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Good morning today we are going to discuss quantum tunneling. we have a particle 

which is free to move along the x axis, and there is a potential, the potential looks like 

this, it is zero in the region to the left, and then here it takes on a value which is constants 

for some range of x, then again it is zero on this side. And this constant value, let we 

denote by v. So, essentially there is a potential barrier v, which separates the region to 

left from the region to the right, and let us say that the potential barrier extends from x 

equal to 0 to x equal to a. Now, we will consider a particle of energy E, which is less 

than the height of this potential barrier. So, this is the energy of the particle E. And a 

particle of this energy E, is incident on this potential barrier from the left hand side. So, 

the particle is the incident like this. Now, if you were to analyze this situation, using 

classical mechanics, where we had a potential barrier v, and there was a particle incident 

from the left hand side, whose energy was less than the potential v.  



In classical mechanics we would except that the particle would get reflected back. It 

would not be able to overcome this potential and reach the other side, the particle would 

get reflected back. So, if it were a macroscopic particle whose behavior is well described 

by classical mechanics, but we could say that for the definitely for sure the particle 

would come up to the potential barrier, and then get reflected back. It would not be able 

to overcome this potential barrier. But what happens in quantum mechanics; that is the 

question that we are interested in. So, in quantum mechanics, if you are dealing with 

microscopic particles, you have to apply quantum mechanics. And for microscopic 

particles, you have to use a wave to describe the particle. So, we have to write down a 

wave for the particle in this region.  

We will refer to this region as region one. We have to write down a wave for the particle 

in this region, which we will refer to as region two. And we will write down a wave for 

the particle in this region, which we shall call region three. And we have already seen 

that if I have a particle of energy E, less than the potential, and if it is incident on a step 

potential like this. This is the step potential. We have already discussed this. We have 

seen that the wave corresponding to this particle, is going to penetrate inside this to some 

extent. So, in today’s lecture, we are going to see what is the consequence of this. So, 

what happens in such a situation in quantum mechanics. The left hand side, the region 

one. In region one, the particle is essentially free, because there is no potential in region 

one. So, let me write down the wave function in region one, where the particle is 

essentially free, because the potential there is 0. Let me indicate that here, it is not 

require to indicated. So, in will region one, the particle is essentially free, because the 

potential is 0. 
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And I can write down the wave function in this region, the wave function in this region 

psi 1 x t is going to be e to the power minus i E t by h cross. The time part is going to be 

e to the power minus i E t by h cross. 
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Remember that whenever I have a static potential, the time part of the wave function, is 

always going to be exponential minus i times the energy into t by h cross, where E is the 

energy of the particle. We have seen this in a lecture quite of few days ago, that the time 

part is always the same in a static potential. So, this is going to be the time part. 
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And the spatial part, is going to be A 1 e to the power i p x by h cross plus B 1 e to the 

power minus i p x by h cross. So, the spatial part of the free particle wave function has 

could have two parts; the first part when I combine with the time part, we can see that it 

is a right propagating wave. The second part, when I combine with this, we can see that 

it is a left propagating wave. 
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So, the term with A 1, is a right propagating wave, it represents a particle going to the 

right. The term with B 1 is a left propagating wave, it represents a particle going to left. 

So, the term B 1 represents a particle going to the left. 
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Both of these are Eigen functions of the momentum operator, we have seen that the 

momentum operator p is minus i h cross, the partial derivative with respect to x. So, it 

should be clear, that both this and this are Eigen functions of the momentum operator, 

when you act with the momentum operator on this, let me do it for you here. 
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P, let me write out this thing, this part separately. So, the first part is A 1 e to the power 

minus i by h cross E t minus p x. This is the first part, this part. 
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So, you can see that this is a right propagating wave, it is a right propagating wave, 

because as time evolves the point where the phase, has a constant same constant value, 

keeps on moving to the right. So, this is the right propagating wave. And when I act with 

the momentum operator on this, the momentum operator is minus i h cross del by del x. 

acts on this is what I get. See if I differentiate this with x I will pick up i p by h cross, and 

that is going to get multiplied. So, I already have minus i h cross over here, and if I 

differentiate this i will get i p by h cross, and then I will have this e to the power minus i 

E t minus p x by h cross into A 1.  



And we see that this is going to be minus i into i is 1 h cross will cancel out. So, what we 

are going to get is p into A 1 e to the power minus i by h cross E t minus p x. So, what 

we see here, is that this function is an Eigen function of the momentum operator with 

momentum plus p. 
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So, it should be cleared from this that the second part is a left travelling wave, and it is an 

Eigen function of the momentum operator with Eigen value minus p.   
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So, we can see that the first part represents a particle with momentum plus p. A positive 

momentum which is the incident particle, and the second part represents a particle going 

in the opposite direction, which is the reflected particle.  
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So, this is the wave function in region one, where the particle is free. And I have also 

told you the physical significance of these two parts of the wave function. This is the 

incident particle, this is the reflected particle. And remember that if we were doing 

classical mechanics, all particles would definitely be reflected back.  
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Now we have already discussed the behavior of the wave function in this region, where 

the potential is larger than the energy.   
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And in region two, the wave functions psi x t, is going to have the same time 

dependence. In all regions, it is going to have same time dependence. But in region two, 

instead of having an oscillatory behavior, the wave function is going to have exponential 

solutions of this form A 2 e to the power minus q x by h cross plus B 2 e to the power 

plus q x by h cross.  
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There are two possible exponential solutions in this region, and they are e to the power 

minus q x by h cross and e to power plus q x by h cross. Let me also tell you what this p 

and q are. We have discussed this in earlier lecture, let me remind you p and q are again.  

(Refer Slide Time: 13:38) 
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So, p is the momentum of the particle in the region where it is free, and this is 2 m E. So, 

the constant p which appears in the wave function in this region, can be interpreted as the 

wave function, as the momentum of the particle in the region where it is free. And in this 

region the momentum is 2 m E the square root of it, and q is square root of 2 m v minus 

E q is too used in the region where v is greater than E, and q is the square root of 2 m v 

minus. The difference in the potential, and the total energy of the particle, and it is this q 

which appears in the wave function in region two. 
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Now let us ask the question, what is the wave function of the particle in region three? 

There are three regions, the particle is free here, it is also free here, and it is under the 

influence of this high potential barrier in this region two. So, in region three also the 

particle is free, and we have already seen the free particle wave function. So, it is going 

to be the free particle wave function in region three also. So, I can write down, what the 

wave function is going to be in region three. 
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In region three, the wave function is going to be psi x t, is equal to the time part is going 

to exactly the same e to the power minus i E t by h cross.  And I will have again two 

different amplitudes A 3 e to the power i p x by h cross plus B 3 e to the power minus i p 

x by h cross. So, in region three, the wave function is exactly the same as region one, 

except that these to coefficients of the right travelling wave and the left travelling wave 

are different. Now, let us again go back to the physical interpretation of these two parts. 

We have already discussed that this part, the first part represents a right travelling wave.  
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So the first part represents any part of the wave that may get through. So, the wave is 

incident, the particle is incident like this. So, we have a right travelling wave coming 

over here. And then the wave behaves exponentially, and it decays exponentially inside 

here. And the third part represents any part of wave, that may penetrate through this and 

come out in region through. So, the third part represents a right travelling wave in region 

three. And you can think of it as representing. This actually represents of a particle with 

momentum plus p in region three. So, it is any particle that can penetrate. So, that can 

penetrate through this barrier and get out in this region. So, it represents a particle going 

to the right in this region, and we can represent that as the particle penetrating through 

this and coming out here. 
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. 
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Whereas this term over here, the second term, term having B 3 represent is a left 

travelling wave in this region, wave travelling to the left like this.   
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It is a particle which corresponds to a particle with momentum minus p. So, if I had a 

particle with momentum minus p over here, the particle would be travelling in this 

direction.  So, it would represent particles which are incident on this potential barrier 

from the right. Now, I have already defined the physical situation that we are discussing. 

In this physical situation, we have a potential barrier, and there are particles incident on 

the potential barrier from only one direction, from the left. So, we have this potential 

barrier, and there are particles incident on it only from this side, and we would like to 

now study what happens to these particles. There are no particles incidents from this 

side. There are particles incident only from this side. Some of the particles will get 

reflected, some may get transmitted. In classical mechanics, all the particles would get 

reflected. In quantum mechanics, we see that the wave function corresponding to these 

incident particles can penetrate through the barrier, and some of it may come out, and 

then because of that we would have a finite probability of finding some particles here. 

So, these would be a particles that have managed to somehow get through this, and there 

would be particles going to the right. Particles going in this direction would. If I had of a 

part of the wave function going this way, they would correspond to particles coming like 

this. And there would be particles which are incident on this potential barrier from the 

right, but we are not sending in any particles on the potential barrier from the right. So, 

there are no particles coming in from the right, there are particles coming in only from 

the left.  
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So, this essentially tells us that the amplitude of this part has to be 0, because this gives 

us the probability of finding some particles with momentum minus p over here. 

Momentum minus p means the particle going this way, but we are not sending in 

particles like this. We are only sending in particles in this direction, and some of the 

particles may get through and come out this way, which is what this would represent. 
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So, this tells us that this coefficient over here has to be 0. So, we have worked out the 

wave function in the three different regions. In our problem, we have worked out the 

wave function in the region one, in region two, and in region three. 
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Let me graphically show you these wave functions in the three different regions. So, if I 

draw the potential here again, the potential looks like this. And what we see, is that on 

the left hand side we have. 
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A plain wave solution with two possible parts; one representing a particle which is 

incident, this representing a particle which is reflected. The main point, is that we have 

plane wave solutions, whose wavelength is determined by p. So, we can schematically 

show that, like this that we have a plane wave solution in this region, region one.  
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Now in region two, we see that the wave function behaves exponentially, and what we 

would expect, if is that the wave function actually decays exponentially.  
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So, in region two the wave function goes. Some part of the wave function manages to 

penetrate into region two, where the potential is higher than the value of the energy, and 

the wave function in this region decays exponentially.  
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And then in region three, we again have oscillating solutions. So, we have oscillating 

solutions here again, but the amplitude of these, this of this. these oscillating wave 

functions here, is going to be much less than the amplitude of the wave function here, 

because the wave function decays exponentially inside this, and then finally, some of it 

does manage to come out on to this side. So, what we see, is that in quantum mechanics, 

there is a finite value for the wave function in region three. It is not going go to zero 

abruptly. And if you have a wave function finite wave function in this region, then there 

is a probability, the modulus square of the wave function in this region tells us the 

probability of finding a particle in region three. So, there is a finite probability of finding 

a particle in region three. So, in quantum mechanics when there are particles incident 

from this direction, there is a finite probability of finding some of the particles in region 

three. So, some of the particles can get through this potential barrier, and you may find 

them in region three. There is a probability, and this phenomena is the what is known as 

Quantum tunneling. 
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The analogy here is like a hill, if I have a hill on the surface of the earth. The hill 

represents a potential barrier; if a particle has to cross this hill, let us say that there is a 

car which would like to go over the hill.  Then there are two possible ways which would 

like to get across on to the other side, there is a hill over here, the analogy is as follows.  

(Refer Slide Time: 24:00) 

 

Say on the surface of the earth, there is a hill like this, and there is, let us say a particle 

over here. We would like the particle to get to the other side. There are two possibilities; 

one is give the particles sufficient kinetic energy so that it can roll over and get over 



there. The other possibility is if you have a tunnel which goes through this. So, then if 

the particle can go through this tunnel, it does not require to have the enough kinetic 

energy to get over, and the particle you can then go through this tunnel and reach the 

other side. If you are travelled by train to Mumbai for example, you will find that there 

are quite a few tunnels one the way, and these tunnels basically make it easier for the 

train to get to Mumbai, because there are quite a few hills in the western ghat, and it 

would require enormous amount of energy to overcome to get to the top of the hill and 

then come down, and this can be avoided if there is a tunnel through the hill.  
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So, it is as if a particle which is being sent on this potential barrier. The particle which is 

being sent here, does not sufficient energy to go over this barrier, but when you use 

quantum mechanics to analyze such a situation, you find that there is a finite probability 

that the particle may get through to the other side. 
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This arises, because you have now a wave description, and there is a possibility that a 

part of the wave actually penetrates through, because in this region the wave the function 

does not abruptly go to 0, it decays exponentially. And then once it comes here again you 

have this oscillating solution. So, there is wave function in this region, which tells you 

that there is a probability that even you if you have incident particles here, with energy 

less than the potential. There is a finite probability that you can find this particle on the 

other side.  
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So, as if the particle has got through by making a tunnel, by somehow tunneling through 

this potential barrier, which is why this refers to as quantum tunneling. Now, the quantity 

of interest, which we would like to calculate, is the probability of finding the particle on 

the other side. So, we are sending in particles from the left, and the question which is of 

interest is, what is the probability that this of finding this particle which is incident from 

here, what is the probability of finding it in this region, what is the probability that it gets 

through the barrier, which we can referred to as the tunneling probability. So, we have 

incident particles coming in, what is the probability of finding the particle in region 

three. This is the question that we are in interested in, and how shall we address this 

question, let us go back to the wave function in the three different regions. 
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So, this is the wave function in the three different regions. This represents the incident 

particle. This represents the reflected particle. And this represents the particle that 

tunnels through and is found on the other side of the barrier. So, the probability of 

finding the particle on the other side, is there in the coefficient, is in the amplitude of this 

part of the wave function. The larger this amplitude, the more is the probability of 

finding the particle on the other side of the barrier. So, this is the amplitude of the 

incident wave, this is the amplitude of the transmitted wave. The ratio of this amplitude 

essentially tells us, we will get the probability amplitude from the ratio of these two 

amplitudes. The reflected wave amplitude is there in this. So, we will get the probability 

of the particle getting reflected from the ratio of these two amplitudes, how we will get it 



we shall discuss later. Now, the question is, how do we determine these coefficients 

which have been unknown till now. Remember earlier when I discussed potential step 

potentials, I did not go into the issue of how to relate the coefficients on the two sides. 

And I had told you that I shall be taking it up later. So, let us now discuss how to relate 

the coefficients, these amplitudes of the different parts of the wave on the two different 

sides of the potential, step potential. 
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So, the governing principle is, that whenever we have a step potential like this. Let us 

whenever we have a step potential like this, or like this, the value of the wave function 

should on the left hand side, should match the value of the wave function on the right 

hand side. So, the wave function should be continuous, across this step in the potential. 

So, let me write down the boundary conditions. 
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So, the first boundary condition as I mentioned, is that the wave function should be 

continuous across this boundary. So, let us consider the boundary at x equal to 0; the step 

at x equal to 0. And the value of the wave function on the left hand side psi 1 x t at x 

equal to 0 should be equal to psi in region two at x equal to 0. So, at the boundary the 

wave function should be continuous. Also the first derivative of the wave function, first 

spatial derivative of the wave function, at the boundary which is x equal to 0 should be 

continuous.  
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So, whenever we have a boundary, whenever we have a step in the potential at any 

boundary, any such boundary the wave function, and it is first derivative should be 

continuous. So, this is one region, this is another region. We have two different wave 

forms of the wave function here and here. At this interface at this boundary, the wave 

function and its first derivative should be continuous. Now you may ask the question 

why should the wave function, and it is first derivative be continuous, why not the 

second derivative, why not required that the second derivative also be continuous, the 

third derivative also be continuous. The fact why, the reason why we require only the 

wave function and it is first derivatives to be continuous, and the reason why we require 

this is, because the wave function is governed by the Schrodinger differential equation. 

The Schrodinger differential equation, remember.  
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So, let we write down the Schrodinger differential equation here. the Schrodinger 

differential equation is i h cross del by del t of psi is equal to minus h cross square by 2 

m del square del x square psi plus V x psi. This is the Schrodinger wave equation, which 

governs this wave function, and this equation has to be satisfied at every point. Now, the 

potential changes abruptly at the boundary, but this equation has to be satisfied 

everywhere. 
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Now, let us first take the time part. The time part is the same throughout, the time part of 

the wave function is the same throughout. So, we really do not have to bother about it. 

We have to be concerned about the spatial part.  
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The spatial part is different in region one and region two. We are considering the 

boundary between these two. The spatial part is different in these two regions, and here 

we have the second spatial derivative 
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Now to evaluate this second spatial derivative at the boundary, we need to first evaluate 

the first spatial derivative at the boundary; the first derivative with respect to x. Now, if 

the function psi has different values on the left hand side and the right hand side, at the 

boundary if it has a different value, at the left and the right hand side. If is discontinuous, 



then you cannot evaluate the second the first derivative. The function has to be 

continuous for the first derivative to be defined. So, the fact that you have to evaluate the 

first derivative at the boundary tells us that this boundary condition has to be imposed 

this has to be satisfied. 
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Now not only do you evaluate the first derivative, we also have to evaluate the second 

derivative at every point, so also at the boundary. To evaluate the second derivative, the 



first derivative, the first spatial derivative itself should be continuous. You cannot 

differentiate a function that is not continuous. 
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So in order that the second derivative is well defined, you require the first derivative to 

be continuous at the boundary. It is continuous elsewhere; you also require it to be 

continuous at the boundary which is why you have to also impose these boundary 

conditions. So, we now have two boundary conditions which have to impose at all 

boundaries. The time part is guaranteed to satisfy this. it is the spatial part the spatial part 

that we have to be concerned about. 
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So, we have to impose these boundary conditions, and it is these boundary conditions 

that are going to tell us, how the coefficients the different on the two different sides are 

related. You have two different boundary conditions, and these two different boundary 

conditions are going to allow us. In principle, if I look at the interface between this 

region and this region. These two different boundary conditions will allow me in 

principle to eliminate A 2 and write in terms A 1 B 1. It will also allow me to eliminate B 

2, because there are two boundary conditions. So, I can eliminate A 2 and B 2, and write 

them in terms of A 1 and B 1. Similarly, if I look at the boundary between regions two 

and three, I can eliminate B 3 and A 3 and write them in terms of this. So, finally, I can 

express the coefficients in all three regions, solely in terms of the coefficients in region 

one. So, there are two unknown coefficients which are going be there; only two unknown 

coefficients. All the other coefficients can be expressed in terms of these. 
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So, this is what we are going to do in the rest of the exercise. We are going to find 

relations between these coefficients, and then finally, we are going to use this to 

calculate the probability, that the particle can get through this barrier. 
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The probability that the particle can get through this barrier is going to be decided by the 

ratio of this coefficient to this coefficient. In doing this calculation, we are going to make 

a simplification, and the simplification that we are going to make is as follows.  
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We will assume that the potential v is much larger than the energy. So, we are going to 

assume the height of the barrier is much larger than the energy of the particle. So, in this 

picture, we will assume that this v this height of this potential, is much larger as 

compared to this energy of the particle. We will make this assumption. 
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Under his assumption, if you assume this then q becomes approximately equal to v is 

much larger than E, I can ignore this E, so q will be approximately equal to 2 m v. And 

the ratio p by q, is now equal to the square root of E by v. And since we have assumed 

that v is much larger than E this ratio is much smaller than 1. So, in our calculation, we 

are going to make this assumption throughout. Not that this assumption is essential, to 

calculate tunneling probabilities etcetera. Tunneling, such tunneling calculations can be 

done in a very general situation, where the potential energy is comparable to the energy 

of the particle.  
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It can also be done in a more general situation where we do not have a step barrier, but 

we have something more general, which looks like this, and the particle has a smaller 

energy. But for mathematically simplicity we shall make these assumptions. We shall 

assume a step barrier, and we shall assume that the energy, is much smaller than the 

height of the potential. The potential is much larger than the energy of the particles. So, it 

is a very high barrier, we are going to assume, make these two assumptions. These two 

assumptions make the calculation a little simpler. 
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So, with these assumptions we now have to apply the boundary conditions, and that will 

allow us to relate, these give us relations between these coefficients. So, let us write 

down the boundary conditions; one for the boundary between region one and two, and 

another for the boundary between region two and region three. So, let me write down 

these boundary conditions. 
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So, we have written the boundary conditions, I shall referred to this an as boundary 

condition one. I shall refer to this as boundary condition two. So, let us apply these 

boundary conditions; first to the boundary at x equal to 0. The boundary between region 

one and two. 
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So, we will consider the interface between region one and region two, the boundary at x 

equal to 0. So, the first boundary condition is, that the wave function should be 

continuous across the boundary. 
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So, the first boundary condition, is that the wave function should be continuous. So, at x 

equal to 0 psi 1 should be equal to psi 2. We really do not have to bother about the time 

part, because they are already the same. So, we have to set x equal to 0 here and here. 

Time part is a same, so it cancels out. So, let us set x equal to 0 in psi 1. So, what it tells 



us is that A 1. If i set x equal to 0, this becomes A 1 this becomes B 1. So, at x equal to 0 

psi 1 is A 1 plus B 1. I am not bothering about the time part, because it is exactly the 

same for all 1 2 and 3.  
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So, on the left hand side, the first boundary condition matching the wave function, at the 

boundary x equal to 0. On the left hand side, the wave function has a value A 1 plus B 1, 

and this should be equal to.  
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On the right hand side, right hand side is region two. We are considering the boundary 

between region one and region two. So, on the right hand side at x equal to 0 set x equal 

to 0 here and here. This term becomes 1, this term also becomes 1, so I have A 2 plus B 

2. So, this should be equal to A 2 plus B 2.  
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So, this is the first boundary condition, where we have matched the value of the wave 

function on the two sides. Now let us match the spatial derivatives of the wave function 

on the two sides. 
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So, we have to take the wave function in region one. Calculate it is spatial derivative, and 

then set x equal to 0. So, the spatial derivative of this is the same function multiplied by i 

p divided by h cross. If the spatial derivative of this is the same thing multiplied by 

minus i p divided by h cross. So, I can say that the spatial derivative of the total, is going 



to be at x equal to 0. It is going to be i p by h cross. You see I can ignore h cross, because 

it will occur here also when I differentiate it, so I am not going to bother about the h 

cross.  
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So, the spatial derivative of the left hand side at x equal to 0 is going to be i p A 1 minus 

B 1 is equal to. The spatial derivative of the right hand side, is going to be. The spatial 

derivative of this is going to be minus q by h cross into this, and here it is going to be 



plus q by h cross. So, if I take the minus q common outside I will get A 2 minus B 2; h 

cross is being canceled out from both here and here.  
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So, this is equal to minus q A 1 minus A 2 minus B 2. So, this is the spatial derivative of 

the wave function on the right hand side. This is the spatial derivative of the wave 

function on the left hand side of the boundary between one and two. There will be a 

difference of minus sign between these two, difference of minus sign between these two. 

I have taken minus q common outside, after differentiating, so this becomes A 2 minus B 



2. I have taken i p common outside after differentiating this. So, this will be A 1 minus B 

1, and this is the condition that I get. 
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Now we can simplify this expression slightly, and write it as A 1 minus B 1 is equal to. I 

will divide this by i p minus 1 by i is i. So, this will become i q by p into A 2 minus B 2. 

So, this gives us relations between A 2 and B 2 with A 1 and B 1, and we could. It is 

quite obvious that we can solve both of these and get A 2 in terms of A 1 B 1. We could 

also get B 2 in terms of A 1 B 1, which I had told you we could do, but we will not do 

this right now. Let us look at the other boundary that we have in this problem.  
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In this problem we have two boundaries one over here, and the other over here. So, let us 

look at now the boundary between region two and region three. This boundary occurs at 

x equal to a, the left and side is region two, the right side is region three. 
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So, at this boundary we first, we will now apply the first boundary condition, the fact that 

the wave function should be continuous at x equal to A psi 2. 
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What is the value of psi 2 at x equal to A psi 2 at x equal to A. So, we have to set x equal 

to A here x equal to A here. So, let me write down, we are looking at the boundary at the 

interface at x equal to a and matching the boundary conditions, the left hand side. On the 

left hand side we have A 2 e to the power minus q a by h cross plus B 2 e to the power q 

a by h cross. 
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These are the two terms at x equal to A. And this should be equal to the wave function at 

x equal to A in region three. So, in region three we will have A 3 e to the power i p a by 

h cross plus this term is 0. So, we really do not have to bother about it. 
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So, this term, this should be equal to A 3 e to the power i p a by h cross. So, we have got 

applied the first boundary condition at the boundary x equal to a. This is the interface 

between region two and region three. Let us now apply the second boundary condition, 

the second boundary condition is the requirement, that the derivatives should be same on 

the left and the right hand side, so we have to differentiate this and set x equal to A. If I 

differentiate this I will get a minus q here, I will get plus q here h cross will be there both 

here and here, so I can cancel it out.  
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So, let me take this minus q common outside, ad what I get when differentiate is, minus 

q A 2 e to the power minus qa by h cross minus B 2 e to the power q a by h cross is equal 

to. 
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If I differentiate the right hand side. If I differentiate this wave function in region three. 

So, this I should denote two here. In region three if I differentiate the wave function, I 

have only this part. I will pick up a factor of i p. So, what this should be equal to i p. 

Then I have A 3 e to the power i p a by h cross. So, we have now got the two boundary 



conditions at the second boundary x equal to a, and we can simplify this one step. So, let 

me simplify it one step. If I simplify it then what I get is, A 2 e to the power minus q a by 

h cross minus B 2 e to the power q a by h cross should be equal to should be equal to 

minus i p by q A 3 e to the power i p a by h cross. So, this has been obtained from this. It 

is exactly the same just that we have taken this factor of minus q on to the other side. So, 

we now have two boundary conditions at the boundary x equal to a, and again we can 

eliminate the A 3 here and write it in terms of these. 

 (Refer Slide Time: 52:08) 

 

 (Refer Slide Time: 52:25) 

 



So, what we have done now, is that we have, until now is that we have a free particle 

wave function here. We have the solution in this region, and we have the solution in this 

region. We have to match the boundary conditions at this boundary and this boundary. 

The boundary conditions are two. The wave function should be continuous; its first 

derivative should be continuous.  
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At the boundary x equal to 0 we have these two conditions. At the boundary x equal to a, 

we have these two conditions. In tomorrow’s lecture, I will take these boundary 



conditions and use them to calculate the probability, that the particle can tunnel through 

this potential barrier. That is what I am going to take up in tomorrow’s lecture. 

 


