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Good morning. In yesterday’s lecture, we were discussing a chain of oscillators. 
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We had a chain of radiators each of which was fed an oscillating signal each radiator we 

refer to as an oscillator. This radiates in all directions and the total radiation received by 

a distant observer at an angle theta is the sum of all these radiations sum of all the waves 

emitted by some of the waves emitted by all of these oscillators. So, we had calculated 

the directional dependence the theta dependence of the radiation that comes out. And we 

had found that there will be maximas primary maximas whenever this condition d sin 

theta is equal to m lambda and could be any integer 0 plus minus 1 2 3 etcetera. 

Whenever this condition was satisfied there would be a maxima in the radiation that is 

received in other directions you would receive much less radiation the intensity pattern 

of the resultant radiation. 
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Intensity pattern looked something like this. You had these primary maximas whenever 

these are satisfied whenever d sin theta is equal to m lambda and this is the primary 

maxima corresponding to m equal to 0. This is m equal to 1 2 minus 1 etcetera and the 

width of these primary maximas goes down as you increase the number of oscillators. 

So, if you have 5 oscillators this is the width if you have 20 the width has g1 down. In 

between these primary maximas you have N minus 1 minimas where N is the number of 

oscillators. And you have N minus 2 secondary maximas which you can see here these 

are much smaller intensity. So, most of the radiation from those oscillators goes out in 

the primary maximas. 
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And this is the width of the primary maxima it is delta theta is equal to lambda by d, d is 

the spacing between the oscillators. N is the total number of oscillator and cos theta m is 

the angle corresponding to the maxima we are looking at. 
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We are also considering the situation where you put a phase difference between 2 

conjugative oscillators. And if the phase difference is 2 phi then you find that what 

happens is that you have to in addition to the phase due to the path difference. You also 

have to add this and what it does is it shifts the angle corresponding to the maxima and 



the shift in the angle the shifted angle is the in this situation the maximas satisfy this 

condition. There is a term in involving phi which appears over here. 
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And then in the last class I had given you a problem, and I had asked you to attempt this 

problem. So, let us now, take up this problem and discusses its solution. So, in this 

particular problem we have a chain of 100 dipole antennas each at a spacing of 1 meter, 

emitting radiation at a frequency of 150 Mega Hertz. So, let me draw a picture over here 

and explain what this thing look s like to you. 
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So, you have these 100 dipole antennas. Let me draw a few of them there all at a spacing 

of d where d equal to 1 meter you are also given the information. So, N is before that N 

is equal to 100 we have 100 antennas you also gave the information that this radiation is 

at 150 megahertz. Let us calculate the wavelength that is what we need so, the 

wavelength is see the speed of light 3 into 10 to the power 8 divided by 150 into 10 to 

the power 6 which is 2 meters. So, the wavelength is 2 meters and the angle theta is 

measured with respect to this direction. The dipoles are all the chain of dipoles is aligned 

like this and the angle theta. Now, before we take up the solution let me just remind you 

if I had a dipole like this that is vertically upwards like this. Then it is radiation would be 

such that, it would radiate maximum in the plain over here. And it would radiate equally 

in all directions on the plain. So, for a single dipole let me draw the picture here. 
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A single dipole like this pointing vertically like this emits maximum radiation in the 

plain of the paper and it emits equally in all directions. This is for single dipole on the 

plain it emits equally in all directions. It does not emitting emit anything in this direction 

on this direction. And it and intensity changes as sin square theta we all know this when 

we have studied the dipole radiation pattern. Now, in this particular problem, 
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We have 100 such dipoles aligned in a chain. So, individually each dipole emits equally 

in all directions, but now, we have 100 of them all being fed the same signal. So, now, 

from the analysis that we have d1 we know that the radiation pattern is not going to be 

the same in all directions there is going to be maximas and minimas. The maximas are 

going to occur whenever d sin theta is equal to m lambda. So, sin theta is equal to 

lambda by d into m which in this case lambda is 2 and d is 1. 
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So, in this case sin theta is equal to 2 m and m can have any value 0 plus minus 1 to plus 

minus 2 plus minus 3 etcetera. So, the question is what are the possible solutions for 

theta? In this particular case you see lambda by d is this the ratio lambda by d in this 

particular case lambda by d is more than 1. If lambda by d is more than 1 there is only 1 

possible solution which is m equal to 0 which implies theta equal to 0. So, there is only 1 

solution in this case all the intensity. 
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All the radiation comes out in this direction. 
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This is the direction of the maxima equivalently sin theta equal to 0 also has a solution 

theta equal to pi which is the backward direction. 
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So, what we see is that when we have only 1 dipole. 

(Refer Slide Time: 09:27) 

 

It emits radiation equally in all directions in the plain. 
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But now, when I have an array of 100 of such dipoles it the radiation pattern has 

maximas. In this case there are only there is only 1 maxima in the forward direction and 

1 in the backward direction. So, the bulk of the radiation goes out towards the directions 

theta equal to 0 in the forward direction in the backward direction theta equal to pi. And 

so, you have been able introduce a definite directional dependence in the radiation from 

this whole configuration. Now, let us take up the next question the next part of the 

question we have already addressed 2 of the first 2 parts of the question. 
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That is in which direction is the intensity maximum intensity how many maxima are 

there? There are only 1 and then we have the width of the maxima to consider the width 

of the maxima. 
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 And we had found that the width delta theta corresponding to the mth order maxima is 

lambda by d N cos theta. So, in this particular problem we have the zeroth order maxima. 

So, m is equal to theta m is equal to 0. 
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So, we have delta theta is equal to lambda by N d. 
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So, what we find is that the radiation pattern from this array of dipoles. 
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Let me draw the picture for you over here again. So, we have this array of dipoles like 

this. The radiation pattern from this array of dipoles is like this. So, it emits most of the 

radiation in either the forward direction or the backward direction and it in this particular 

case it is towards the angle theta is equal to 0. And it has a width in angle the width is 

lambda by N d where d is the spacing and N is the number of dipoles in the array in this 

case this N d is a actually the total length spanned by this chain of oscillators. So, now, 



let us go back to the problem that we were discussing. We have another part to this to be 

having another part to this problem that we are discussing. So, let us go back to the 

problem that we are discussing there the other part which remains to be. 
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Addressed is that what happens when there is phase difference of pi by 8 between the 

oscillators. 
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So, remember in the last lecture we had also discussed what happens when you have a 

phase difference of 2 phi between any 2 successive oscillators and in best this. 
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So, this particular case 2 phi is equal to pi by 8 or phi is equal to pi by 16. So, the 

condition for the maximas is sin theta is equal to lambda by d which is 2. 
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See the condition for the maxima now, gets change because of this phase difference. And 

the condition now, is sin theta is equal to lambda by d into m minus phi by pi phi. We 

have already calculated it is pi by 16. So, the maximas now get shifted and the maximas 

will occur. 
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Whenever the condition this is equal to m minus 1 by 16 is satisfied. So, we can see that 

the maxima will now, occur at an angle which is sin inverse minus sin inverse 1 by 8. So, 

if you introduce the phase between the any between each of these antennas each of these 

dipoles. 
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What you do is, you can shift the direction in which the maxima occur in this case it will 

shifted downwards like this. So, by introducing different phases you can shift the 

direction in which the maximas occur. So, let us let me just recapitulate for you the 



implications of what we have just discussed. We have an array of N dipoles each at a 

spacing d in the situation where I had a single dipole. It would emit radiation equally in 

all directions in the plain perpendicular to the dipole in the situation where we have 100 

of them. There is considerable amount of directivity in the radiation that comes out 

directionality in the radiation comes out. And in this particular case when the all the 

dipoles are oscillating at the same phase the bulk of the radiation comes out in the 

direction perpendicular to this chain. 
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And it is spread over a small angle delta theta which is lambda divided by N d where N d 

is the total N is the number of oscillators in the chain and d is a distance between them. 

So, if the total chain of oscillators span this distance it is essentially lambda divided by 

this distance the largest separation between the oscillators. So, all the radiation gets 

focused gets concentrated into this small angle. And if I introduce a phase difference 

between 2 between the dipoles then I can make the direction of the maximum move 

around. So, you see this is what is called a phase array. And this has got tremendous 

amount of applications. 
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So, let me show you a picture first of a ship. So, the picture here shows a ship. And 

notice that on the ship you have these rods these vertical rods I do not know if you can 

see them. But there are these vertical rods over here. So, in case you cannot in case you 

cannot see them let me reinforce them for you over here on this picture. So, you have 

these vertical rods like this and these rods are essentially dipoles. So, each rod over there 

is a dipole. And if you had only a single dipole it would emit radiation equally in all 

directions in the plain perpendicular to the dipole. So, it would radiate emission equally 

in all directions like this, but now, we have an array of dipoles. 

So, if the same signal is send to all of these dipoles the radiation will be maximum in the 

direction perpendicular to this chains. So, it will come out forward so, the maximum 

radiation will come out like this. And if I give a phase difference between all the dipoles 

then we can change the direction in which the maximum radiation comes out. So, this 

can be used has a radar and you can send out the signal. And you can receive the signal 

that gets reflected back if from any source from any distant object and this can be used as 

a radar. And you can make the radar sweep around the full whole plain by a providing a 

appropriate phase difference between the dipoles and then slowly changing the phase 

difference. 

So, if we if you give a phase difference between the dipoles then you can change the 

direction in which you have the maxima. And if you change the phase difference 



between the dipoles you can make the direction of the maxima slowly sweep. The whole 

sky like this and this can act like radar. So, this is a phased array has got applications as a 

radar as you can see on the ship here. So, this is a battle ship. And on this battle ship we 

the phased array acts like a like a radar system. So, you can there are various other 

applications. So, let me show you another application of the phased array. 
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So, the next application shown over here is an array of phased arrays. Now, I had we had 

already seen in earlier lectures that if you want a dipole to be affective in radiate sending 

out radiation. The length of the dipole should be comparable to the wavelength at which 

you are radiating. 
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So, if you are working at something like 1 meter wavelength then the dipole should be 

also of length 1 meter which is what the situation that I had shown you just a little bit 

little while ago the radar on the ship. That was possibly working in somewhere like a 

wavelength may be few centimeters and the length of the dipoles were also of the order 

of meter may be of few centimeter or a meter. Now, if you go to much smaller 

wavelength let say millimeter wavelengths. So, lambda is of the order of millimeter not 

possibly even less. This wave this has got several satellite communication and various of 

the communication applications. So, orders of the wavelengths of the order of from 

centimeter to millimeter then the radiating elements will also be smaller. And this picture 

shows you an array of phased arrays. 
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So, this shows you an array of phased arrays. And this is on a much smaller length scale 

has you can see. Now, each of these so, this is one phased array using a phased array you 

can make you can ensured that the radiation gets directed in a particular direction. And 

you can change the direction by introducing different phases between these radiating 

elements and using an array of such periodic phased array. So, you have one phased 

array over here you have another phased array over here. So, you have an array of 

phased arrays using an array of phased arrays you can actually move around the direction 

of the radiation in both this direction and this direction. So, both horizontally and 

vertically this gives you 2 degrees of freedom in which you can turn the direction in 

which the majority of the radiation of the radiation comes out. Let me now show you 

another application of the same idea of a phased array. So, the picture which I am going 

to show you now is an application in radio astronomy we had discussed the cosmic 

microwave background radiation much earlier. And there is a considerable amount of an 

effort going on to map the cosmic microwave background radiation at high angular 

resolution. 
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So, this picture shows you this is a picture of the Arcminute Microkelvin imager. This is 

at Cambridge UK it works in the frequency range 1 to 18 Gigahertz. And it has got 

antennas which you can see over here there is a linear chain of antennas. A part of the 

array of the Arcminute Microkelvin imager is a linear chain of an antenna which you can 

see over here each of these antennas is 13 meter in diameter. So, the question is what is 

achieved by having a linear chain of antennas over here? So, let me just spend a little 

time discussing this point each antenna let us say that we are working at 15 Gigahertz. 
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So, at 15 gigahertz let us first estimate the wavelength. So, the wave corresponding to 15 

gigahertz will be 3 into 10 to the power 8. This is meters per second divided by 15 into 

10 to the power gigahertz will be 10 to the power 9 per second. So, this gives us lambda 

so, 10 to the power 9 over here 10 to the power 8 over here which gives us a factor of 

minus 10 to the power minus 1 already. And then if i divide 3 by 15 I get 2 into 10 to 

power minus 2 meters this is the wavelength. It is 2 centimeters. And in this particular 

situation we have antennas of diameter D which is 13 meters. And we have studied few 

lectures ago that, because of diffraction the diffraction is going to set the angular 

resolution of these antennas. So, the angular resolution of these antennas is of the order 

of lambda by D. Lambda here is 2 into 10 to the power minus 2 D is 13. Let me just take 

into be for simplicity to get an order of magnitude. So, lambda by D the angular 

resolution is 2 into 10 to the power minus 3 radians and to convert this into degrees. 
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I have to multiply by 2 into 10 to the power minus 3 into 180 divided by pi which I can 

take of the order of 60. So, this gives me 1.2 into 10 to the power minus 1 minus 1 

degrees. So, that is the kind of a resolution angular resolution of this point 1 2 degrees is 

the kind of angular resolution of a lambda of the single antenna. So, each of these 

antenna if I had 1 antenna like this, it would a receive radiation it would emit radiation or 

receive radiation from an angle of the order of 1.2 into 10 to the power minus 1 degrees. 
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Now, what is the advantage if I combine a set of antennas like this in the form of a 

phased array? We have seen that if I combine these radiating elements has a phased array 

and I do not give any phase difference between any of the between 2 of the conjugative 

elements. Then it is going to emit the maximum radiation in the forward direction 

assuming that there are no other maximas. If there other maximas there will be other 

direction also in which you will have primary maximas other primary maximas. But, let 

us focus on the primary maxima which in forward direction m equal to 0. So, it is going 

to emit a bulk of its radiation in the forward direction or it is going equally receive bulk 

of the radiation from the forward direction and from a width. 
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Delta theta which we have seen is going to be lambda by N d where N d is the spacing is 

the total d is the spacing between any 2 of these oscillators that N is the total number of 

oscillators. 
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So, with reference to this particular picture let me tell you what is going to happen is that 

one of these antennas. So, each of these antennas we have seen is going to emit if I had 

only one antenna it would emit radiation or receive it would have a resolution which is 

12 degrees. But now, when I have if when I use this has an array it is resolution is going 



to be decided by this total length over here. And the resolution of this is now, going to be 

of the order of lambda into L lambda by L instead of lambda by D and this number is 

going to be smaller. So, you have you will be able to achieve higher angular resolution. 

A smaller angular resolution when you use this chain of antennas has an array instead of 

using them as individual antennas that is the crucial point. And the angular resolution is 

going to be decided as you can see the angular resolution the is going to be lambda by N 

d. 
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That is the width of the primary maxima so, that is going to be the angular resolution. It 

is going to be decided by the separation between the 2 for these elements in this chain of 

oscillators. Let me now discuss another application of this chain of oscillators which we 

had discussed in the last class. And this particular application is what is called a 

diffraction grating. 



(Refer Slide Time: 29:19) 

 

A diffraction grating is essentially an opaque screen so; we have a opaque screen over 

here. In this opaque screen you have a periodic arrangement of slits which you can see 

over here. And the spacing between any 2 slits is d any 2 successive slits is d. If I draw a 

picture for you here it will be clear. 
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So, if you look at it phase on from the front it looks like this you have this opaque screen 

on which you have a periodic arrangement of slits. So, each of these is a slit and you 

have a plain wave. 
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Incident on this diffraction grating; the so, when the plain wave is incident on this, each 

slit acts like a source for a secondary wave. So, each of them now emits a secondary 

wave and this is effectively a chain of oscillators, because you have the same radiation 

coming out from each of the slit. Before going on to discusses what the intensity pattern 

will look like? Let me discuss what how we can construct a diffraction grating? You 

might have seen a diffraction grating in your physics laboratory the typically in if you are 

working in the optical range you will find that you will what the diffraction grating will 

be something of this size. And if you look at it you will notice that there are these dot 

lines and through which the light cannot pass and then there are transparent lines through 

which the light can pass it will you look like this. So, one way you can realize these this 

kind of arrangement is, If you draw up black and white lines you paint black and white 

lines on a wall. 

So, take a wall a big wall and paint black and wall white lines on this wall. It is on a 

large scale big wall paint black and white lines. Now, take a picture of this using a 

camera go to a distance and take a picture of this using a camera. And take the negative 

you develop the film you will get a negative in that negative you will have a transparent 

region. The negative will be the inverse of the picture that you have taken. So, 

corresponding to the black line you will get a transparent view you will get a transparent 

region and corresponding to the bright line you get the dark region. And you will have 

these black and white rulings on your negative which you can use as a diffraction 



grating. This going to be essentially be a very scaled on version of the black and white 

lines which you had drawn on the wall. There are many other possible ways in which 

you can construct a diffraction grating the diffraction resource. 
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The question now, is what is the intensity pattern that the diffraction grating is going to 

produce on a screen over here? The intensity patterns, that the diffraction gating, grating 

is going to produce on the on the screen over here. Let me write down the expression for 

you. The intensity pattern that the diffraction grating is going to produce is given over 

here. 
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It is I equal to I naught sin square N alpha divided by sin square N alpha into sorry sin 

square N alpha divided by sin square alpha into sin square beta. So, you see the intensity 

pattern produced by the diffraction grating is a product of 3 terms. The first term is the 

overall intensity, the second term is the intensity pattern produced by chain of oscillators 

here alpha is phi d sin theta by lambda; d is the spacing between each of the oscillator in 

the chain of oscillators. 
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And we have another term which is sin c square beta which again you must have 

encountered in this course little few lectures earlier beta is phi D sin theta by lambda. So, 

this d is the separation between the slits so, grating that we have is a sequence of slits 

which are equally placed the separation between any 2 slits is d and the width of each slit 

itself is capital D. And the intensity pattern which this diffraction grating produces is a 

product of the intensity produce by a chain of N oscillators each at a separates small d 

multiplied by the intensity pattern produced by a signal slit of width capital D. So, the 

next question is what does the intensity pattern look like? So, we will consider a situation 

where capital D the slit width so, the width of each slit is much smaller than the spacing 

between the slits. 

So, we will consider this situation which is the situation that occurs usually in a 

diffraction grating. So, we will consider a situation where each slit width is smaller than 

the spacing between the 2 consecutive slits. Now, in this situation let us ask the question 

if I vary theta which of this turn is going to change faster. And it is quite clear that since 

this slit width is much smaller than this spacing between the slits. This term alpha is 

going to change much faster and this term beta is going to change much slower. So, the 

intensity pattern due to the chain of oscillators is going to change much faster the 

intensity pattern due to the diffraction pattern of single slit is going to change much 

slower. And this is what determines the overall final intensity pattern produced by the 

diffraction grating. 
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This is what is shown over here the intensity pattern produce by the chain of oscillators 

this changes much faster as we have just seen. This decides the intensity pattern by the 

chain of oscillators. This d the spacing is much bigger than the width of each slit. So, this 

is going change much faster this is what you see here the contribution the pattern due to 

the chain of oscillators is much more rapidly varying. You have these primary maxima it 

then you have minima then you have a secondary maxima you have quite a few 

secondary maxima you have another primary maxima of a higher order again. You have 

the secondary minimas maximas again you have another primary maximum of a higher 

order and so forth. This is multiplied by the diffraction pattern of a signal slit which 

show by the dash line over here this varies more slowly. 

The net result of this whole thing is as follows. If the slit with were ignored then all the 

primary maximas would have the same intensity. This was the situation that we had 

considered in the last class. All the primary maximas would have the same intensity 

which would be I naught N square where N is a number of oscillators, but because of the 

effect the finite width of the slit the higher order maximas are going to have a smaller 

intensity. So, the m equal to 0 order is going to have the maximum intensity as you go to 

higher order of m the intensity of the maxima is going to fall which you conceive over 

here. The first order m equal to one intensity is considerably smaller than m equal to 0 m 

equal to 2 cannot be seen at all. 

Because it falls very close to the minima of the diffraction pattern of the single slit m 

equal to 3 can be made out over here and the others will be quite small. So, what we see 

is that we have both the effects in diffraction grating we have the chain of oscillators. 

The chain of oscillators produces intensity pattern with many maximas many possible 

maximas all of the same intensity. But if you take into a account the fact that each of the 

slit has a finite width. Then this gets multiplied with a diffraction pattern of a single slit 

which is a sinc square function. And this cause is the higher order maximas that is m 

equal to 1 2 3 these 2 have more and more I mean to intensity of the maximas to become 

progressively fainter and fainter which is what you see over here. So, this is the intensity 

pattern predicted for a diffraction grating. Now, the diffraction grating is a very useful 

device in spectroscopy it is utility lies in the following. 



(Refer Slide Time: 39:59) 

 

The maximas as we know occur wherever this condition d sin theta is equal to m lambda 

whenever this condition is satisfied we get a maxima. Now, if I have 2 different 

wavelengths. So, if I have lambda 1 the maxima will occur at theta 1 if I have lambda 2 

the same order maxima will occur at a different angle theta 2. So, if m is not equal to 0 if 

m equal to 0 then all the maximas independent of wavelength for all wave lengths a 

maxima occur at occurs at theta equal to 0. But if m is not equal to 0 the angle theta at 

which you will get the mth order maximum depends on the wavelength. And if you have 

2 different wavelengths the maxima will occur at 2 different angles theta and you can use 

this to determine the spectral composition of light. 
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So, if I have light which has got several wavelengths I can send this light into a 

diffraction grating. 
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So, if I send light of different wavelengths into a diffraction grating like this the zeroth 

order maxima for all wavelengths will be at theta equal to 0. But the first order maxima 

let us say will occur at different wavelength different angle theta for different 

wavelengths. So, for a wavelength lambda 1 let us say occurs here for a wavelength 

lambda 2 it may occur at a different angle. It will occur at a different angle it will occur 



at a different angle for wavelength lambda 3 to rather to different angle this are all m 

equal to 1 and m equal to 2 will occur elsewhere and so forth. So, this allows you to 

determine how many different wavelengths there are in the light that you are sending in 

and this plays a very important role in spectroscopy. This what spectroscopy is all about 

to determine the frequency components that are have present in the light that you are you 

wish to analyze.  
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So, this property of a grating is quantify through what is called the dispersive power of 

grating. So, the question is as follows. 
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We have light of wavelength lambda it produces a maxima mth order maxima at an angle 

theta. Now, at an angle theta m so, this is lambda it produces mth order maxima at an 

angle theta m. Now, instead of lambda if i have a wavelength lambda plus delta lambda 

at it is going to produce the maxima at different angle. Let us call that theta m plus delta 

theta m. So, the question is how much is this delta theta m? 
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So, the maxima we see is occurs whenever this condition is satisfied d sin theta is equal 

to m lambda. 
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So, delta theta can be calculated the shift in the maxima can be calculated by 

differentiating this and multiplying it with delta lambda. 

(Refer Slide Time: 43:26) 

 

And if you differentiate this expression what you get is d cos theta d theta d lambda is 

equal to m lambda. So, d theta d lambda is equal to m lambda by d cos theta. 
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This is equal to m lambda by d cos theta m. This is called oh sorry this lambda will not 

be there. 

(Refer Slide Time: 44:08) 

 

When I differentiate with respect to lambda this lambda is going to vanish. 
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And this going to give me 1 basically and this is the condition. And this term in the 

brackets is what is called the dispersive power of a grating. 
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What it tells us is that if I put in light of wave and lambda the maxima will occur at an 

angle theta m. If I change the wavelength by a small amount to lambda plus delta 

lambda, how much is the maxima going to shift? The maxima is going to shift by an 

amount which is proposal to delta lambda. 
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And this constant of proportionality is d theta d lambda this is what is call the dispersive 

power of a grating. It tells us that if I change how much the angle is going to shift angle 

at which the maxima occurs, how much this is going to shift if I change the wavelength 

by a slight amount? Let us take another quantity which is of interest when we are when 

we use the diffraction grating as in spectroscopy. So, there is another quantity which is of 

interest when we use the diffraction grating as in spectroscopy and this quantity is called 

the chromatic. 
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Chromatic resolving power is as follows. 
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We have light of 2 wavelengths 1 lambda and another lambda plus delta lambda. The 

mth order maximum of the wavelength lambda occurs at a particular angle theta. So, this 

shows you the mth order maxima corresponding to a lambda wavelength lambda it 

occurs at angle theta. And for the wavelength lambda plus delta lambda the maxima is 

shifted by an angle delta theta, where we have a just calculated how much it will be 

shifted. 
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And we saw that it will be shifted by an amount which is m divided by d cos theta m into 

delta lambda. 
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So, for the wavelength lambda plus delta lambda the maximum is going to shifted by this 

amount. Now, the question is under what condition we can say that there are 2 different 

wavelengths and not 1. So, this is what is called refer to as a 2 lines 2 different spectra 

lines 2 different wavelengths being resolved. So, there are 2 different spectral features 

over here. In order to resolve in order to say that we can resolve these 2 spectral features, 

the shift in the angle should be such that the maxima of this wavelength lambda plus 

delta lambda coincides at least coincides the shift is sufficient. So, that it at least 

coincides with the minima of the, of the intensity of the wavelength lambda. 

So, this shift should be such that this at least coincides with the minima of this. If it is 

more if shift is more than the minima then you can distinguish between this curve and 

this curve. But in the shift is less than the minima you cannot distinguish between this 

curve and this curve that is the Raleigh resolving criteria. So, you can resolve these 2 

lines these 2 wavelengths provided the shift in the angle is more than the minima of this 

particular curve. And we have calculated where the minima of this curve should occur. 

the minima of the of the intensity profile of the diffraction pattern correspond to 

corresponding to a wavelength lambda. 
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That will occur at an angle delta theta, the minimum will occur at lambda divided by N d 

cos theta m. So, this is where the minimum will occur this, the minima of the wavelength 

lambda. And the maxima of the wavelength lambda plus delta lambda is going to be at 

delta theta is equal to m divided by d cos theta m into delta lambda. So, the Raleigh 

criteria for resolving these 2 different to be able to distinguish to be able to resolve these 

2 is that this should be equal to this only then can resolve these 2 different spectral 

features. 
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So, if I equate this 2 it tells me let see what it tells us lambda by N d cos theta m is equal 

to m delta lambda by d cos theta m. So, what it tells us is that delta lambda is equal to 

lambda divided by N m R. So, this is how the chromatic resolving power is defined if I 

have 2 different spectral lines if I have a radiation which has 2 different wavelengths at a. 

So, the wavelengths are at around the wavelength lambda and they are separated by delta 

lambda. 
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For example, remember sodium; sodium has 2 different wavelengths 1 at 5890 

Armstrong another at 5896 Armstrong. So, the question is under what condition shall we 

able to distinguish that there are 2 different wavelengths and not 1 we have worked on 

the condition. 
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If this condition is satisfied we shall be able to say that there are 2 different wavelengths 

and not 1. And for a grating there is this quantity called the chromatic resolving power 

which is defined as the ratio of lambda by delta lambda; which for diffraction grating is 

the number of splits into the order of the maxima that you are looking at. So, the number 

of slits that you have in your grating into the order of the maxima that you looking you 

are looking at this decides the chromatic resolving power. The larger the chromatic 

resolving power the better is your diffraction grating and the smaller chromatic resolving 

power the less is your diffraction grating it. The chromatic resolving power is essentially 

the inverse of the ratio of the separation that you can distinguish divided by the value of 

the wavelength around which these 2 wavelengths are distributed. So, this is how you 

can quantify the resolving the chromatic resolving power the ability of grating to 

distinguish between 2 different wavelengths. 

So, in yesterday’s lecture and today’s lecture we have been essentially studying the 

radiation from a chain of oscillators or a periodic arrangement of oscillators. So, 

whenever we have a periodic arrangement of radiation sources we get the kind of 

diffraction pattern that we have been discussing over here. So, all of this that we have 

been discussing is all valid whenever we have periodic arrangement of radiation sources. 

In the next lecture, we shall take up another very interesting application. In today’s 

lecture, we took up several applications of this chain of oscillators or a periodic 

arrangement of a radiating source. We had the phased array which can be used as radar 



which has can be several application in communication radio astronomy. And then we 

considered the diffraction grating which is also a periodic arrangement of radiations 

sources. And in tomorrow’s lecture, we shall take up another periodic arrangement of 

radiation sources. And this particular periodic arrangement occurs in nature so that we 

shall take up in the next class, tomorrow which is next class. 


