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Good morning in the last lecture, we were discussing a situation where we have a 

particle which is free to move along the x axis, and the particle is constrained in the 

region zero x equal to 0 to x equal to a by two potentials, which are infinitely high. So, 

these potentials on the two sides of this region x equal to a to x equal to 0. The potential 

at x equal to 0, the potential to the left of x equal to 0, the potential rises to infinity. I 

have not been able to show that, but I have written here infinite. So, this potential is 

infinitely high, and again beyond x equal to a, the potential is infinitely high. As a 

consequence the particle is constrained in the region x equal to 0 to x equal to a, and this 

is often referred to as a particle in a box. The infinite potential represents the walls of the 

box, which do not allow the particle to go outside. It is also referred to as a particle in a 

potential well, and this is an infinitely deep potential well. One could also consider a 

finite potential well. The mathematics is a little more complicated. We shall not be 

considering it here. We shall discuss only the infinite potential well.  



Now we have seen that the main. Let me just also remind you what the main difference 

is, if the potential well were finite if the potential well were finite. We are considering a 

situation where the energy of the particle is less than the height of the potential. So, the 

energy is here, the potential is much larger, it is here. And we have seen that if I had a 

finite potential here. The wave function of this particle would penetrate, to some extent 

into the region, where the potential is larger than the energy. But if the potential is 

infinitely high, if the difference between V and E is infinitely large, is infinite. Then the 

penetration is, penetration depth essentially goes to zero, or what we can say is, that the 

wave function goes to zero at the two boundaries, which is what I have shown over here 

also. So, psi is zero at this boundary, psi is also zero at this boundary. We have to solve 

for psi in the region, between zero to a, where the particle is essentially free. So, in this 

region there is no external potential, and the potential is suddenly infinite at these two 

boundaries. 

(Refer Slide Time: 03:57) 

 

  

  



(Refer Slide Time: 04:07) 

 

(Refer Slide Time: 04:13) 

 

Now, we wrote down the wave function, and we have. As I have told you many times 

that in a situation like this, where I have a static potential which does not depend on time. 

The solution can be written as a product of a function of time, and the time dependence 

is e to the power minus i Et by h cross. And then we have this special part, which 

depends on the value of the energy. So, the time dependent part is fixed, and for any 

static potential you will have a time dependent part like this. And one can now superpose 

such different solutions with different values of E, to get a general solution. We are 



looking at a particular value of the energy. And the spatial part has to now be worked 

out.  
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Now in the region where we are trying to solve for the wave function, the particle be is 

essentially free, and we have already worked out what a free particles, wave function is, 

and there are two possibilities; one is e to the power i p x by h cross, the other is e to the 

power minus i p x by h cross. And these two possibilities can have different amplitudes 

A 1 A 2. And this constant p is related to the energy of the particle E, as E is equal to p 



square by 2 m, this constant e is the momentum of the particle. So, there it is a 

superposition of two momentum states; one with plus p and with minus p. So, this is the 

spatial part of the wave function inside the potential well. And the wave function the 

product of these two, or essentially the x depend the spatial dependence, has is such, that 

it has to go to zero at both the left boundary and the right boundary. 
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So, we have to find super positions of two such oscillating exponentials, which vanish at 

x equal to zero and x equal to a. we next applied the boundary condition, that this has to 



vanish at x equal to 0. And the requirement that this wave function has to vanish at x 

equal to 0. So, we just put x equal to 0 here and here. It tells us that A 1 plus A 2 must be 

equal to 0 which is what I have written here that A 1 plus A 2 is the value of this spatial 

part at x equal to 0. 
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And this has to be equal to 0; that is the boundary condition. On the left boundary x 

equal to 0 and it tells us that these two constants A 1 and A 2 should be equal and 

opposite, equal in magnitude and opposite in signs, so A 1 is minus A 2. So, I can now 

write these spatial dependence as A 1 e to the power i p x by h cross minus e to the 

power minus i p x by h cross. And these two functions, when I subtract them I get 2 i 

into sin p x by h cross. And what I could do is, I could now identify another constant A 

as 2 i into A 1. So, this is a different constant these constants A 1 and A etcetera can be 

real or imaginary complex in general. So, we can redefine the constant and call it A. So, 

A is the earlier constant A 1 into 2 i. So, having applied one of the boundary conditions, 

having applied the boundary conditions at this end. 
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We see that the wave function inside the potential, inside that potential, well infinitely 

deep potential well or inside the box, is of this kind where this function is sin p x by h 

cross. Let us now apply the second boundary condition.  
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The second boundary condition is, that the wave function, the spatial dependence of the 

wave function has to be such, that it has to vanish at x equal to a. So, we have already 

seen that this has to be sin p x by h cross. So, the condition this boundary condition tells 

us that sin p a by h cross at the x equal to a, this has to vanish. Now, if you want sin p a 



by h cross to vanish at. So, if this has to vanish. It essentially tells us that, we know that 

the sin function vanishes whenever the argument, is an integer multiple of pi. So, this 

function is going to vanish, whenever this condition that p a by h cross is equal to an 

integer multiple n into pi. If this is condition is satisfied, this wave function is going to 

vanish at the boundary x is equal to a. Or what we can say is that corresponding to every 

integer there is a different value of p which I can denote by p n, such that p n is equal to 

n pi h cross by a. So, corresponding to every integer n cannot be 0. If n were 0, then the 

constant p would also be 0, the wave function would also be 0, which is a trivial solution 

which does not have any physical significance. So, we have n taking values the 1 2 3 4 

etcetera. And we have a different solution for each such integer value. 
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So, let me write down the general solution first. So, the general solution, which satisfies 

both the boundary conditions that it has to disappear at x equal to zero and x equal to a, 

is of this form x psi x t, these corresponding to every integer n we have a different 

solution, so psi n x t. This is going to have a energy time dependence minus i En t by h 

cross.  
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En is the energy corresponding to the solution, corresponding to an integer n, and then 

we have sin p x by h cross, and p can have values n pi h cross by a, so sin n pi x by a and 

the corresponding energies En. Remember the energy is p square by 2 m, and the 

possible allowed values of P are shown over here. So, what we have is pi square h cross 

square n square by a square 2 m, n square pi square h cross square by 2 m a. And let me 

write this again n can have any value 1 2 3 4 etcetera. There could also be an arbitrary 

constant A n over here. 
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So, this is the general form for wave functions, for possible wave functions of a particle 

inside a potential well, of extend a, the potential well of extends from 0 to x equal to 0 to 

x equal to a. It is bounded by infinitely high potential to infinitely high potentials. 
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And the solution, allowed solutions are as or of this type; they are psi x t. So, there are 

solutions corresponding to different values of integer n. possible values are 1 2 3 4 

etcetera. And the solutions are of this type, they are some arbitrary amplitude whose 

value is to be determined e to the power minus i En t by h cross into sin n pi x by a. 



Where En is the energy of the state, which corresponds to some value of the integer, so n 

equal 1 will give you a different energy, n equal to 2 will give you different energy. 

So, each of these state has a different energy each of these wave function has a different 

energy, and this is the expression for the energy corresponding to any integer value of n. 

So, essentially if I fix the value of n, I will get a wave function, I will get the 

corresponding energy. And we have any possible value of n gives you a valid solution. 

Let me now discuss what these solutions look like. So, we have n. Let we first take up n 

equal to 1; n equal 1 is referred to as the ground state, and a particle in this energy state 

in this particular state corresponding to n equal 1, has the lowest energy that you can see 

here, the energy levels are proportional to n square. So, a particle with n equal 1 in a state 

labeled by n equal to 1 has the lowest possible energy. So, it is called the ground state.  
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So, n equal to 1 is what we are going to discuss, this is called the ground state of the 

particle, or the lowest energy state level. And this is the lowest energy level which the 

particle can have, so that is why it is also called the ground state. What is the wave 

function, let me also write that down.  
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So n equal to 1, the wave function is, Psi 1 x t is equal to A 1 e to the power minus i E 

one t by h cross sin pi x by a.  
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So, we are looking at n equal to 1. So, n equal 1, this becomes sin pi x pi a. And the 

energy corresponding to this state E 1 is. Let me show you the expression for the energy 

again n square pi square h cross square by 2 m. This should be a square 2 m a square. 
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So, the energy corresponding to the lowest, the n equal 1. The ground state energy that is 

the lowest energy state, it has energy Pi square h cross square by 2 m into a square. What 

does this wave function look like. This wave function looks like this. Let me draw the 

wave function. So, I am not going to draw this time dependent part. This time part is an 



oscillation, with angular frequency e one by h cross. So, I am not going to show this. We 

have discussed this kind of an oscillation in great detail through much of this course. I 

am going to show just this part. This is the part which you have to remember this part, 

also we have similar things we have also discussed, but this is the part that of interest 

over here. So, I have shown x over here, it goes from 0 to a. let me show psi here, psi. If 

I plot only this part it is real, and we have sin pi x by a, so the function looks like this. 

The wave function for the ground state looks like this; sin pi x by a. So, it goes from 0 

and it rises to a maximum at pi by 2 and then again it goes to 0 at x equal to a. We still 

have to determine this constant A 1, and the value of this constant A 1 is determined by 

the condition that the wave function should be normalized. So, let me remind you what 

we mean by the fact that the wave function should be normalized. By normalization we 

mean, the condition that the total probability of finding the particle somewhere should be 

1. So, the total probability of finding the particle somewhere in the range 0 to a should be 

1. 
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And how do we calculate the total probability of finding the particle. The probability 

density remember rho x is A 1 square. Rho x is psi into psi star for this particular state, 

the ground state rho x is psi. For any state it is psi into psi star we are calculating it for 

the state n equal to 1, the ground state. So, I have to take this wave function and multiply 

it with its complex conjugate.  
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So, I will have the mod of A 1 square. It should be the mod of A 1 the square of this. 

Multiplying this with it is complex conjugate gives me 1 e to the power minus i into any 

real number multiplied with it is complex conjugate, this will be gone, and I will have 1.  
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So, I have this, and I have the sin square term sin square pi x by a. So, let me just spend a 

minute discussing the implication of this.  
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So, if I have a particle in this potential well. The probability of finding the particle 

outside this is 0, because the wave function vanishes. 
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The probability of finding the particle here and here is 0, since the wave function 

vanishes. 
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And the probability of finding the particle at any position, is the square of this wave 

function. So, you can see that the probability of finding the particle at any position 

provided the particle is in the ground state n equal to 1. The probability of finding the 

particle is the square of this. The square of this is a function which looks quite like this, it 

has a maxima at the center, and then it falls of at the two sides. So, the maximum 

probability of finding the particle, if I were to measure the position of the particle in this 

box, the largest probability would be to find the particle at the center, and then the 

probability of finding the particle falls off as you go to towards the edges of the box. So, 

that is the ground state.  
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In the ground state the probability falls off as sin square pi x by a go towards the. So, this 

function falls off towards the edges. And the total probability of finding the particle 

somewhere rho x inside that range is 0 to a rho x dx. This has to be equal to 1, or it A 1, 

the mod of A 1 square 0 to a sin square pi x pi x by a dx this has to be 1. Now, we know 

how to do this integral sin square pi x by a can be written as. So, this we can write as 

mod of A 1 square and then I have half 0 to A 1 minus cos pi x by a factor of 2 will come 

here now 2 pi x by a dx. So, there is a factory of two which comes in over here. So, this 

sin square pi x by a can be written as 1 minus cos 2 pi x by a dx. And the integral is from 

0 to a. The first term gives me a, the second term gives me 0, because it is the full period, 

0 to a is the full period for this function 2 pi x by a. So, this cos integrated over a period 

gives me 0. So, this is equal to a by 2, the lengthy by 2 into the mod of A 1 square. And 

this should be equal to 1. So, it tells us that the mod of A 1 square should be equal to 2 

by a, or A 1 is the square root of 2 by a into e to the power i phi, some arbitrary phase 

where phi is some arbitrary real number, some arbitrary phase. So, A 1 the normalization 

coefficient is root 2 by a into e to the power i phi, where phi is some arbitrary phase. If 

you set phi equal to 0 it is just equal to this much. If you set pi equal to pi I pick up a 

minus sin. These are all possible solutions which give you this condition. 
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So, the normalization coefficient over here. Let me also write that, is for the ground state 

sorry this is the general expression. The normalization coefficient for the ground state is 

A 1 is equal to root 2 by a with some arbitrary phase e to the power i phi. And for any 

value of phi you put in the A 1 here it will satisfy the normalization condition. So, we 

have worked out what the ground state of a particle in a potential well is. Now let us look 

at the next possible state that is n equal to 2. So, we are going to now look at solution, to 

the wave function for n equal to 2, and this is the general expression. 
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So, we have solutions corresponding to each value of the integer, starting from 1, then 

you can go to 2 3 4 etcetera. So, n equal to 2 is the next energy level. So, it is the energy 

level which is just one of from the ground state. So, this is called the first excited state, 

and here the energy levels increase proportional to n square. So, this is going to have an 

energy value 4 pi square h cross square by 2 pi a square.  
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So, the n equal 2 state is called the first excited state. It is the second highest or rather the 

second lowest possible energy state, that the particle can have the lowest is the ground 



state, and then this is the one just above that. So, it is called the first excited state. If you 

give the particle some energy, it will jump to the state; that is a lowest energy state above 

the ground state; that is the first excited state n equal to 2. And the wave function now 

psi n x t is A 2, a normalization coefficient into e to the power minus i E 2 t by h cross 

into sin 2 pi x by a. And the energy level has a value E is equal to 4 pi square h cross 

square by 2 m a square. So, this is the energy level of the first excited state n equal to 2. 

And let me now plot this wave function again what I mean by plotting the wave function 

is, just plotting the spatial dependence which is a real function. We are not interested in 

this, and this is just a constant. So, when I plot psi 2 in the range 0 to x, I have to plot two 

pi x by a. So, this is a sin wave, sin with whose period is exactly equal a x equal to 0, the 

argument is 0, x equal to a the argument is 2 pi. So, the wave function, the argument of 

the wave function goes from 0 to 2 pi. So, the wave function does one full oscillation. 

So, this is n equal 2. And this normalization coefficient, again has to be found, by doing 

this, by calculating the probability density. 

(Refer Slide Time: 28:39) 

 

  

  



(Refer Slide Time: 28:49) 

 

The probability density is now going to be mod of A 2 square into sin square 2 pi x by a. 

So, when i square this is the probability, to get the probability density. The probability 

density is going to have a peak over here, and the probability of finding the particle. If 

the particle is in the first excited state, the probability of the finding the particle is going 

to have one maxima, somewhere over here, another maxima somewhere over here. The 

probability of finding the particle is going to be 0 near the center, and is going to have 

two maxima; One at one fourth of the distance a by 4, and other one at 3 a by 4. So, the 

probability of finding the particle at different positions inside has changed, if I look at 

first excited state.  
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And we have to determine this coefficient A 2 by the requirement that the total 

probability of finding the particle somewhere inside should be 1, that is what we mean 

by normalization. And again we will have A 2 now instead of A 1 into sin square 2 pi x 

by a. now again the sin square can written as half 1 minus cos. Now, there is going to be 

another factor of 2 here, whether there is a factor of 2 or not. This integral is always 

going to be 0. So, we have a by 2, and the value of the amplitude is going to be the same.  
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So, for all the wave functions, all the higher values of n. the value of the wave of the 

normalization coefficient, is going to be exactly the same. So, A 2 is going to be equal to 

A 1, is have the same value, but the phase could be different.  
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So, I could have a different phase for A 1, and I could have different phase for A 2.The 

magnitude is exactly the same. We could similarly workout A 3 A 4 A 5 etcetera, and let 

me discuss some general features of the wave function for a particle in a potential well. 

So, the first thing that you notice is that, now once you have confined the particle to a 



finite region. Here you have confined the particle to a region 0 to a. You no longer have 

possible solutions for any value of the energy. There are only discrete values of the 

energy for which for which we have solutions.  
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And in this particular case, these energy levels correspond to different values of the 

integer, and you could have values of the n ranging from 1 all the way to infinity. There 

could any integer value will give me a different solution. So, in this particular case, we 

have discrete energy levels, and we have an energy level corresponding to every value of 

the integer, starting from 1 all the way to infinity. Now, this feature that we have discrete 

energy levels, is a very generic feature. It arises whenever we have a particle; that is 

constrained to a finite region. So, if you have a potential, such that it constrains the 

particle to a finite region, then you always have discrete energy levels. This is a very 

generic feature, we have studied. Here we have rigorously shown it, for a particular case 

where we have an infinite potential well, but such a situation also occurs if I had a finite 

potential well.  
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So, if I had a potential well which is finite, and we had a particle in this potential well 

whose energy was less than the height of the potential. So, this was the energy. So, v is 

finite not infinite, like the previous case. So, again we if you solve this problem you will 

find, that there will be only discrete values of the energy for which there will be solutions 

possible. And solutions will not be possible for any arbitrary value of the energy. For 

such a finite potential well, there may be the number of possible solutions will not be 

infinite.  
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In this case you have infinite number of possible solutions, the integer. All values of the 

integer 1 to infinity will give. Each value in the range one to infinity will give a different 

solution. 
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For this case there will be some restrictions, beyond which you will not have a bound 

solution. So, on the contrary if you have a situation where the energy is higher than the 

value of the potential, you do not have discrete energy states. The allowed values of 

energy are in general continuous. So, what we have seen here is a very generic feature, 

whenever the particle is confined. We notice that if the energy level is larger than the 

potential, the particle is in principle free to move over the entire range of x, whereas if 

the energy is less than the value of the potential outside, the particle is confined within 

the potential well. It is free to move here. If you apply classical mechanics the particle is 

constrained to move only in this region. In quantum mechanics there will be a amount of 

penetration, but still the particle is confined, and you always have discrete energy levels 

in such a situation. Whereas if the energy is more than the value of the potential, we have 

seen that you have this plane wave solutions, and you have solutions for any value of the 

energy. So, this is the very generic feature which occurs whenever you have a particle 

which is constrained within a certain region by a potential. So, there are other examples 

which I could give you.  



For example, you have a simple harmonic oscillator. We have studied this extensively in 

classical mechanics. The simple harmonic oscillator potential is quadratic. So, the 

potential looks like this. And if I have a particle with some energy E, the particle is going 

to be constrained to oscillate in a finite region. And if I apply classical mechanics, it is 

going to be constrained to oscillate in this region. in quantum mechanics the particle may 

extend beyond this region, the wave function will extend beyond this region, but the 

particles wave functions is still going to be localized, because the potential goes to 

infinity at x equal to plus infinity and minus infinity. So, the particle is going to be bound 

somewhere in between. It is a bound particle, constrained to a finite region. And again in 

this case, you have finite energy level. So, in this case, the energy levels are. The spacing 

between the energy levels is proportional to end, whereas for a particle, in a square 

potential well the energies are proportional to n square. Another example is a hydrogen 

atom, if I have an electron bound, within the potential of the nucleus in a hydrogen atom, 

in any atom for that matter. If the electron is bound within the potential of the atom, so it 

is an electron bound to the atom, inside the bound in the atom. Then the allowed energy 

levels are discrete.  

So, whenever in quantum mechanics, whenever a particle’s position is localized by a 

potential, it has only a set of energy discrete energy levels for which you can find 

solutions to the Schrodinger equation, and you will not have solutions for arbitrary value 

of the energy. Whereas if you had a free particle, or for the atom if I had a situation 

where I had an iron. So, singly ionized hydrogen atom let us say, or a singly ionized 

sodium atom or something like that, and I had an electron, so this together constitutes the 

atom. But the electron had more energy than the potential, the electron came from 

infinite it encounters the potential, it got scattered and then it went off to infinity. In such 

a situation the allowed energy levels are continuous energy. The electron could have any 

possible energy, as long as it is more than the value of the potential. So, I have a discrete, 

I do not have a discrete spectrum, I have a continuous range of allowed values for the 

energy, but the moment you have an electron which is confined constrained to a certain 

region, and which is bound, you have discrete energy levels. And we have seen this for. 

In this particular case, where I have an infinite potential well, and the particle is bound. 

The wave function is constrained, confined within a certain region, and we these discrete 

energy levels. 
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So, the point I am trying to make over here, is that discrete energy levels are very 

generic. It occurs whenever we have a bound particle; bound or confined. So, whenever 

we have a particle confined to a certain region, we will always have discrete energy 

levels, as we have seen in this particular situation. Now, in this particular situation, the 

energy of these discrete energy levels is proportional to n squared. So, I can also draw 

that.  
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So, let me draw the energies along this axis. So, this is the potential well, and here I am 

going to show the energies. So, we have the lowest energy state E 1, which has energy h 

cross square into pi square divided by 2 m a squared. 
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Now, the next energy level is n equal to 2, the energy level is 4 pi square x square by 2 m 

a square. So, this is E equal to 0 over here. So, the difference from here is going to be 

four times this much. So, 1,2,3,4, somewhere over here. 
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And the next possible energy level, is n equal to 3. So, the energy level is going to be 9 

pi square h cross square by 2 m a square. So, the difference from here is going to be 9 

times this difference. So, this is already 4. So, 4 and one more 5, so it is going to be 

somewhere here this is E 3 and then I have E 4 which is 16 pi square h cross square by 2 

m a square.  
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So, this is 9 and 16 is going to be somewhere over here. So, let me this is E 16, and the 

spacing is going to get larger and larger and the energy level are going to get further and 

further higher and higher. So, this is what the energy levels, discrete energy levels, the 

different energy levels, in this particular situation look like. And the spacing between the 

energy levels is going to be different for different forms of the potential. Also the 

number of allowed energy levels, is going to be different, for different forms of the 

potential. And if I have a finite potential, well the numbers are going to be in general 

few, they are not going to be infinite. Now, let us consider a situation where I have a say 

a particle over here. A charge particle in some kind of a potential well. Let me talk about 

an example, an example is in semiconductors. We know that in semiconductors, if you 

dope a certain part of the semiconductor.  
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So, if I have a semiconductor for example; an intrinsic semiconductor, say silicon or 

something like that, and i a dope a part of the semiconductor. I am sure we know what 

we mean by doping, we either make it n or p type. So, we have doped a certain part of 

the semiconductor. Inside this dope region we conduct the carriers, the charge carriers, 

so the electron or the hole, will experience a different potential. So, if you dope a small 

region, inside this region, the electron or the hole is going to experience a different 

potential. So, if this is, I am just going draw one dimensional representation. In general it 

is going to be three dimensional, but let me just draw a one dimensional representation. 

So, this is a semiconductor, and we have doped this part. So, an electron or a whole 

whichever is the carrier, charge carrier is going to have a different potential in this 

region. And if you draw the potential the potential is going to appear, it is going to be 

higher over here. So, if I have a particle, the electron or hole, whose energy is less than 

the energy outside, or a particle from outside could lose some energy, and fall into this, 

get trapped by this potential, so this is the particles energy. And there could be different 

such possible energy levels. So, this is what is called a quantum well. A quantum well 

can be made in semiconductors by doping very small regions, and it is a technologically 

challenge challenging task, because you have to dope uniformly dope a very small 

region, but it can be done.  
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And if you do that then inside this region, the energy levels of the electron of the hole 

whichever is the case are roughly proportional to n square. So, if you can have trapped 

particles inside this small dope region. This small dope region is called a quantum well. 

And you can have particles trapped inside this energy levels of particles inside this, are 

approximately proportional to n square, as you expect in a potential well, the potential 

well which we have discussed. And if the electron or the hole goes from a higher energy 

level to a lower energy level inside this. We in this transition the electrons looses energy, 

and this energy is going to come out in the form of photons. So, you can have all kind of 

such transitions inside these quantum wells, and you can have lasers, you can use these 

things to make lasers, and it has got various other technological applications. So, the 

particle in box that we have studied, serves as a model to understand this, to understand 

the energy levels inside such a quantum well. And there are various other situations, 

where also you could use this as a model, to understand what is going on. And this gives 

you a rough idea of the kind of thing that go also goes on in an atom, where you find 

discrete energy levels.  

Although the mathematics there is a little more difficult, because the potential is not a 

step, but something else, but this gives you a rough idea of the fact that you expect to get 

discrete energy levels and so forth. So, this is our discussion of the energy levels. Now 

let me also discuss the nature of the wave function. So, we have looked at the wave 

function for the ground state, the first excited state. We also know what the wave 



function is going to look like for the second excited state, the third excited state, etcetera. 

So, we saw that the ground state wave function is going to look like this. It has no nodes, 

the only two nodes are at the end points, it has no nodes in between. So, this is what the 

ground state wave function looks like. The first excited state wave function is going to 

have one node in the middle.  

The second excited state wave function, is going to have two nodes, is going to look like 

this. And similarly the third excited state, is going to have three nodes. This is not 16, 

sorry this is 4. So, the n equal to 4 is going to is a third excited state, it is going to have 3 

nodes. So, you see that, you can relate the, you can predict the number of nodes that you 

expect in the wave function. The ground state will have no nodes, the first excited state 

will have a single node, the second excited state will have 2 nodes, and the third excited 

state will have 3 nodes etcetera. And this again is a very general feature. So, there are 

you find this feature again in all situations, where you have a particle trapped in a 

potential. If the particle is in the ground state, you will have no nodes in the wave 

function. If it is in the first excited state, you will have 1 node etcetera. This is a very 

generic feature, it is not true just for this, it is true for all situations where you have a 

particle trapped in a potential, where a particle is confined, is bound in a potential. 

Finally, let me also discuss the analogy of this problem, with the standing waves that we 

have discussed. 
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So, the relation of a particle in a box with the standing waves… So, remember we have 

discussed standing waves in a variety of situation; we could have standing waves in a 

variety of situations. So, for example, if you had a string of length a. There are certain 

solutions, standing wave solutions, and the spatial dependence of the solution does not 

move forward or backward. It just evolves in the whole wave, just the whole pattern just 

changes with time, and these are what are called standing waves. So, for standing waves 

we had these harmonics, we had the first harmonic. The first harmonic; For example, if 

you have a string, in the first harmonic the disturbance of the string looks like this. And 

with time, the string vibrations look like this, whole moves down, and then the vibration 

become 0, and then it goes like this, and it goes back and forth. So, this is the first 

harmonic for a standing wave; for example, a string. And then you have the second 

harmonic; in the second harmonic you have one node over here, and with time this goes 

down and this goes up, and the vibration this goes up and the whole thing moves up and 

down like this. So, in strings for electromagnetic waves, elastic waves, if you put 

boundary condition that that wave has to vanish at the two edges, you have these 

standing waves. And the wave the disturbance pattern of the standing waves looks 

exactly the same, it is the exactly the same, as the different wave functions that we have 

obtained for a particle in a box. 
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You have the ground state, the first excited state, the second excited state etcetera; n 

equal to 1 2 3 etcetera. These are also labeled by n equal to 1 n equal to 2 etcetera. So, 

the wavelength of the lowest energy state, is the twice the length of the box or the twice 

the length or the string. The wavelength of the first excited state, or the first second 

harmonic, is exactly equal to the size of the box or the size of the string etcetera. So, the 

spatial dependence is exactly the same, but there is a very. There is also big difference 

between these two.  
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The difference is as follows, if you look at the energy levels of a particle in this box, the 

energy levels go proportional to n square. Now remember, how the energy levels, the 

energy is the angular frequency into h cross. So, you can say that the angular frequency 

of these different waves, also increases proportional to n square. 
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But if you ask the question how does the angular frequency of the standing waves 

increase. You will remember that the angular frequency increases proportional to n. For a 

standing wave the second harmonic has a frequency, which is exactly double the 

frequency of the first harmonic. The third harmonic has a frequency which is three times 

the frequency of the first harmonic so forth. So, the frequency increases proportional to n 

for the standing waves in elastic rod vibrating string, or electromagnetic waves. Whereas, 

the angular frequency goes proportional to n square for a particle in a box.  
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Now you may ask the question why, and the reason why this difference occurs, is 

essentially related to the dispersion relation. The wave function is governed by a 

Schrodinger equation, and the dispersion relation for this particular wave, the wave 

function, if you remember.  
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So, for Schrodinger equation or the wave function, the dispersion relation comes from p 

square E is equal to p square by 2 m which gives us that h cross omega is h cross square 

k square by 2 m. So, we see that omega increases proportional to the wave number 



squared. Whereas, for electromagnetic waves or elastic waves or a vibrating string, we 

have a dispersion relation; omega square is equal to C s or C square k square. You see 

that C omega, is proportional to k, whereas here it is proportional to k square. And it is 

this difference which is the source of the difference in the behavior of the angular 

frequency with the different excitations. Finally, there is another point which I should 

make. We have seen that for a particle in a box. We have these different wave functions 

n equal to 1 is the ground state n equal 2 is the first excited state, n equal to 3 is the 

second excited state. 
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Now, I should also tell you that any linear superposition of these different states, is also a 

possible solution of a particle in a box. So, here I have just superposed the ground state 

and the first excited state. In general I could superpose many of them. This is not a 

stationary state, but it is an allowed solution of the Schrodinger equation. And if you 

make a measurement of the particles energy, you will. For this particular state you will 

either get E 1 or E 2, and you can calculate the probability of getting E 1; that is the mod 

of C 1 square divided by the mod of C 1 square plus C 2 square etcetera, we have 

discussed this earlier. So, the point here is that any linear superposition of these different 

solutions, is also a possible solution. So, let me end today’s lecture of a particle in a box, 

a particle in a potential well over here. And the point which you should bear in mind, is 

that this the particle in a potential or the particle in a box, is the prototype for all 

situations where we have a particle which is bound. 


