, if you had a 

large gap between the tip and the sample, the electrons here. Let us say an electron here 

has this energy. Electron in the tip let us say, has an energy which is this much. So, the 

electron inside the tip would not be able to come out, because it does not have sufficient 

energy, and it would not be able to go into the sample. So, you would have no current 

flowing over here. 

 (Refer Slide Time: 47:36) 

 

If it is exactly the same reason why you do not have current in a circuit like this, because 

the electron inside this capacitor plate, is at lower potential, and it does not have 

sufficient energy to come out. The energy outside is more. The potential energy outside 

is zero, whereas, inside it is negative. here also it is negative. 
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So, exactly the same thing happens over here, but if you bring this tip sufficiently close 

to the sample, so that the gap between them becomes extremely small. Then what happen 

is that you can have tunneling between the tip and the sample, and the probability 

tunneling probability is what I have shown, what we have calculated. So, if you make 

this a very small, there is a tunneling probability. So, there is a probability of the electron 

going from the tip to the sample, even though its energy is not sufficient to overcome this 

barrier. 



(Refer Slide Time: 48:27) 

 

So, the electron does not have sufficient energy to leave the tip and go into the vacuum 

outside, and then from there go into the sample, but even then I can have an electron 

going from the tip to the sample, provided this gap is sufficiently small. So, in this 

scanning tunneling microscope what is done is, that the tip is brought very close to the 

sample, and you then have a small current which flows, because of tunneling. And the 

small current that flows, this is a small current which flows. Now, what is done in the 

scanning tunneling microscope, is that the tip is slowly moved across the sample. It scans 

the sample.  

So, you can think of the scanning being like this, it will first move in this direction then 

shift a little bit, and then again move back, again move a little bit, and again shift back. 

So, it will slowly scan the sample. And as the tip scans the sample, the tip, the sample 

itself is not uniform, because inside the sample you have atoms, and then there is a 

region between the atoms. The electrons inside the sample are bound closely around the 

atoms. So, the electron density is more near the atoms, and then it is less outside the 

atom etcetera. So, inside the sample there are potential variations.  
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So, because of these potentials variations, the tunneling probability will change as the tip 

scans the sample. The potential is not exactly the same everywhere on the sample, 

because the electron distribution inside the sample is not exactly the same. There are 

some nuclei, there are atoms nuclei etcetera inside the sample. So, the potential is going 

to vary. So, because of this the tunneling current is going to vary.  

 (Refer Slide Time: 50:33) 

 

Now what is done in the scanning tunneling microscope is that, the tip is moved up and 

down, as it scans the tip is moved up and down automatically by a feedback loops, so as 



to maintain the fixed current. And these up and down motions that are required, to 

maintain the fixed currents are recorded, as the tip scans across this whole sample.  
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And it is this record of these up and down moments which are made, so as to maintain 

the same current, or the same tunneling probability, which give us a picture of the 

electron distribution inside the sample. So, let me show you a picture, which has been 

made by a scanning tunneling microscope. 
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So, this shows you an image of a graphite sample, made using a scanning tunneling 

microscope. This image is 20 Armstrong wide in this direction. It is 20 Armstrong in this 

direction, and it is 2.2 Armstrong wide thick. The thickness the small dimension over 

here is 2.2Armstrong. And what you see in this picture, is the location of the carbon 

atoms. The undulations that you see, are the locations of the carbon atoms in the graphite 

sample. So, using a scanning tunneling microscope, a very remarkable device indeed, 

you can actually map out the positions of the atoms, on the surface of the sample that 

you are imaging. It is a very remarkable device, you can image, you can actually 

determine where the atoms on surface are located, and you can use it for large variety of 

studies. Unfortunately it does not tell us much about the interior of the sample. 

So, in this last lecture, final lecture, I have told you about the phenomena of tunneling, 

an important consequence of quantum mechanics, where a particle gets through a 

potential barrier. Even though it does not have sufficient energy to cross the barrier, it 

can somehow tunnel through it. So, I have told you about tunneling, and I finally showed 

you one technological application, where people have put tunneling, to image the surface 

of materials. 

 


