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Welcome to the second lecture on this course on oscillations and waves. In today’s 

lecture we shall be discussing damped oscillators, but before starting our discussion on 

damped oscillators, let us first review what we had done in the last class.  
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In the last class we had considered the simple harmonic oscillator we had taken the 

prototype simple as the prototype simple harmonic oscillator the spring mass system 

shown over here. We had worked out the solution to this to the motion of the particle, if 

it is displaced from equilibrium and the solution as we had seen in the last class is.  
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X of t is equal to amplitude A cos omega naught t plus a phase phi where omega naught 

is the angular frequency which is related to the spring constant and the mass as omega 

naught is square root of k by m. In the last class I had also introduced the complex 

notation we denoted complex numbers using a tilde. So, x tilde t is equal to A e to the 

power i omega t plus phi, x tilde t is a complex number which and it is a method for 

representing the same oscillation shown over here which is a solution to the motion of 

the spring mass system.  

It is understood that, you should consider only the real part of this complex expression 

and the real part of this complex expression gives us the same solution x t is equal to the 

amplitude A into cos omega t plus phi. We can also express this expression as x tilde t is 

equal to A tilde e to the power I omega t. Where A tilde is now the complex amplitude 

which contains both the real amplitude A and the phase phi.  
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A tilde is defined as A e to the power I phi. So, in summary the motion of the oscillator 

can be described through a complex variable a complex expression like this where, the 

complex variable x of t x tilde of t which is the function of t is equal to A tilde; the 

complex amplitude e to the power I omega t. The real part of this represents the 

oscillations of the oscillator. Let us now, consider a simple example where we shall 

apply the complex notation.  
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So, we consider an oscillator a simple harmonic oscillator with omega naught equal to 2 

second inverse and we are given the information that the simple harmonic oscillator as 



 

an initial displacement of 0.3 meters. It has an initial velocity v naught of 0.7 meters per 

second. So, these are the initial conditions at the time t is equal to 0. Now, we represent 

the oscillation through this complex variable x tilde t A t e to the power i omega t.  

The problem is that you have to determine this complex amplitude which has all the 

information about the initial conditions from these initial conditions which have been 

given.  
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You could represent the complex amplitude A tilde as a plus i b. So, the problem is to 

determine these coefficients a and b in terms of the initial position and the initial velocity 

of the oscillator. You could also represent the complex amplitude as a real magnitude 

and a phase. So, the next part of the problem is to determine the real amplitude and the 

phase from the initial conditions.  

So, let us first take up the first part of the problem where we will determine these 

coefficients a and b in terms of the initial conditions.  
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So, putting this expression for A the complex amplitude A in the expression for x of t. 

We have a plus i b. Now, at t equal to 0 e to the power i omega t is 1. So, x is a plus i b 

we are supposed to take only the real part the real part of x at t equal to 0 is a. So, we can 

straight away say that x naught the initial value of x is equal to a and we are given that 

this is equal to 0.3 meters.  

So, the initial position determines the real part of the complex amplitude namely a and 

we have a value 0.3 meters, it is exactly equal to the real part of the complex amplitude. 

Let us now, look at the velocity in the complex notation the velocity v as a function of 

time is the time derivative of the complex position variable. Now, if you differentiate this 

you pick up a factor of i omega.  

So, the velocity is especially i omega into x tilde which is given over here x tilde of as a 

function of time is given over here. So, the velocity is i omega a plus i b e to the power i 

omega t and t equal to 0 e to the power 1 omega t is 1. So, the velocity is i omega a plus i 

b and we have to take out only the real part of this. The real part is the physical quantity 

corresponding to the velocity the real part is minus omega into b. So, the velocity at t 

equal to 0 is minus omega into b.  
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We are told that this has a value 0.7 meters per second this is equal to omega naught into 

b and omega naught has a value 2. So, v has a value minus this is a minus sign here 

minus 0.35 meters. So, we have worked out the 2 coefficients which completely 

determine the complex amplitude. And these coefficients have a value a which is equal 

to x naught it has a value 0.3 meters and b has a value minus 3.5 meters.  

Now, next we shall work out the complex amplitude in terms of the real amplitude and 

the phase. This again is quite straight forward the real amplitude is the square root of a 

square plus b square. So, a is point three b is minus 0.35 and this gives us a value 0.46 

meters. The phase phi is related to a and b as follows: phi is tan inverse of b by a and 

putting in the value minus 0.35 here and 0.3 here, we find that this is minus 49.4 degrees.  

So, in this example we have worked out how you can use the initial conditions to 

determine the complex amplitude. And this complex amplitude encodes all the 

information about the initial conditions and we can now put this back into the solution. 

And you have here you have a the full information about the future revolution of the 

simple harmonic oscillator. Having taken up this example, let us now go back to the 

topic of today’s lecture which is damped oscillators.  

So, the system which we had considered in the last class we had a spring and we had a 

mass.  
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If you pull the mass the spring exerted a force F equal to minus k x, but in reality you 

will also have damping. Whenever, there is any motion there is usually some damping 

some force which opposes the motion and to bring the moving particle to rest. Here, we 

shall consider the simplest possible situation where the damping force is proportional to 

the velocity. So, when you displace this particle from the equilibrium position and leave 

it the force now has 2 parts: 1 part of the force arises due to the spring and that is minus k 

x.  

You also have the damping force which is proportional to the speed of the particle; the 

damping force tries to bring the particle to rest. So, it opposes the motion it is the 

direction opposite to the velocity. So, it is minus constant of proportionality into the 

velocity. The force has these 2 components, putting these 2 components of the force into 

the equation of motion. This is what we get mass into the acceleration is equal to the 

force, the force now has these 2 components: 1 from the spring and 1 from the damping.  

Now, it is convenient to recast this equation and write it as follows as shown over here. 

Omega naught square is k by the mass which we had defined earlier for the simple 

harmonic oscillator the new thing is this beta. Beta is essentially this coefficient c which 

appeared over here which determine how much the damping force was. Beta is related to 

c beta is c divided by the mass. Beta is c divided by the mass and there is the factor of 2 



 

which has also been put in which makes things convenient as we shall see as we go 

along.  

So, we have written the same equation over here with just the variables the constants 

constant coefficients been redefined. Now, next we shall discuss how to solve this 

equation.  
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So, this is the equation which governs the motion of a damped oscillator. Notice that, this 

equation is a second order differential equation and it is homogeneous in the variable x. 

So, we proceed to solve this equation by considering a trial solution x t x is the function 

of time and the trial solution is a constant e, e to the power alpha t. So, the method to 

solve such second order homogeneous differential equations is to consider such a trial 

solution which is an exponential of time.  

The exponential has an unknown coefficient alpha which will be determined from the 

differential equation. So, you have to now put this trial solution into this differential 

equation.  
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Let me do the steps involved on the paper over here. So, we first consider so this is the 

trial solution which, we shall be considering and we have to evaluate the first derivative. 

So, the first derivative if you differentiate this function once with respect to time you 

have A alpha e to the power alpha t. So, differentiating with time essentially pulls down 

a factor of alpha. So, if you differentiate this twice you will get 1 more factor of alpha 

and what you have is A alpha square e to the power alpha t.  

So, now we have to plug in these expressions for x the first derivative of x and the 

second derivative of x into the differential equation which is given over here. This is the 

differential equation which governs the motion of the damped oscillator. So, if you plug 

in this trial solution with the expressions for the derivatives of x into this equation. You 

will notice that, the constant A and e to the power alpha t will cancel out through out.  

And you all left with this second order differential equation for second order equation. It 

is a quadratic equation essentially left with this quadratic equation for alpha and the 

equation is alpha square plus 2 beta alpha plus omega naught square equal to 0. So, 

essentially every derivative of x is replaced by an alpha. You have to now the solve this 

quadratic equation which is very easy to solve.  



 

(Refer Slide Time: 17:53) 

 

So, this is the quadratic equation which has to be solved and we all know that it has 2 

roots. The 2 roots are minus beta plus square root of beta square minus omega naught 

square and we have another root which is minus beta minus square root of beta square 

minus omega square. So, there are 2 roots to this quadratic equation and the coefficient 

alpha is the exponent appears in the exponent of the trial solutions. So, the trial solution 

is a constant e to the power alpha t and alpha we saw as 2 roots: alpha 1 and alpha 2 

which are defined as follows.  

Now, if you look at these 2 roots you will see that the behavior the value of these roots 

depends crucially on the values of beta and omega naught. Let us first just touch upon 

the situation where beta is equal to omega naught. If beta is equal to omega naught then, 

this factor over here exactly cancels out for both the roots and both the roots are exactly 

equal. This situation is referred to as critical damping. We shall come back to this 

situation later, but the point to note is that the situation where beta is equal to omega 

naught marks a dividing line between 2 kinds of solutions.  

You could have beta less than omega naught if beta is less than omega naught then, this 

turn beta square minus omega naught square is negative and the square root over here 

will give you an imaginary number. Whereas, a beta is more than omega naught then you 

would get a positive number and the square root would be a real number. So, if beta is 

less than omega naught you have an imaginary number over here and you have 2 



 

complex root. Whereas, a beta is equal to omega naught or beta is more than omega 

naught you have real roots.  
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So, we shall first take up the situation where beta is less than omega naught this situation 

is referred to as under damped. So, if beta is less than omega naught you have under 

damped oscillations. If beta is less than omega naught this term beta square minus omega 

naught square is negative and the square root of this negative number is imaginary. It is 

hence convenient to take the minus sign out and define a positive real number omega 

square, omega naught square, minus beta square. The square root of this is defined to be 

omega.  

In terms of this variable omega the 2 roots: alpha 1 and alpha 2 can be written as minus 

beta plus i omega, that is alpha 1 and alpha 2 is minus beta minus i omega. Where omega 

is again I will repeat omega is square root of omega naught square minus beta square. 

Omega naught square minus beta square is positive. So, the square root is a real number. 

So, omega is a real number and alpha 1 and alpha 2 are the 2 complex roots of that 

quadratic equation.  

Now, we have to put in alpha 1 and alpha 2 back into our trial solution x as a function of 

time is equal to a constant amplitude e to the power alpha t. So, we now have 2 values of 

alpha; alpha 1 and alpha 2. So, x of t will be a super position of those 2 solutions.  
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So, if you put in those 2 values of alpha that is alpha 1 and alpha 2 in the trial solution 

what you get this x of t is equal to e to the power minus beta t. Notice that, minus beta is 

common to both the roots. So, you can pull a factor of e to the power minus beta t out 

you can pull this factor out from e to the power alpha t. And what you are left with are 

the 2 different roots e to the power i omega 1 t omega t and e to the power minus i omega 

t. And these 2 solutions could have 2 different coefficients A 1 and A 2 amplitudes A 1 

A 2. 

So, the combined combination of these 2 gives you the total solution. Let us now, spend 

a few minutes and understand the behavior of this solution. How do we expect this 

solution to behave with time? Let us first look at the terms in the square brackets over 

here. The terms in this square brackets namely A 1 e to the power i omega one t plus A 2 

e to the power minus i omega 2 t, if you look at these 2 terms you will recollect that this 

represents the simple harmonic oscillators.  

A 1 and A 2 are the unknown amplitudes which have to be determined from the initial 

conditions. And the combination A 1 e to the power i omega t plus A 2 e to the power 

minus omega t is essentially an amplitude into cosine of omega t plus phi. The major 

difference is that you have this extra factor e to the power minus beta t outside. The role 

of this e to the power minus beta t is that it causes the amplitude of the oscillations to go 

down exponentially in time.  



 

So, you could take this solution and write it in this form where this term in the square 

bracket is essentially A cos omega t plus phi and you have this e to the power minus beta 

t outside. So, you have a sinusoidal oscillation with the amplitude A. So, A cos omega t 

plus phi represents a sinusoidal oscillation the simple harmonic oscillation, which we had 

discussed earlier but now, you have an extra feature the amplitude of this oscillation e to 

the keeps on falling exponentially as the oscillation proceeds.  

And this is the big change which occurs due to the damping. Damping causes the 

amplitude of the oscillation to decay exponentially in time. Now, we can combine this 

real amplitude A and the phase phi you can combine these 2 terms and also write this 

solution as x using the complex notation. So, if you write this solution using the complex 

notation it becomes x tilde t is equal to A tilde e to the power i omega minus beta t. 

Remember that A tilde has got both the real amplitude and it also has the phase.  

So, A tilde is essentially A t to the power i phi. So, it has both the amplitude as well as 

the phrase of the oscillation.  
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So, let us now have a look at what this oscillation looks like. So, this shows you an 

example of the under damped oscillations. The particle continues to oscillate just like in 

the situation where you had no damping here the particle till does oscillations. So, you 

have these oscillations, but you have this feature that the amplitude of the oscillations 



 

falls exponentially. So, in this particular case the amplitude falls as e to the power minus 

t and this is what is shown in the graph over here.  

The amplitude falls as e to the power minus t and the motion is sinusoidal oscillation just 

like the simple harmonic oscillator just that the amplitude falls exponentially as time 

evolves. And it slowly gets smaller and smaller and finally, it will turn to 0 as time goes 

to infinitive. So, let me now summarize briefly 2 of the main important consequences of 

this damping the first consequence of damping is as follows.  

The first consequence of damping can be seen in the expression over here. If we have no 

damping the undamped oscillator would oscillate at an angular frequency omega naught. 

You would not have this term in the differential equation governing the oscillator and the 

oscillator would oscillate at a angular frequency omega naught. Now, the consequence of 

introducing a damping is that it changes the frequency at which the oscillator oscillates. 

If you introduce, a damping notice that the angular frequency for the damped oscillator is 

smaller than the angular frequency for the undamped oscillator. Further the more the 

damping the larger the difference between the damped oscillator and the undamped 

oscillator. So, damping causes the oscillator to damps slower to oscillate slower and if 

you increase the damping more and more the oscillations become slower and slower. 

This is the first consequence of introducing of having damping in the oscillation.  

The oscillator no longer oscillates at omega naught it oscillates at a slower angular 

frequency, which is related to omega naught through this expression. The second 

consequence is that the amplitude of the oscillations decay exponentially with time 

through this factor e to the power minus beta t. So, it is of great interest sometimes to 

quantify this damping directly from the oscillations.  
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And this is done through a factor called the logarithmic decrement. So, let me now 

explain to you what the logarithmic decrement is the logarithmic decrement is a measure 

of how much the amplitude falls in 1 oscillation that. So, the logarithmic decrement is a 

measure of how much the amplitude falls in 1 period of the oscillation. So, you should 

take the amplitude at a time t this is x as a function of t at a time t is is the amplitude at a 

time t.  

Now, also look at the amplitude after one time period of the oscillation if the time period 

is T. So, look at the amplitude of the oscillation after 1 time period. This ratio the natural 

logarithm of this ratio is going to give us what is called the logarithmic decrement. The 

logarithmic decrement is very useful and you can estimate this directly from the 

oscillations. So, let us now consider the particular oscillation shown over here this 

oscillation is e to the power minus t cos 2 pi t.  

So, we have to look at the amplitude of the oscillation after 1 whole period of the 

oscillation. So, let us take the time instant t equal to 0 first. So, the amplitude of this 

oscillation at time t equal to 0 is 1. Now, let us ask the question when what is the time 

period of this oscillation? This oscillation has omega equal to 2 pi the time period is 2 pi 

by omega. So, the time period is 1. So, we have to also look at the amplitude of the 

oscillation at t equal to 1.  



 

So, you have to take the ratio of the amplitude here divided by the amplitude after one 

time period which is the amplitude here. So, this is very useful if you are observing an 

oscillation you have to record the amplitude and then record it again after 1 time period 

find the ratio of these 2. In this case the ratio of this divided by this as you can see from 

here the amplitude falls as e to the power minus t. So, the amplitude here is going to be e 

to the power minus 1 that is 1 by e the amplitude here is 1.  

So, if you divide 1 by 1 by e you get e and you are supposed to take the natural logarithm 

of that. So, in our situation you have the natural logarithm of 1 the natural logarithm of e 

the natural logarithm of e is 1. So, the logarithmic decrement for this oscillation is 1 in 

general the time period is 2 pi by omega. So, the amplitude if you ask the question how 

much does the amplitude go down in the time period.  
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The oscillation the amplitude of the oscillation falls like this at t equal to 0. We have x 0 

which is equal to 1 and at after a time period time period is t equal to 2 pi by omega. So, 

x after a time period will have a value e to the power minus beta 2 pi by omega. You are 

supposed to take the ratio of this divided by this. So, if you divide this by this you will 

get e to the power 2 pi beta by omega and then if you take the natural logarithm of this 

you will get 2 pi beta by omega.  

So, this is the natural logarithm it essentially quantifies how fast the oscillations are 

dying down. And it tells you the decay of the oscillation in 1 time period of the 



 

oscillation. So, this brings to an end our discussion of the underdamped oscillation. To 

just remind you once more, what the underdamped oscillation is this corresponds to a 

situation where beta the damping coefficient is less than omega naught. Beta equal to 

omega naught is the critical damping situation and beta greater than omega naught is the 

overdamped situation.  

Here, we have consider the underdamped situation in the in the underdamped situation 

the oscillator continues to oscillate like the simple harmonic oscillator where there is no 

damping. The effect of damping is twofold it causes the oscillations to be slower than if 

that damping were absent. It also causes the amplitude of the oscillation to decay 

exponentially the time. Let me now, give you a problem on underdamped oscillations 

and I shall close the class at the end of the problem.  
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The problem is as follows: you are given an underdamped oscillation x t A tilde e to the 

power i omega minus beta t. This represents an underdamped oscillation. You are also 

given the information that the particle that the oscillator has an initial position x naught 

and a initial velocity v naught at t equal to 0. So, you have given the initial conditions at t 

equal to 0 now, the problem is that you have to find the coefficient, the amplitude, the 

complex amplitude A tilde in terms of x 0 and v 0.  

So, you have to find an expression for the complex amplitude A tilde in terms of the 

initial position and the initial velocity. Once you have found this you have to find an 



 

expression for x tilde the motion of the particle in terms of x naught and v naught. So, 

you have to determine the motion of the of the damped oscillator underdamped oscillator 

in terms of the initial conditions x naught and v naught given at t equal to 0.  
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The next part of the problem is as follows: you are told that for the same oscillator the 

particle is initially at rest. And the particle has a velocity v naught initial velocity v 

naught. So, the particle is the oscillator is initially at rest and it has just a velocity v 

naught. So, you have to now find for this for these initial conditions you have to find the 

phase of the oscillator the phase of the oscillator come can comes in the complex 

amplitude which can be written as A e to the power i phi.  

So, the problem is you have to find the phase of the oscillator for this particular situation 

where the oscillator is initially at rest and it has an initial velocity v naught. To give you 

some motivation for this problem let me just go back to the problem which we had taken 

up sometime earlier. Where, we had considered a simple harmonic oscillator and for 

without damping. For this simple harmonic oscillator without damping we had worked 

out exactly the same thing. We had a oscillator for which x naught was given and v 

naught was given.  

We had worked out the amplitude; the complex amplitude for the oscillator in that 

situation. And if you go back to your notes the solution for A tilde in the absence of 

damping. In the absence of damping the solution if you go back to your notes A tilde is 



 

determined in terms of the initial position and velocity as per as shown here; x naught 

minus v naught by omega naught into i. This is for the undamped oscillator. So, if the 

oscillator is at rest to start with is not displaced has a initial displacement 0 as a velocity 

only to start with. Then this term is 0 it is the amplitude is totally imaginary, so the phase 

is pi by 2.  

Now, the question is does this think that the real part is uniquely determined by the 

position initial position and the imaginary part is uniquely determined by the initial 

velocity, does the same thing still hold when you put in damping. That is the question 

which is interesting and which you will you will arrive at the solution if you work out the 

problem which, I have mentioned just now. We shall discuss this in the next class.  


