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Good morning. We have been discussing standing waves let us take up a problem there 

is a steel rod. 
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The two ends of the steel rod are fixed so, that it does not experience any deformation 

and the steel rod is of length L. There is a disturbance longitudinal disturbance xi x t 

which is the standing wave so, it is of the form A sin pi x by L cos c pi x by L. So, we 

have a disturbance sorry this should be t c we have a standing wave disturbance 

introduced in this steel rod of length L cross sectional area A. And the deformation the 

displacement of any part of the rod, because of this disturbance is as given by the 

expression over here. This is into product into so, it is a product of one function of x and 

function of time. And this is the familiar standing wave you can also see that this 

corresponds to the fundamental mode or the first harmonic. 

The disturbance looks like this. It will have a maximum here and this shows you xi the 

displacement that remember the displacement is not vertical it is a transverse elastic 

wave standing wave. So, the displacement is in the horizontal direction and it looks like 



this. It has a maximum at the center and as time evolves this will go down, because of 

this oscillating cosine c pi t by L C remember is the speed of sound speed of this elastic 

waves in the steel rod which is square root of Y the Young’s modulus by the density of 

the of the steel. 

So, Y is the Young’s modules and rho is the density of the medium and the displacement 

xi looks like this at t equal to 0. And then as time evolves it falls and then at a later the 

later time it will looks like this. And then it will become 0 and then it will become like 

this and then like this. And then it will go back and forth those are the displacements of 

that shows you the displacement pattern in the inside the rod remember the displacement 

pattern is longitudinal it is not transverse now. And the problem which we would like to 

address is as follows we have to calculate two quantities first. 
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the first quantity which we would like to calculate is the instantaneous kinetic energy per 

unit volume and we would like to calculate this for any point arbitrary point inside the 

rod. 
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Now, if you have a mass element m. So, there is a mass element m with mass m and if it 

has a speed v then the kinetic energy. The kinetic energy which we will call T the kinetic 

which we call capital T is going to be mass into velocity square v square by 2.  
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Now, let us take a small volume a small part of the steel rod; so, the element the mass 

element which we are dealing with is a part of the steel rod. 
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So, this is of actually a part of the steel rod of length delta x and transverse cross 

sectional area A so, this has an area A. So, the mass of this element of the steel rod is rho 

into the volume here is delta x into A. So, this is the mass we have half so, half times 

mass times the velocity squared. Now, the question is what is the velocity of this element 

of the mass inside. 
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This steel rod now, the displacement of any element of the steel rod is given by xi. So, 

the time derivative of xi gives the velocity.  
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So, it is dell xi dell t square this gives the velocity. So, the total kinetic energy of this 

volume delta x delta A inside the steel rod so, the kinetic energy per unit volume let me 

denote rhis by T bar kinetic energy per unit volume this is half.  
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So, I have to divide out the volume form here. If I divide the volume out then this delta x 

into A is gone. 
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And I have that fact that this is half rho dell xi dell t squared. This is the kinetic energy 

per instantaneous kinetic energy per unit volume inside this. 
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Steel rod and this is the displacement pattern has a function of time inside this rod. So, 

we have to take the time derivative of this if you take the time derivative of this. You get 

an extra you get a factor overall you pick out a factor of c pi by L if you differentiate cos 

with time you get a factor of c pi L outside and then this becomes minus sin. So, when I 

square it I will have sin square over here. 
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So what I have is that this is equal to half rho and the derivative gives me a factor of c pi 

by L squared and then I have A square sin square of this term into the sin square of this 

term. 
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Because I have differentiated it this cos becomes sin. 
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So, what we have is A square sin square pi x by L into sine square c pi x by L this gives 

the kinetic energy per unit volume. Let us know at any instant of time the instantaneous 

kinetic energy per unit volume let me now calculate the instantaneous potential energy 

per unit volume Let so, we again to calculate the potential energy per unit volume. The 

kinetic energy calculation is quite simple. Now, the question is how to we calculate the 

potential energy per unit volume? The potential energy calculation is a little not so, 

simple, but it is not very difficult either. 
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So, let us take a small element of the steel rod of length delta x and cross sectional area 

A I am not I can put that here also and cross sectional area A the same element. And we 

have seen in earlier lectures that this can be thought of as a spring. So, any element any 

mass element inside this steel rod can be thought of as a spring. 
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So, I have told you that we can think of this as a spring and the. So, we can think of this 

as a spring with a spring constant k which is Y sorry there is no square root. So, let me 

cut this out k is equal to the Young’s modulus into the area divided by the length of this 



element which is delta x. So, we are looking at deformations of this mass element in 

along the x axis only you should bear thus bear this in mind. So, we are looking at 

deformation of this mass element along the x axis only along this direction. And for this 

purpose you can think of this mass element as a spring constant k where k is Y into the 

cross sectional area divided by the length delta x we have discuss this quite a few 

lectures ago. Now, the question is what is the potential energy of this mass element? If it 

undergoes a deformation we know that the potential energy is half.  

So, the potential energy I am going to denote by U, U is half into the spring constant k 

into the deformation of the spring into the change in the length of the spring. Now, this 

spring actually corresponds to this mass element this is the so, this spring this end of the 

spring is at x this end of the spring is at x plus delta x. The displacement of this end is xi 

x I am not showing the t explicitly, but the t is there and the displacement of this end is xi 

x plus delta x. Now, the deformation the change in the length of the spring is the 

difference between these 2 displacements right if I move both ends of the spring by the 

exactly the same amount there will be no deformation of the spring there will be no 

change in the length of the spring. 

So, the change in the length of the spring is the difference between the displacement of 

this end and the displacement of this end it is a difference these 2. So, the potential 

energy of the spring is half k into the change in the length of the spring which we are all 

familiar with this concept. So, and the change in the length of the spring is xi delta x plus 

delta x minus xi x the so, this is the potential energy of the spring. Now, we know that k 

the spring constant k can be written as Y the Young modulus into the cross sectional area 

divided by delta x. So, this becomes half YA divided by delta x into xi x plus delta x 

minus xi x to square of this. Now, if I divide this by delta x squared this let we do it here. 
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We can write this as U is equal to half YA into delta x into delta x over here xi x plus 

delta x minus xi x square. So, we have been calculating the potential energy. 
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The potential energy is half times the spring constant into the difference of the 

displacement of the 2 ends of the spring. And we so, which is given over here and then 

we took we divide this whole. We write this in the form of this difference divided by 

delta x whole square and then we have put in a extra delta x over here. 
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And this is the derivative of xi with respect to x. So, the potential energy is half into YA 

delta into dell xi dell x the square of this. So, the potential energy per unit volume I 

divide out the volume the volume is A into delta x the volume of this mass element is A 

into delta x.  
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So, I divided out the volume and what we get is the potential energy per unit volume is 

half Y dell xi dell x squared. So, we have calculated the potential the kinetic energy per 

the kinetic energy per unit volume which is half rho dell xi dell t whole square. 
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We have also calculated the potential energy per unit volume which is half Y dell xi dell 

x square. And for the particular displacement pattern for the particular deformation the 

standing wave that we are dealing with. 
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This xi is given over here. So, when I differentiate this with respect to x I will pick up an 

extra factor of pi L outside this will become cosine and I have to square it. So, what we 

have is. 
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This will be equal to half Y into pi by L square this pi by L square comes when. 
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Differentiate this sin and then square it. So, I will have a factor of pi by L square. 
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And then I have A square cos square pi A pi x sorry pi x by L into cos square into cos 

square c pi t by L. 
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So, into cos square c pi t divided by L so, we have what we have done till now, is we 

have worked out the instantaneous kinetic energy and potential energy inside this steel 

rod. And these expressions are valid whether you have a standing wave or you have a 

traveling wave or if you have some static deformation of a any kind of deformation of a 

of an elastic rod. If you have the deformation in one direction then these expressions are 

valid. They are also valid if you have deformation in all 3 directions, but we are not 

really interested in that. So, these expressions are very general expressions this and this 



they are valid in a large variety of situations even if I have a static deformation for 

example. 

Or if I have a travelling wave and for the standing wave which we are considering the 

instantaneous kinetic energy per unit volume is given over here. The instantaneous 

potential energy per unit volume is given over here. Now, let us spend a few minutes in 

analyzing the significance of what we have just calculated the first thing that we 

calculate is as follows. Let us see how the kind kinetic and potential energy evolve with 

time. So, let us plot at t equal to 0 let us plot the evolution of the kinetic and potential 

energy. So, we will consider the kinetic energy at t the let us plot these as a function of x 

at t equal to 0. 
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So, at t equal to 0. 
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At t equal to 0 what does the displacement, the disturbance look like? Let us first plot 

that at t equal to 0 the disturbance looks like this where is the at any instant of time the 

disturbance is given by this. So, we set t equal to 0 at t equal to 0 the cosine term is 1. So, 

the displacement is A sin pi x by L let us set A also equal to 1. 
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And the displacement xi as a function of x at t equal to 0 looks like this we have already 

plotted this and discussed it, but it let me do it again it looks like this. So, the 

deformation is maximum at the center it is always 0 at the 2 ends and at t equal to 0. The 



deformation is the maximum and it looks like this the deformation. So, it is maximum at 

the center and it falls off at the 2 ends. Now, let us plot the kinetic energy per unit 

volume as a function of x at t equal to 0. 
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So, at t equal to 0 we have sin square c pi t by L sorry this should have been t not x the 

kinetic energy term has a t in it not an x it is a time derivative. So, the kinetic energy per 

unit volume this should have been t not x please note the change there was a when we 

differentiate this with respect to time. 
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You get sin square c pi t by L. 
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It should be this is the term right correct thing. So, at t equal to 0 this term is 0 and what 

you see is that the kinetic energy per unit volume is 0 throughout. 
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So, the kinetic energy per unit volume at t equal to 0 looks like this it is 0 everywhere. 

So, it is just here now, let us draw the potential energy per unit volume. 
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So, the potential energy this term is going to be 1 at t equal to 0 and the potential energy 

per unit volume is given by these constant factors. Now, there is a point which I should 

make here that the constant factors here and the constant factors here are exactly the 

same. This is a point which I should have made earlier that we make it now, the constant 

factors given over here which appear in front of a kinetic energy per unit volume. And 

the constant factors which appear in front of potential energy per unit volume for this 

standing wave are exactly the same. That is you will realize that they are exactly the 

same which you substitute c with the Square root of the Young’s modulus divided by the 

density. 
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If you substitute this the rho here will cancel out you will be what you will have is Y into 

pi by L squared so; this term and this term are exactly the same. So, we are not going to 

bother about these two terms, these two terms are also exactly the same. So, we are not 

going to bother about this either what we are going to be interested in is in the behavior 

of this and this, because these overall factors are exactly the same for the kinetic and the 

potential energy per unit volume. So, let me now, draw the potential energy per unit 

volume at t equal to 0 this term is 1. So, what we have to draw is cos square pi x by L 



and this has the maximum value at x equal to 0. It also has a maximum value at x equal 

to 1 it has a minimum in the half way exactly half way between that L by 2. 
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So, the potential energy per unit volume at t equal to 0. Let me we are going to plot that 

so, this is the x axis it goes from 0 to L. This is the potential energy per unit volume and 

the potential energy per unit volume is maximum at the 2 ends it is minimum at the 

center. And the function is cos square pi x by L so, it will look like this. So, this is the 

potential energy per unit volume at t equal to 0. Now, let us see what happens the time 

evolves. So, let we take another instant of time the instant of time which we are going to 

consider is the instant where the kinetic energy becomes maximum and the potential 

energy becomes minimum. 
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So, we should be look at a time instant where the factor the argument of this sin square 

term is pi by 2. And the argument over here is pi by 2 when t is equal to L by 2 c. So, we 

are looking at the time instant where t is equal to L divided by 2 c. 
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If you put L by 2 c over here this becomes pi by 2 sin square of pi by 2 is 1 the potential 

energy also has argument pi by 2 cos square of pi by 2 is 0. So, the potential energy per 

unit volume now becomes 0. 
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And first let me draw the vibration the displacement pattern in the string t equal to L by 2 

c t equal to L by 2 c this becomes pi by 2. 
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So, the displacement is exactly 0 everywhere. 
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So, the displacement xi is 0 everywhere and the kinetic energy per unit volume at that 

instant. 
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This term is 1. So, what we have now, is sin square pi x by L sin square pi x by L has a 

maxima when x is equal to L by 2 the argument becomes pi by 2 is has minima when x is 

equal to 0 or x is equal to L. 
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So, this curve is going to look like this. It is going to start from 0 here and 0 here and it is 

going to have a maximum in the middle. So, it is going have a maximum over here. So, it 

is going to look like this and the potential energy per unit volume is now 0 everywhere it 

is exactly 0 everywhere. So, what is this tell us? Let us just now, we are in a situation to 



analyze what it tells us. So, what it tells us is as follows? Let we can summarize what we 

learnt from this whole exercise. 
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What we learnt from this whole exercise is as follows that the deformation in this steel 

rod is going to be initially like this is the deformation pattern inside the steel rod. The 

longitudinal deformation pattern is initially going to be like this. And then the amplitude 

of this is going to go down and then it is going to become like this. Now, the when the 

deformation is maximum the kinetic energy is 0 we expect that, because when it reaches 

the maximum the velocity becomes 0 when the displacement is maximum the velocity 

become 0. So, the kinetic energy per unit volume becomes 0 so, in this situation at this 

position when the deformation is at its maximum. The kinetic energy is 0 the potential 

energy is maximum and the potential energy is concentrated at the 2 nodes. So, it looks 

like this the potential energy is concentrated at the 2 nodes. 

\So, the potential energy is concentrated at the 2 around the 2 nodes and it falls off and it 

will 0 at the center. Now, as time evolves the deformation goes down. So, at a later time 

the deformation will become will have gone down the potential energy also would have 

gone down the kinetic energy would have picked up. So, the total energy has now flown 

towards from has been converted from potential to kinetic energy and sum of the energy 

flows in from the 2 nodes and it is now distributed along the entire rod. And then finally, 

the deformation will become 0 everywhere at this instant all the energy has gone into the 



form of kinetic energy and all the energy is now concentrated at the center it will look 

like this. 

And then again energy will flow out from the center towards the 2 nodes at the ends and 

it will go into the potential form. So, what you say is that the as you when you have the 

standing wave the energy flows in out in out like this. And it is get converted from the 

potential energy where the energy is mainly concentrated at the nodes to the kinetic 

energy where the energy is mainly in the antinodes and then it flows back nodes and to 

the antinodes. So, this tells us how the energy flows and in how the energy is distributed 

and how it moves around in the in a in a rod like this when we have a standing wave you 

could also calculate the time average kinetic and potential energy. 
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So, the time average kinetic and potential energy are very easy to calculate the time 

average of the kinetic energy per unit volume just average over time. So, will get a factor 

of half over here if you take a time average of this you will get a factor of half over here. 

So, the time average kinetic energy is another factor of half so, it is essentially given by a 

sin square pattern. This is given by a cos square pattern the time average potential energy 

so, the time average kinetic energy. 
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Also looks like this, but it is amplitude is lower the potential energy also looks like this it 

is amplitude is lower. 
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And the time average of these 2 things is a constant. So, that brings us to our to the end 

our discussion of standing waves. And the next topic that we are going take up is 

polarization discuss is polarization. 
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I have already told you quite a few lectures ago that light is an electromagnetic wave and 

if I have a wave travelling along the z axis. The disturbance in the electric and magnetic 

field these are transverse waves it is a transverse wave. So, the disturbance in the electric 

and magnetic field are going to be perpendicular to the direction of the wave. So, if the 

light is travelling along the z axis the electric field can be anywhere in the x y plane and 

same with the magnetic field. And they will be both in phase and they will be mutually 

perpendicular to each other. I have a also told you that the electric field vector could be 

oscillating up and down in a straight line such light is set to be linearly polarized. The 

electric field vector could be going around in a circle such light is set to be the circularly 

polarized or it could be going around in an ellipse. 

And such light is set to be elliptically polarized elliptically polarized light is the most 

general polarization state of light. We have discussed all of this quite some time ago I 

have also told you that the natural radiation that we receive the natural light is 

unpolarized. What we mean by unpolarized light is that the electric field direction 

changes randomly in the plain perpendicular to the direction in which the way is 

propagating. So, for natural light if it is propagating along the z direction the electric 

field vector just goes around randomly in the x y plane. It has no fixed pattern it has no 

predictable pattern it jumps around randomly in the x y plane. So, this is natural light 

which is largely unpolarized. Now, there are certain optical devices called polarizer’s. 
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So, there are optical devices called polarizer’s. So, let we draw a polarizer over here 

schematically this is a polarizer and typically we would send in radiation perpendicular 

to the plane of the polarizer and the radiation would come out here. And the property of 

the polarizer is that if you send in natural light the radiation that comes out is going to 

have some kind of polarization. And it could be fully polarized or it could be partially 

polarized it depends on the polarizer. And you could have linear polarizer’s which 

produce linearly polarized light that comes out you could have circularly circular 

polarizer which produce a circular polarized light that comes out or it could have 

elliptical polarizer’s. So, let us discuss linear polarizer’s. 
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So, let me tell you again what is a linear polarizer a linear polarizer is a device where if 

you send in this is the linear polarizer i am sending in light. The light that comes out is 

going I am sending a natural light. The light that comes out is going to be linearly 

polarized. So, if this is a linear polarizer and we are sending in radiation like this it has 2 

axes which are mutually perpendicular so, there is one axis over here called the 

transmission axis.  

And the linear polarizer has the property that it will allow the electric field to pass 

through only the electric filed comp1nt parallel to the transmission axis to pass through. 

There is another axis called the extinction axis and the electric field vector if it is the 

compound of electric field vector parallel to the extinction axis is not allowed to pass 

through. So, let us first consider the situation where we have natural light incident on a 

linear polarizer.  
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So, natural light if this is the polarizer and this is the transmission axis natural light the 

intensity of the natural light which is incident on this. 
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Let us say is I naught we know that the intensity of the natural light is if it is I naught. 

Then the amplitude of the electric field should be E naught we can call this E naught. 

And I naught is proportional to E naught squared we will be using I naught exactly equal 

to I naught E naught squared. 
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So, the electric field of the incident natural light is going to be of amplitude E naught 

such that I naught is E naught square there will be other constant. So, over here half 

epsilon naught etcetera. We are not interested in those constants over here if they are 

important we will write it down, but in most of our discursion they are not going to be 

important. So, we will not them explicitly we are going to assume that E I naught the 

intensity is proposal to the amplitude of the electric field squared. 

So, we have natural light incident on the polarizer and the direction of the electric field 

with respect to the transmission axis is given by an angle theta. And this direction is 

going to vary randomly with time so, at one instant of time it is going to look like this. At 

the next instant of time the for the same polarizer the same natural light the direction of 

the electric field vector would have changed and it may it will be at some other angle. 

So, at some later instant of time it will be at a different angle theta over here and it is 

going to oscillate around it is going to randomly change around over time. 

And the time scale over which this change occurs is quite large of the order of the 

coherence time of the light. So, it is going to change around quite rapidly and the 

quantity that we measure is the average intensity averaged over. So, we are assuming 

that for natural light the electric filed vector changes around quite rapidly on a scale time 

scale which is much faster than the time scale over which we measure the intensity. So, 



when you measure the intensity of the light what you are going to measure is the average 

over different orientations of the electric field.  
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 Now, the radiation that comes out, we are interested... So, the first question that we are 

interested in is what is the intensity of the radiation that comes out this will have some 

intensity I. And the question that we are interested in is what is the intensity of the 

radiation that comes out? 
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Now the amplitude of the vector that is allowed to pass through remember that only the 

component parallel to the transmission axis is allowed to pass through. So, the amplitude 

of the vector that is allowed to pass through is E naught cos theta. So, the intensity of the 

light that come that is allowed to pass through is I is equal to the square of this into the 

square of this. And this cos square theta is not fixed it varies randomly over time varies 

rapidly randomly over time. So, what you really measure is the average and the average 

of cos square theta is half. So, the intensity that comes out is half E naught squared. So, 

let me remind you again the situation that we have considered. 

We have considered the situation where there is naturally polarized naturally natural 

light which is unpolarized incident on a polarizer whose transmission axis is along the 

direction shown over here. Indicated by this unpolarized light has an electric field of the 

amplitude E naught whose direction varies randomly very rapidly. The polarizer only 

allows the comp1nt parallel of the electric field parallel to the transmission axis to come 

through so, this comp1nt is E naught cos theta. So, the intensity of the light that comes 

through is E naught square cos square theta and since this direction theta varies randomly 

what you measure is the average. So, what you measure is the average of this average of 

cos square theta is half. So, the intensity falls to half the value 
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So, this intensity of the light which comes out from the polarizer is half I naught. And it 

has the property that the electric field is parallel to the transmission axis. So, it is linearly 



polarized that is why it is called a linear polarizer. Let us now, consider a slightly 

different situation more the situation is as follows we have 2 polarizer’s. 
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And we have natural light of intensity I naught incidents on the first 1 whose 

transmission axis is like this and then we have another polarizer which is refer to as the 

analyzer whose transmission axis is at an angle theta. So, the transmission axis of the 

second 1 of the second polarizer which we also refer to as the analyzer and polarizer are 

exactly the same thing just that we are they are being used for different purposes. So, this 

is another polarizer whose transmission axis is at an angle theta with respect to the first 

1. So, the question is what happens to the light that comes out after the analyzer? 

So, the intensity of the light that comes out here is I 1 and the intensity of the light that 

comes out here we are going to call I 2. And we have already seen that I 1 is going to be 

half I naught. Now let us analyze let us discuss what happens at the second at the 

analyzer? This we refer into this as the analyzer it is also a polarizer, but which we are 

using it for a different purpose we are using it to analyze the polarization content of the 

light that comes over here. And the transmission axis is at an angle theta to the 

transmission axis of this.  
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So, let us draw a picture which shows the second, which shows the analyzer whose 

transmission axis is like this along this direction and the incident radiation has the 

electric field oriented like this. Now, the analyzer will only allow the comp1nt of the 

electric field parallel to the transmission axis to pass through. So, if this is E 1 the if the 

incident light has amplitude the electric field is amplitude E 1 the amplitude of the 

electric field that passes thorough is going to be E 1 if this angle is theta is going to be E 

1 cos theta. So, if I calculate this is E 2 the amplitude of the electric field that comes out. 

So, if I calculate the intensity of the radiation that comes out this is going to be E 2 

square which is E 1 square cos square theta which I can write as I 1 cos square theta.  
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So, what we see is that if I have 2 polarizer’s at an angle theta the intensity of the light 

goes down by a factor of cos square theta where theta is the angle between the 

transmission axis of the 2 polarizer’s or another way of thinking of it is. 
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If I have a linearly polarized light at an angle theta to the transmission axis the intensity 

of the light that comes out is reduced by a factor cos square theta. 
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And it is the radiation that comes out is now, polarized in the direction parallel to the 

transmission axis of the second polarizer. 
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You could ask the question what happens if the 2 if these 2 are mutually perpendicular. If 

these 2 are mutually perpendicular so, we have see that I 2 is I 1 cos square theta. If these 

2 polarizer’s were the polarizer and the analyzer were mutually perpendicular then the 

value of cos square theta is 0. So, if theta is pi by 2 the 2 the 2 transmission axis this is T 

and the other transmission axis is T they are perpendicular the intensity of the light that 



comes out is 0. The 2 polarizer’s the polarizer and the analyzers are set to be crossed in 

this situation. So, for crossed polarizer and analyzer there is no radiation that comes out.  

So, what we see is that a linearly a linear polarizer produces an output which is linearly 

polarized in the direction of its transmission axis. The intensity of the radiation that 

comes out falls and if it is unpolarized like that you have sent in it falls to half the 

original intensity if it is linearly polarized like that you have sent in then it falls. And it 

falls to by a factor of cos square theta where theta is the angle between the direction of 

the 2 transmission axis. Now, next let us ask the question how do you construct a linear 

polarizer how do you what produces polarize light? Now, polarized radiation linearly 

polarized radiation is in general polarized radiation is produced these polarizer’s are 

basically based on 3 mechanisms there are three fundamental mechanisms. So, these 

mechanisms let me write down these different mechanisms here. 
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Three mechanisms which generate polarized light, three mechanisms for which you can 

design a polarizer here. Or by which polarized radiation is produced they are scattering 

reflection and birefringence. So, these three mechanisms produce polarized radiation 

these are the 3 main mechanisms which produce polarized radiation. Let us let me give 

you an example well we have already discussed an example of how scattering produces 

polarized radiation from natural or unpolarized light? Let we go through this again this 

scattering which i am referring to occurs in nature. So, we know that the sky is blue 



because of the scattered light. Light which is scattered and how does scattering take 

place we have all also discussed this.  
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So, if I have radiation like this which is unpolarized so, the electric field can oscillate 

anywhere in this plane if we have unpolarized radiation incident say on some atom or 

molecule. The electric field in the incident radiation E will induce dipole movements 

over here. So, you could think of this it could be a dielectric whatever it could free 

electrons it could be an atom. Or a molecule it will introduce a dipole movement over 

here which will be parallel to the direction of the electric field and if the electric filed 

oscillates the dipole over here is also going to oscillate and it is going to emit radiation. 

So, the radiation that is incident on this could be polarized could the electric field could 

be in two direction 1 like this or perpendicular to the plain of the paper which I am going 

to denote like this. Now, consider the situation where I observe this scattered light from 

this direction this polarization is going to set this polarization. So, the incident light 

electric field is a superposition of 2 polarizations this and this. And it could be varying 

randomly it could be some random super position of these two and it could be going 

around in random, because it is natural radiation. 

Now, we are going to treat these 2 separately. So, this polarization is going to set the 

dipole into oscillation in this direction. A dipole oscillating in this direction is not going 

to emit any radiation in this direction. So, if you look at this whole thing from here you 



are not going to receive any radiation due to this polarization. This is going to set the 

dipole oscillating like this and if you look at it from this direction what you will see is 

that the electric field oscillates back and forth like this. Now, if you ask the question 

what are the 2 possible states of polarization for radiation travelling in this direction? 

The 2 possible states of the radiation travelling in this direction are as follows. 

You could have the electric field oscillating like this or electric field could be oscillating 

perpendicular like this sorry no if the dipole oscillates up and down in this page it is 

going to produce an electric field which is also oscillating up and down So, this dipole I 

what I told you just now, is wrong this dipole is going to produce an electric field which 

is oscillating up and down in parallel to the dipole So, this is going to be produce an 

electric field like this, but this comp1nt of the electric field this possible polarization is 

going to be absent. Because there is no way that that these kind of dipole oscillations in 

this direction are going to be produce by this, because there is no electric field comp1nt 

parallel to the direction in which the incident wave is coming So, let me summarize what 

I have told you here what I have told you here is that. 
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If there is a scatterer over here on which the unpolarized natural radiation is incident like 

this. This can have two different electric field here can be in 2 different directions like 

this and like this. And both are going to be equally present, because it is natural 

unpolarized light. Now if I look at the radiation that goes out in this direction from the 



scatterer so, this scatterer the radiation which goes out in this direction. This polarization 

is going to be present, because this is going to set the dipole oscillating up and down 

which is going to produce an electric field also oscillating up and down. But the other 

possible polarization over here which is this one this is going to be absent. So, if you 

look at the radiation scattered out at ninety degrees it is going to be linearly polarized. 

And the polarization in the plain of the scattering is going to be absent only the 

polarization perpendicular to the plain of the scattering is going to be present. So, this is 

one way in which scattering produces linearly polarized light.  

(Refer Slide Time: 57:06) 

 

and this occurs in nature because when you look at the sky think of this as a sky and this 

as the earth surface we are standing here. The sun let us say is here this is the sun when 

you look in this direction what you will see is you will see sun light which has got 

scattered and is coming in this direction that is why you see the sky in the first place. So, 

it is a scattered light from the sun that you see and if this scattering; angle is 90 degrees. 

You will get linearly polarized light if the scattering angle is different from 90 degrees 

you will get partially linearly polarized light. So, scattering produces linear polarization 

that is that is something which we have learnt to today we have discussed this earlier 

also. So, today again I have told you how scattering produces linearly polarized light. So, 

in the next lecture we are going to discuss the other two mechanism. 
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We are going to discuss reflection and by birefringence. 


