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Solving the Wave Equation 

 

Good morning. In yesterday’s lecture we were discussing the evaluation of a disturbance 

in an elastic medium, an elastic rod. Let us say, and the kind of disturbance that we were 

discussing we had deformation of the rod. And we consider the situation where the 

deformation we studied the evaluation of the deformation in the same direction as the 

deformation itself. And we had obtained an equation which governs the evaluation of 

disturbances in an elastic rod. 
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So, the disturbance was xi the variables xi represents the displacement of any element of 

the elastic material. 
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And these displacements are along the x axis and we had assumed that the displacements 

also vary only along the x axis. So, they xi is a function of x the only the variable only 

special variable that xi is a function of its x and it is a function of t also. And we had 

obtained this differential equation this partial differential equation which governs the 

evolution of xi and this partial differential equation. We had written in this fashion where 

we had this constant cs which was the square root of the Young’s modulus divided by 

the density of the elastic medium. And I have told you that this equation is the wave 

equation. If you have a disturbance which can propagate which is which varies in all 3 

directions. 



(Refer Slide Time: 02:54) 

 

Then you have to replace which varies in all 3 directions then you have to replace the 

derivative with respect to y with the Laplacian operator. That is del del x square plus del 

del y square plus del del z square and the wave equation is now given by this. Now, I 

should tell you the first the first thing. I should tell you is that the waves which we had 

considered in the last class are what are known as longitudinal waves. So, the waves that 

we had considered in the last class or what are known as sorry longitudinal waves. 
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What do we mean by 

longitudinal waves? A 

wave is set to be 

longitudinal if the 

disturbance if. So, if the 

disturbance that in this 

case the disturbance is 

along the x axis the 

displacement of any point in the elastic medium xi is along the axis. And the xi itself 



varies along the x axis to such a wave is set to be longitudinal wave. You could also have 

another kind of wave called the transverse wave. Let me give you an example of a 

transverse wave if you have a stretched string. So, think of this line as a string which has 

been pulled tight it is stretched and if in this string. We introduce a disturbance which is 

perpendicular to the direction of the string let us say that I plug the string like this and 

leave it. Then the evolution of this disturbance is this disturbance is a transverse 

disturbance it is this disturbance is going move around along the x direction. And if I use 

the same symbol xi to denote the disturbance that disturbance is perpendicular to the 

direction in which the wave can propagate. So, this is called a transverse wav another 

situation where we have a transverse wave is the electromagnetic wave. 
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And I have already told you that for an electromagnetic wave if I have an 

electromagnetic wave is the disturbance in the electrical magnetic field. And if this is a 

disturbance in the electric field then if I have a wave which is propagating in this 

direction. The electric filed disturbance can only be in the directions perpendicular to the 

direction in which the wave is propagating. This 2 is a transverse wave the electric field 

and the magnetic field both have to perpendicular to the direction in which the wave is 

propagating. So, if the wave is going along the x axis which is the situation that we have 

been discussing. The electric field can be anywhere in the y z plane. So, both of these are 

transverse waves. 
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So, we have different kinds of waves possible we have longitudinal waves possible. We 

derived the wave equation for a longitudinal wave which is disturbances in an elastic 

medium, longitudinal disturbances in an elastic medium. But you could also have 

transverse waves like the disturbances in a string now in all such situations. 
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The evolution of the disturbance is typically governed by such a wave equation. So, the 

wave equation that we have derived is very general it does not hold just it is not that it 



holds just for the elastic waves. It holds in a such an equation arises in a large variety of 

situation. So, if you analyze the evaluation of the disturbance in the string, or if you 

analyze the evolution of the disturbance in the electromagnetic field in all situations you 

will find that the disturbance is governed. The evolution of the disturbance is governed 

by such a wave equation. The only difference that occurs when I go from one kind of 

wave to another the main difference that occur is that the speed at which the wave 

propagates the phase velocity of the wave that changes. So, for an elastic wave we found 

that the phase velocity of the wave is related to the properties of the elastic medium. 
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It is the Young’s modulus divided by the density. If I have some other kind of wave if I 

have disturbances in a stretch string. Then this phase velocity is the square root of the 

tension per unit length of. So, this will be replaced by the tension divided by the unit 
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The mass per unit length of the string for an electromagnetic wave it is the speed at 

which speed of light in vacuum and. So, forth so, depending on the particular wave that 

you are considering the value of this constant the value of the phase velocity will be 

different. But usually the wave is you will find that the wave is governed by an equation 

is like this. So, this kind of an equation is a very general equation. And it arises in a large 

variety of situations. So, it is very important to understand the solutions of the wave 

equation which is what we are going to discuss in today’s lecture. Now, I have already 

also told you that that the sinusoidal plane wave which we have discussed at great length 

earlier on in this course. 
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The sinusoidal plane wave which can be mathematically expressed like this I have shown 

you that the sinusoidal plane wave is indeed a solution to this wave equation. 
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So, this is need a solution to the wave equation provided the wave number k the wave 

number corresponding to this wave vector and the angular frequency are related in this 

fashion. So, the relation between the angular velocity and the wave number is called the 

dispersion relation. So, provided the angular velocity and the wave number satisfy the 

dispersion relation corresponding to this particular wave. So, the dispersion relation for 



the particular wave will have the phase velocity the constant c which occurs here 

appearing in the dispersion relation. So, provided omega and k are related like this then 

this is a solution to this wave equation. So, we have already seen 1 particular solution a 

special solution to the wave equation. Now, let us discuss a few more general kind of a 

solution of the wave equation. So, the first kind of solution that we shall discuss is called 

a plane wave solution. 
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So, let us discuss a plane wave plane wave solution of the wave equation, what do we 

mean by a plane wave solution? We are going to assume that xi the disturbance which in 

general could be a function of all 3 special variables the x y z. We are going to assume 

that it depends on only a single special variable it. So, the xi that is the disturbance varies 

only in a particular direction and we will use x to denote that direction. We will assume 

that xi the disturbance that we are whose evolution we are studying could be the 

longitudinal disturbance is an in an elastic rod could be the transverse vibrations of a 

string. Whatever, it be we will assume that it depends only on x not on y on z. Now, if xi 

if the disturbance depends only on x let me draw the x y z co ordinate system this is x 

this is y and this z rather let me put it other way. Now, this is z and this is y to be have a 

right handed co ordinate system. 

And if you impose the condition that xi depends only on x then you see that the value of 

xi is a constant on a plane which is parallel to the y z plane. So, it is constant on this 



plane it will be constant on this plane also it will have a different value on these 2 planes. 

So, xi if it is a function of x alone will be constant on this plane it will constant on this 

plane and the value of xi could different here and here. And it will different on every 

other plane in between since the value of xi is constant on planes this is referred to as a 

plane wave solution. That is the first point which you should note. So, when we mean 

when we speak of a plane wave solution what we mean is that the value of xi is constant 

on planes. And in this case the planes are perpendicular to the y z plane if instead of x I 

had chosen y then the planes would be perpendicular to the x z plane and so forth. So, in 

this situation when xi is a function of x alone the wave equation that we have to deal 

with is this. 
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It is you have the second partial derivative with respect to x of xi minus 1 by c square. 

Now, please note that I am going to use c without the subscript x to denote the speed of 

the phase velocity of the wave. 
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So, I am not going to put the s explicitly in all of today is lecture. So, you should you 

should realize that the c which is here is not necessarily the speed of light. It is the speed 

of light in vacuum when we refer to an electromagnetic wave in when you are dealing 

with an elastic wave c is the speed the phase velocity of the in the elastic medium which 

is the square root of y by rho etcetera. So, c is the phase velocity of that particular wave 

not necessarily the speed of light in vacuum. It is the same as this cs thus that I am not 

going to show this s explicitly. 
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So, the wave equation is this minus 1 by c squared del by del the partial derivative of 

with respect to t this is equal to 0 xi is a function of x and t. And we are looking for 

solutions to this equation. It is convenient to introduce to new variables w 1 which is x 

plus ct and w 2 x minus ct. So, xi now is a function of w 1 and w 2 we can replace these 

2 variables x and t position and time with the 2 new variables w 1 and w 2. So, we have 

to also now replace the derivatives with respect to x with derivatives in terms of w 1 and 

w 2. So, let me work out the derivative of with respect to x in terms of derivatives with 

respect to w 1 and w 2. 
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So, del del x is equal to del w1 so, the derivative with respect to x the partial derivative 

with respect to x. You can express in terms of partial derivatives with respect to w 1 w 2 

using the chain rule of differentiation and. So, you have to now calculate these 

derivatives the derivative of w 1 with respect to x and derivate of w 2 with respect to x. 
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So, let us go back to our expression for w 1 if you differentiate this with respect to x you 

get 1. Similarly if you take the partial derivative of this with respect to x you get 1. So, 

you find that this equal to this. 
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So, the derivative with respect to x can be written in terms of derivatives with respect to 

w 1 w 2 like this. Now, let us also work out the derivatives with respect to t. So, the 

quantity which is convenient to deal with is 1 by c partial derivative with respect to t 

again we will do the same thing. So, I will put a 1 by c here del w 1 del t del del w 1 plus 

1 by c w 2 del t. So, we have now what we are doing is we are expressing the derivative 

with respect to t the partial derivative with respect to the in terms of partial derivatives 



with respect to the new variables w 1 and w 2. So, we have to calculate this partial 

derivative first. 
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So, what happen when I differentiate this with respect to t and divided by c? I get plus 1 

if I differentiate this with respect to the and divide c I will get minus 1. 
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So, we see that this is equal to so, we have worked out the derivative with respect to x 

and t in terms of derivatives with respect to the new variables w 1 w 2. Let us now go 

back to our wave equation. 
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So, this is the wave equation, we are we originally started with in this wave equation. We 

have to now replace derivative with respect to x In terms of the derivative with respect to 

w 1 and w 2. 
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We also have to replace derivative with respect to t in terms of derivative with respect to 

w 1 w 2. So, we have to square this so, when you replace that we do it for you explicitly 

instead of its quite straight forward. So, the derivative with respect to x the equation that 

we get is the derivative with respect to x squared. 
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So, we have partial derivative with respect to w 1 plus partial derivative with respect to 

w 2 that is the derivative with respect to x the square of this acting on xi. 
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So, I have written down the first term over here the square of the operator that is the 

partial derivative with respect to x is acting on xi. And then I have to subtract out this. 
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So, I have to subtract out let me have to. So, I have to subtract out del w 1 minus the 

partial derivative with respect to w 2 square into xi this is equal to 0 the this is equation. 

This is the same wave equation. 
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So, what we have done is we have written this wave equation in terms of derivatives with 

respect to w 1 and w 2. This is the derivative with respect to x which has been written 

like this is the derivative to the respect to t divided by c square, the second derivative 



which I have written in this fashion. So, the same wave equation is now this equation 

over here in terms of w 1 and w 2. 
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Now, when I expand out the first term let me expand out the first term. So, the when I 

expand out the first term what I get is partial derivative with respect to w 1 the square of 

this plus 2 times partial derivative with respect to w 1 w 2 which is the cross term 

between the, this . And this plus the square of the second term this whole thing acting on 

xi minus now when squared this I will have I will get the same thing as this, but with an 

extra minus sign because there is a minus sign over here. So, I will have minus 2 del 

square plus this acting on xi is equal to 0. Now, when you add these 2 terms there is a 

relative minus sign here. So, this will cancel out with this this will cancel out this and 

you are left with the equation. The equation that you are left with let me. 
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So, the equation that you are left with is that the second derivative of xi which is a 

function of w 1 and w 2 with respect to w 1 this is equal to 0. So, what we have done is 

we have a changed variables we started off with xi is a function of x and t. We have 

changed variables gone over to new variables w 1 and w 2. And we have a written the 

wave equation in terms of these 2 new 2 2 new variables and this is the equation that we 

get we have to now look at the solutions to this equation. Now, you see that this equation 

the finding the solutions to this equation is what simpler you can guess the solutions to 

this equation much simpler than the original equation that we had. And there are 3 

possibilities you can straight away think off the first the possibility is if xi w 1 w 2 is a 

constant. But this possibility does not give us a propagating the disturbance it is not a 

wave. So, it is not a not a very interesting solution though it is a a mathematically 

permissible solution. 

The second possibility which is interesting now is the situation where xi is a function 

some arbitrary function of w 1 alone. So, if xi is a function w 1 alone the function should 

be differentiable. And we would like the function to the vanish at infinity plus minus 

infinity otherwise there is no other restriction. So, if I if you choose xi to be a function of 

w 1 alone then when you put this here the derivative with respect to w 2 is 0. So, this 

equation is satisfied so, this is you see this gives you a particular a possible solution to 

this equation. And you have an another possible solution which is a situation where xi is 

some other function f 2 of w 2 alone. So, if you have some arbitrary function of w 1 



alone or some arbitrary function of w 2 alone. Then both of these are solutions to the 

wave equation. So, let us go back to the variables which we started out with. So, what we 

see is that the solution to the wave equation can be written in the following way. 
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It could be some arbitrary function f 1 of w 1 and w 1 is x plus ct plus some other 

arbitrary function f 2 of w 2 which is x minus ct. And this combination linear 

superposition of 2 such functions is solution to the to this wave equation which for which 

you are trying to find a solution. 
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So, we have obtained the most general plane wave solution to the wave equation plane 

planar solution to the wave equation. 
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Now, let us interpret this Solution let us first focus on a situation where we have only the 

first function. So, we have only let us focus on this particular solution let us said this to 

be 0. And let us focus on this particular solution. So, at t equal to 0 let us plot this 

function f 1 could be some arbitrary function which is differentiable and we would like it 

to vanish far away. So, let we plot some such function you could choose any function 

that you wish. So, I will ask you to plot a function your choice I will plot a function of 

my choice. So, let we plot a function so, the function that I will plot looks that looks 

something like this. So, at t equal to 0 the function looks like this. So, this f 1 x which is 

xi at t equal to 0 we have only this we do not have this part we are not considering this 

part we are only considering this part. So, xi at t equal to 0 xi is f 1 x which looks like 

this some arbitrary could chose some of the function which for your of your choice and 

draw it. 

So, now we have drawn xi at t equal to 0 now let us ask the question what will xi look 

like at t equal to 1. Let us ask the question that xi has a particular value f 1 0 at this point 

at t equal to 0 where will xi have the same value at the time t equal to 1. So, at t equal to 

1 we have to make the argument of this function the same as x as the as 0 you have to 

make the argument of this function 0. So, what you see is this that the argument of this 



function become 0 at the point x is equal to minus c at the time t equal to 1. The 

argument of this function become 0 when x is equal to minus c. So, this kind of an 

argument applies to all the points. So, what you can say is that the whole function at the 

time t equal to 1. The whole function has shifted by the amount c the whole function is 

shifted to the left side. So, the whole function has shifted by an amount x equal to minus 

c. 

That is what happens as time involves. So, at the time t equal to 1 the whole function has 

shifted. So, you have exactly the same thing repeated. But it is now all shifted by an 

amount which is equal to c at t equal to 1 the whole thing has shifted by an amount c to 

the left at t equal to 2. So, at t equal to 2 if you ask the question, where has where is the 

value of xi the same as the value at as it was at this point at t equal to 0. So, you want to 

make the argument of this function 0 at the instant t equal to 2. So, this is going to 

happen at x is equal to minus 2 c. So, what you see is that the at t equal to 2 the whole 

curve has shifted by minus 2 c. So, it has shifted to the left by 2 c. So, at t equal 2 the 

same curve is going to be the the value it is going to be the same curve. 

The value of xi is going be described by the same curve all that has happened is that the 

thing the curve has shifted by an amount 2 c to the left. So, this so, what we see is that 

this part of the solution represents a wave propagating to the left at the speed c let me 

repeat again. We have determined general solution to the wave equation and the general 

solution we found is a sum of 2 parts. The first part is some arbitrary function of x plus 

ct. The second part is some arbitrary function of x minus ct we have been interpreting the 

the significant of the first part which is some arbitrary function of x plus ct. And what we 

saw was that this corresponds to a wave propagating to the left with the speed c. So, the 

functional form of xi does not change all that happens is that it shifts keeps on shifting to 

the left. 
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So, this picture over here shows you the evolution of the left propagating plane wave 

solutions. So, this is the solution at t equal to 0 at t equal to 1 the whole solution has 

shifted to the left and at t equal to 2 it has shifted further to the left the shift being. So, 

from here to here shift is going to be c from here to here shift is going to be 2 c and at t 

equal to 3 it could have shifted to 3 c. 
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This shows you animation of the left propagating plane wave. So, this and it moves 

keeps on moving as time evolves. So, let me show you this again. So, as time evolves 



this is xi at t equal to 0 at t equal to 0 xi is the function fx f 1 x in this case and then at as 

time involves the whole pattern moves to the left with speed c which you what you see 

here. So, this part of the solution represents a wave propagating to the left it is a left 

propagating wave. 
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Now, you could ask the same question what does this part of the solution represent it is 

quite clear. What this part of the solution represents f 2 again could be some arbitrary 

function. And as time evolves at t equal to 0 the xi x let us forget about this and focus 

only on this at t equal to 0 xi x is f 2 x as time evolves the whole pattern. Now, 

propagates to the right with a speed c which is what you can this picture shows you? 
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So, we have f 2 which some other function some arbitrary function of x this is the 

functional format t equal to 0 as time evolves. So, this is the whole thing shifts to the 

right. So, this is the functional form of xi at t equal to 1 and this is the function form xi at 

the equal to 2. 
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So, this shows you an animation of how right propagating plane wave involves. So, this 

shows you xi as a function of x at t equal to 0 it is described by a function f 2 x at t equal 

to 1 2 3 the whole thing keeps on shifting as time involve and shifts forward in x with the 



same speed c. So, let me just recapitulate what we have done. We wanted to look for 

solutions of the wave equation the disturbance the wave disturbance xi could in principle 

be a function of all three special coordinate x y z. We restricted our attention to a 

particular situation when xi depends on only 1 special coordinate and we chose it to be x. 

So, xi is constant on planes perpendicular to the x axis this called plane wave. 

And we found solutions to the plane wave equation to the wave equation and we found 

that there are 2 kinds of solutions possible. The first kind of a solution is could it could 

be some arbitrary function of x plus ct this represents a wave propagating to the left or it 

could be some other arbitrary function of x minus ct which represents the wave 

propagating to the right. And in general the any arbitrary solution could be a linear 

superposition of to such functions. Now, the plane wave the sinusoidal plane wave which 

we have discussed extensively earlier the sinusoidal plane wave. 
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In purely real notation can be represented like this a sin omega t minus kx. See the 

sinusoidal plane wave which we are already quite familiar with now let us check that the 

sinusoidal plane wave is special case of this solution. 
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So, to show you that all that we have to do is we have choose f the function f 2 to be A 

sin x. 
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So, with that choice so, I have set f 2 to be a sin x so, with this choice sin x into kx so, let 

me write it here f 2 I have chosen f 2 to be a sin kx. Then the solutions xi with this choice 

of f 2 the solution xi is going to be f 2 of the function of x minus ct. So, it will be k x 

minus ct. Which we see is exactly the same as this provided we identify I can put a 

minus sign here. So, this will be minus and i i have minus here. So, this exactly same as 



this represents the left propagating wave and all that you have to do is you have to 

identify omega the angular frequency with k into the speed c. So, what we see is that the 

sinusoidal plane wave which we have been discussing is particular example of a plane 

wave solution where the function is sin. But you could have a much more general 

solution and any arbitrary function provided it vanishes far away. Vanishes at infinity 

and it well behavior that infinity need not vanish sin x is not vanish provided the function 

is well be keep that infinity and it is differentiable then we could it could be a solution, 

right. 
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So, this very special solution where this is a sin function, but in principle it could be any 

arbitrary function provided it is well behaved at infinity well behaved everywhere and it 

is differentiable everywhere. So, these were the plane wave solution to be wave equation 

now let us we will discuss another kind of solution today. So, the other kind of solution 

that we are going to discuss is what is called as spherical wave solution. 
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So, the next kind of solution that we have to going to discuss spherical wave. So, we are 

looking for solutions to the wave equation. 
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So, let me show you the wave equation again we are looking for solutions to the wave 

equation. this is the wave equation and xi could be a function of all 3 special variables x 

y z and time. Now, we again going to impose us an certain symmetry. 
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The plane wave solution comes when you impose a planar symmetry. We again going to 

impose us a symmetry we are going to assume that xi depends only on the distance from 

the origin. So, we have chosen a particular coordinate system x y z. And this is the origin 

of the coordinate system we will assume that the wave that that we have a situation 

where the value of the wave disturbance depends only on the distance r from the origin. 

So, this is the distance r from the origin we will assume that xi depends only on this. So, 

xi as constant value on spheres centre on the origin. So, the value of xi is the same on 

this xi will have a different value on this sphere, but it will be same all over this sphere. 

 So, depending on the radius of the sphere xi will have a different value. We are 

assuming that xi depends only on the distance from some fixed point which is the origin. 

So, this is the value of xi is constant on sphere. So, that is why it is called as spherical 

wave solution spherical wave. Now, I am sure you are familiar with the polar spherical 

polar coordinate system. So, the spherical polar coordinate system has 3 variables r theta 

and phi instead of using the Cartesian coordinate x y and z. It is equally possible to 

equally well described this whole space all point on this space using spherical polar 

coordinate system r theta and phi. So, you could suppose we are using spherical polar 

coordinate system. So, we do not have x y we are not using x y z we are using r theta and 

phi. 
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The question now is that we have to represent the Laplacian operator. The Laplacian 

operator you know is the some of the partial derivatives. 
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So, the Laplacian operator is the second partial derivative with respect to x plus the 

second derivative with respect to y plus the second derivative with respect to z. So, the 

Laplacian operator is this some it has derivatives with respect to x y z when you go over 

to this spherical polar coordinate system r theta and phi. 
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You have to represent this Laplacian operator in terms of derivatives not in terms of x y 

of x y and z, but derivatives in term of with respect to r theta and phi. 
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So, briefly you have to now write down x y and z in terms of r theta phi. And then 

transform these expression just like we wrote it in terms of w 1 and w 2 you have to use 

the chain rule of differentiation and write this in terms of derivatives with respect to this. 

Now, I shall not go through the algebra it is a little t d s and lengthy. So, I shall not go 



through through the algebra. But the point is that it is possible to write down the 

Laplacian in terms of the the polar spherical polar coordinate system. 
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And you will terms involving derivative of r derivatives of theta and derivates of phi.  

(Refer Slide Time: 42:27) 

 



Now the equation which we are trying to solve is this the Laplacian of xi minus 1 by c 

squared time derivative of xi. So, when you have the Laplacian acting on xi remember 

that xi is been assumed to be the function of r alone. 
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So, when the Laplacian acts on xi the derivatives with respect to theta and derivatives 

with respect to phi are not going to matter. It is only the terms involving derivatives with 

respect to r which are going to be important. So, I can write down the Laplacian the point 

is that I can write down this in the spherical polar co ordinate system. And if in general 

the Laplacian in the spherical polar coordinate system will have derivatives with respect 

to r, derivatives with respect to theta and derivative with respect to phi. You can get the 

expression in any book on mathematical physics or any book. Let us see on electro 

dynamics, but the point here is that the derivatives with respect to theta and phi are not 

going to be important. 

Because we are assuming that xi does not depend on theta and phi depends on r alone. 

Theta and phi referred to different points on the sphere we have assumed at xi has a 

constant value on the sphere. So, it is only the r derivatives at we have to retain we can 

ignore the theta and phi derivatives in the Laplacian. And if you retain only the r 

derivative the Laplacian is 1 by r square del del r partial derivative with respect to r, r 

square partial derivative with respect to r of xi. So, this is the Laplacian written in the 

spherical polar coordinate system. So, you have derivative not x y z, but with respect to r 



theta and phi and we have dropped the terms involving derivatives with respect to theta 

and phi. So, this is what the Laplacian operator acting on xi becomes. 
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Now, we replace this in the wave equation. So, the wave equation now reads as follows. 

So, for a spherical wave the wave equation now becomes 1 by r square partial derivative 

with respect to r. 
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And then I have r square partial derivative with respect to r xi minus 1 by c squared 

partial derivative with respect to t square of xi. This is equal to 0 we are looking for 



solution to this equation xi is a function of r and t. Now, it is convenient to introduce a 

new variable here so xi is a function of r and t it is convenient to introduce a new 

variable u which is also a function of r and t such that xi is equal to u divided r. So, with 

this new function introducing new function we have differentiate this once with respect 

to r. So, let we do it here 1 by r partial derivative with respect to r and then I have r 

square and let me write down the derivative of xi with respect to r. So, I will have 1 term 

which is the derivative of u divided r and I will have 1 term which is the derivative of r.  

So, I am going to get u divided by r square this is the first derivative of xi this minus the 

term over here which I am not going to write down explicitly again I am just indicating 

it. So, this is the same time derivative term which here which is here. Just that you have 

to place xi in terms of u now you can simplify this terms. So, what will happen is that 

this factor of 1 by r. So, let me write it here 1 by r. And I have r into del u del r minus u 

that is what we have minus again the time derivative I am just carrying it unchanged is 

equal to 0. So, this is the same thing as this now we have differentiate with respect to r 

again notice that if when I act on this I will get two terms 1 term is the derivative of r 

into. So, which is 1 so, 1 term is going to be del u del r which is exactly going to cancel 

out with that term that I get when differentiate this. So, there is only finally 1 term which 

remain which is r into the second derivative of u. So, we can now write down the same 

equation here. 
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So, what we have is 1 by r square and r into the second derivative of u. 
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So, this is the, what we get from the whole term over here. And I have to also write down 

this term over here replacing xi with u by r. So, r 1 by r comes out. 
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And what I have is minus 1 by c square 1 by r del u del t square is equal to 0. And the 

factor of 1 by r gets cancel out and finally, what we have is del u del r square minus 1 by 

c square del square u del t square is equal to 0. So, what you see is that u the wave new 

variable u which you have introduce satisfies exactly the same wave equation the same 1 



dimensional wave equation which we have just solved earlier. And we have seen that 

there are going to 2 solutions I can straight away write down the solutions for u, u as 

function of r and t is going to be a some 2 solutions. The first part is f 1 r plus ct plus f 2 

r minus ct we have already studied the solution to this wave equation which is what I 

have written down here. And I can straight away write down xi as a function of r and t 

this is going to be f 1 r plus ct divided by r plus f 2 r minus ct divided by r. So, we have 

worked out the spherical wave solutions and again we see that the spherical wave 

solutions are some of 2 parts. That it could be some arbitrary function f 1 well behaved 

arbitrary function whose derivatives of also define of r plus ct divided by r plus some 

other arbitrary function of r minus ct divided by r. So, we have 2 possible solutions now 

remember that r is if this is the origin r is the radial coordinates. 
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So, r changes in this directions as you go from this sphere to this sphere the value of r 

increases. 
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So, for a plane wave these 2 solutions corresponded to left and right propagating waves 

in this particular case just see as t increases the value of r has to go down. If you are 

following the point where f has a certain value at this is as a certain value the value of r 

has to go down. So, this represents the wave which is propagating inwards. So, the first 

part represents the wave which is propagating inwards that is decreasing r, the second 

part represent the wave which propagating outwards that is increasing r. Now, a point to 

note here is that s the wave propagates inwards or out words its amplitude changes as 1 

by r. So, if you have an out word propagating wave outward means as timing increases r 

increases. If you have an output propagating wave this represent an out word propagating 

wave. 
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 As time increases the wave goes in this way or value of r increases. 
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 And as the wave propagates outward which amplitude falls as 1 by r. So, let me show 

you an out word propagating wave over here. 
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So, the value of the wave has a fixed value on this sphere some time at a later time that 

same value has shifted out. But the amplitude is fallen by 1 by r and then at the later time 

the whole thing is again shifted out. The amplitude falls again as 1 by r and the 

amplitude keeps on falling as 1 by r. So, this is an outward propagating wave and if you 

want this c in invert propagating wave this shows you an inward propagating wave. 

Now, we could ask the question what context do you have out word and inward 

propagating waves. 
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Now, if I had a point source from which there is some wave coming out. So, there is a 

source which is localized point and there is some wave coming out from that. Well, this 

could be represented using the outward going spiracle solutions. 
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So, this will represents such a solution if I have source located at the centre over here. 
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So, let me show you this. So, if I had a source located at the centre over here and there 

was wave coming out from this the evolution of the wave would be described by an 

outward going waves. So, as time involves the wave would get evolved into the larger 



and larger spheres like this. And the amplitude would fall as 1 by r or if you ask the 

question how does the intensity fall? The intensity would fall as the in the intensity goes 

as the square of the amplitude. So, the intensity would fall as 1 by r square. So, this is the 

outward propagating wave the inward propagating wave there is it also is has 

applications. Suppose I set a light through a lens which focuses a light to a point. Then 

once the light comes out from the lens I can represented by a spherical wave and that 

spherical wave is going too slowly. That sphere is going to slowly contract it is an 

inward going wave intensity of the light is going to go up. And at the focus it is going to 

infinity and then light is going through the focus. So, the light going towards the focus 

and then it is going to go through the focus and it is going to come out. 

 So, the inward going wave is going to collapse and then it is going to come out as an 

outward going wave. So, in today is lecture we have a discussed solutions of the wave 

equation. The wave equation itself is very general it appears in a large variety of 

situations. And today’s lecture, we have discuss 2 kinds of solution to particular kind of 

solutions. The first solution applies in a situation when we have planer symmetry if the 

wave depends only on 1 special direction. Plane wave; we have plane waves and the 

second solution that we consider we have spherical symmetry. So, it you can applied to a 

situation where you have waves coming out from a source. If you are sufficiently far 

away from the source this is the point which point you should remember that if you are 

sufficiently far away from the source sufficiently far away from the source. So, when the 

wave becomes quite large you can you can represent this quite well using a plane. So, 

spherical wave so, sufficiently far away can be well approximated by a plane wave. And 

we have studied only 2 kinds of solutions there are verity of other solutions possible at 

different situation. We could have a cylindrical solution and whatever could impose 

different kind of symmetries and get the different kind of solutions. So, we shall end our 

lecture here today and move on to something new in the next. 


