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Good morning. In the last class we had started discussing coherence. Let me first 

recapitulate what we had discussed in the last class and I shall then, continue from there.  
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So, we had started off by taking a look at the basic for the fundamental formula, which 

we use when discussing interference. So, in interference we have the super position of 2 

waves and the intensity of the resultant is I 1; the intensity of the first wave plus I 2 the 

intensity of the second wave plus 2 square root of I 1 I 2 cos phi 2 minus phi 1, where 

phi 2 minus phi 1 represents the phase difference between the 2 waves. And it is the 

second term, this particular term which is responsible for interference. And we were 

taking a closer look at the origin of this particular term.  

Now, let me also remind you that, when we had derived this particular expression for the 

resultant intensity, we had assumed that we have 2 waves which are precisely 

monochromatic, in the sense that, they have they are sinusoidal waves of a single 

frequency, which is exactly the same for both the waves. And with this assumption, we 

had arrived at the term, responsible for interference by from this product.  

(Refer Slide Time: 02:43) 

 

From looking at from that the term responsible for interference arises from this term E 1 

into E 2. So, it arises from the product of the 2 waves, the time average of this and in the 

situation where these 2 waves are purely monochromatic, pure sinusoidal waves of the 

same frequency. This time average gives us 2 root I 1 I 2 cos phi 2 minus phi 1. And this 

is the term which is responsible for interference.  

Now, it this assumption that we have made that, each wave is a pure sinusoidal of a 

single frequency is never true. So, it is not possible actually to have waves of a single 



frequency, there will always be a spread in frequencies. And in the last class, we were 

studying a consequence of this; we were studying the consequence of the fact that, there 

will always be a spread in the frequencies. And we had seen that, if you incorporate this 

if you incorporate the spread in frequencies, there will be a modification of this time 

average.  

So, this time average is no longer going to be equal to this, it will be different and it will 

be less than this. And the difference between this monochromatic situation; the situation 

where I have only a single frequency, we quantified through this factor C 1 2, which 

quantifies the degree of coherence. So, now the time average of the 2 product of the 2 

waves is; we write it as 2 times root of I 1 I 2 with the same factor of cos phi 2 minus phi 

1 the phase difference between the 2 waves.  

But, we now have introduced an extra factor C 1 2 which takes into account, the 

differences that arise the differences with respect to this that arise because, of the fact 

that you now have a spread in frequencies. And this is we referred to this as the, 

coherence the the degree of coherence are the coefficient of coherence. So, this 

quantifies how much coherence you have between these 2 waves. And this number is 

going to be less than or equal to 1 and it is going to be less than 1. The modulus of this 

number is going to be less than 1 when, the 2 when you put into when you put in the fact 

that both of these waves have some spread. And it is going to be equal to 1, when both 

these waves are precisely sinusoidal waves of the same frequency.  

So, this degree of coherence is going to fall, the moment you incorporate the fact that 

you have a spread in frequencies.  
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And this coherence is precisely equal to 1 when the 2 waves are perfectly coherent, 

which occurs when they have exactly they are exactly sinusoidal waves. The 2 waves are 

partially coherent when this is less than 1, which is the situation that you usually 

encounter and the 2 waves are said to be incoherent if this coefficient is 0. Say if the 2 

waves are incoherent the  
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Time average of the product of these 2 waves is going to be 0, they are incoherent. So, 

there will be no interference in a situation where there is, when which is when the 2 



waves are incoherent. So, we could write the resultant expression for the intensity in a 

situation where  
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The 2 waves have the same intensity. So, we will write down the expression now for the 

resultant intensity.  
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So, we are going we are basically considering this expression over here.  



(Refer Slide Time: 07:08) 

 

We are considering this expression for the resultant intensity, when I have superposed 2 

waves. We will now incorporate the fact that, the 2 waves can have a spread in 

frequency, but we will assume for simplicity which is and the assumption which we 

make is valid in the 2 situations, in for both the Michelson and the Young’s double slit 

experiment, for is approximately valid.  

So, we will assume that I 1 is equal to I 2 and write down the expression for the resultant 

intensity, incorporating the fact that the 2 waves are going to be partially coherent, they 

are not going to be exactly coherent. So, let me write it down like this; so, I is equal to, 

so, I 1 and I 2 are same, I have a factor of 2 I 1. And I will have a factor of 2 I 1 from the 

other expression also. So, this is also going to give me a factor of 2 I 1. So, I can take this 

common, I have 1 plus now, when I put in the fact that the 2 waves are going to be 

partially coherent, there will be a factor of C 1 2 and cos phi 2 minus phi 1.  

So, this is the intensity pattern, this gives me the resultant intensity. Well I have 

superposed 2 waves whose amplitudes are the same 2 waves, which could have a phase 

difference phi 2 minus phi 1 and both these waves have a spread in frequency. The 

waves have now water spread in frequency. The consequence of the spread in frequency 

is now there in this coherence. So, this is the general expression for the intensity when I 

superpose 2 waves, which are partially coherent. You’ll now have the coherence the 

degree of coherence over here C 1 2.  



With this background in the last lecture, we were discussing the Young’s double slit 

experiment, we were now discussing the consequence of this for the  
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Young’s double slit experiment. So, let me recapitulate that, the discussion where it just 

before it had ended in the last lecture. So, I had told you that the Young’s double slit 

experiment, works by the division of wave front. So, the wave front, incident over here 

on this obstruction over here is divided into 2 by the 2 slits and the contribution from 

these 2 slits. So, let me draw the picture for you here.  

(Refer Slide Time: 10:11) 

 



I have the 2 slits, which I call 1 and 2 and this is the screen. Now, if you wish to 

calculate the intensity at any point on the screen over here let us say at this point; it is 

going to be the sum of the wave from 1. So, it is going to be E 1 plus E 2, where E 2 is 

the contribution from here. And if you look at a point which is of the centre, so if you 

look at for example this point, these 2 waves will arrive with different time delays So, 

the essentially the term that the quantity which is responsible for interference over here, 

arises from a term from this particular term E 1 t E 2 t at some other time t prime. These 

2 times are different because, the path lengths to this point are different.  

Now, if you consider the point at the centre, the quantity responsible for interference 

over here, is essentially E 1 t into E 2 t the time average of this. The phase difference and 

the path difference time at the centre is 0. So, what you can say is that, this is equal to 2 

root of I 1 and I 2 are assumed to be same, so I 1 I 1 square into C 1 2. So, the Young’s 

double slit experiment, through the intensity pattern that you see on the screen measures 

the coherence, between the wave at this point and this point and different points on the 

screen measure this. So, measure the coherence between the wave here and at the at this 

point and this point with different time dealings. And at the centre, you essentially 

measure the coherence between this point and this point with no time delay.  

So, what you measure here is E 1 t into E 2 t, where E 1 is the wave the value of the 

wave here and E 2 t is the wave over here at the same instant of time. So, it measures the 

coherence, between the wave at these 2 different points at the same time. This is what is 

called spatial coherence. So, the first point which I wish to make over here is that, the 

Young’s double slit experiment measures the spatial coherence of the wave. So, it takes 

the value of the wave at 2 different points,  multiplies them and measures the time 

average of this.  

So, the term responsible for interference in the Young’s double slit experiment, arises 

from the spatial coherence of the wave. And if you look at the point at the centre of the 

screen, the point right between the 2 slits on the screen, this particular point measures the 

coherence between the wave at 2 different points at the same instant of time. So, it is the 

spatial coherence which is measured over there.  



Now, let us now look at, what how much is the spatial coherence of this of in the 

Young’s, how much is the spatial coherence in different situations. So, recollect the 

expression that we had calculated, for the intensity in the Young’s double slit apparatus.  

(Refer Slide Time: 14:39) 

 

We had, we have calculated the expression for the intensity in the Young’s double slit 

apparatus, I is a function of theta where is the angle on the screen. So, I is a function of 

theta we had calculated this, it was 2 I 1 plus sinc, this is going to be sinc pi d alpha by 

lambda into cos 2 pi d theta by lambda. So, this was the expression for the intensity in 

the Young’s double slit experiment, this was the expression for the intensity in the 

direction theta, intensity on the screen at a direction theta.  

So, the intensity varies as a function of theta, the dependence is given over here; it is 2 

times the intensity of these individual slits into 1 plus sinc pi d alpha by lambda, where 

alpha is the angle subtended by the source. So, the whole thing is illuminated by a source 

an aperture, alpha is the angle subtended by the source, this angle at the slit, so this angle 

is alpha. If, the source is a point source then, this factor becomes 1 sinc remember sin x 

by x sinc x is sin x by x.  

So, if the source is a point source alpha equal to 0, this factor is 1 and you have 1 plus 

cos 2 pi d theta by lambda, 2 pi d theta by lambda is the phase difference between these 2 

waves at an angle theta. So, at theta equal to 0, you have 2 I 1 1 plus sinc pi d alpha by 

lambda. This is the intensity at theta equal to 0.  



And I have told you that at theta equal to zero that is,  
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At the central point, the term responsible for the interference in this Young’s double slit 

experiment, is essentially measuring the spatial coherence.  
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So, if i, so for partially coherent light, let me go back to the expression.  
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So, for partially coherent light, this is the expression for the intensity, phi 2 minus phi 1 

is the phase difference between the 2 waves. At the central point the phase different is 0. 

So, if you now match this expression, which is valid for partially coherent light, partially 

coherent waves  
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With the result expression for the intensity at the centre, in the Young’s double slit 

experiment, you can see that the spatial coherence  
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Of this wave C 1 2 is equal to sinc pi d alpha by lambda. So, let me now repeat, what I 

have just told you. Let me just repeat, to make sure that we all really followed what was 

the chest of the discussion. What I the first the first point which you should realise is this 

that, the Young’s double slit experiment. If, you look at the if you restrict your attention 

to the point, at the on the screen which is aligned with the centre of the 2 slits, at this 

point the quantity being measured is the spatial coherence  
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Which is the electric, the wave at this point 1 at the first slit 1 into the wave at the second 

slit E 2, the time average of this is, what is responsible for the interference at this point at 

the centre. In addition to this term, you will also have the intensity from this and the 

intensity from this. But, the term responsible for interference at the point to the centre is 

this, which we call the spatial coherence of the wave.  

So, if you take the wave at these 2 different points at the same time, the time average of 

that is coherence and since these 2 waves arise from these 2 values, these 2 waves arised 

are basically the same wave measured at 2 different points. We refer to this as spatial 

coherence. So, it is the coherence between the oscillations in the wave at 2 different 

points; spatial coherence.  

And this term if you look at the intensity.  
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Then this term, essentially gives rise to this term over here; this into this. This is the sum 

of 2 individual intensities; this is the term responsible for interference. At the central 

point phi 2 minus phi 1 is 0. So, at the central point you have 2 I 1 C 1 2; this is the 

degree of coherence. Now we have already calculated  
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The intensity at at different points on the screen, for the Young’s double slit experiment. 

So, if you take this expression and restrict it to the central point, make theta 0, this is the 

expression that you get. So, by comparing this. 
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With this, you can now identify the expression for the spatial coherence in this particular 

case and it is; sinc alpha sinc into pi d alpha by lambda. So, what do we learn from this 

exercise? What we learned is that at the centre of this, at the central point you are 

measuring the spatial coherence of the wave. By spatial coherence of the wave you 



mean: the coherence between the wave at 2 different points, at the same instant of time. 

And what we find is that, the spatial coherence of the wave in this particular case, 

depends on the angle subtended by the aperture which is illuminating it, the angular 

extent of the source.  

So, recollect that, we have assumed that the 2 slits  
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Are illuminated by a source and alpha is the angular extent of this source. And why did 

this particular source is, the less is the spatial coherence of the wave, why is this so? Let 

us just think a few seconds and try to figure out why is this so? Why does the spatial 

coherence of the wave decrease as we increase the extent of the aperture which is 

illuminating it? Why does the spatial coherence of the wave decrease if the source 

subtend the larger angle?  

Now, recollect that we had modelled our source, so we had modelled our source in the 

following fashion. We had assumed that, each point on the source each point on the over 

here in this source is an incoherent point source. So, each point acts like an incoherent 

source. So, the wave that is emitted from this point does not interfere with the wave that 

is emitted from a different point, it only interferes with the wave emitted from the same 

point.  



So, when you consider the value of the wave at this point and ask what is it is coherence 

with the value of the wave here? You should remember that the value of the wave, the 

wave over here is essentially a sum of contributions from all these incoherent sources. 

Similarly, the wave over here is also a sum of contributions from all these incoherent 

sources. Now, when you ask what is the coherence between this and this? Only the 

contribution from, so when I calculate the coherence between this and this, this is a 

superposition of contributions from all these sources, so is this. Only the contributions 

from the same point are going to be coherent with each other and as you make this 

aperture wider and wider the this coherence is going to go down because, the fractional 

contribution from each point each point makes a smaller contribution now to the total.  

So, the spatial coherence, reduces as you increase the size of the aperture. And as you as 

the spatial coherence goes down as the spatial coherence goes down, the visibility of the 

of the fringe pattern the visibility as you saw in the last lecture, is directly related to the 

coherence the degree of coherence of the 2 waves. So, in this case it is the spatial 

coherence. So, if I make the aperture, if I make the source broader and broader, the 

spatial coherence goes down, the visibility also goes down and the contrast the 

brightness of the fringe pattern will get reduced and the fringe pattern will slowly get 

washed out.  

So, in this discussion I have tried to explain to you, how it is possible to measure the 

spatial coherence of a wave using the Young’s double slit experiment. The Young’s 

double slit experiment is essentially measures the spatial coherence of a wave. And you 

can get this by looking at the intensity at the central position. This has got several 

applications; let me explain 1 of the applications to you. This is an application which was 

first put to practice by Michelson.  

The application is to determining, the angular diameter of stars the angular extent of 

stars. Planets we know have a finite angular extent. So, if you look at a planet; it is not a 

point it is a disk which has a sub finite angle.  
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So, if you look at the a planet on the sky, it has a finite angle. Whereas, when you look at 

a star as far as our eye is concerned, a star is just a point; our eye cannot determine the 

angular diameter of stars. This is why planets do not twinkle, but stars twinkle. We are 

looking at planets and stars through the earth’s atmosphere. The earth’s atmosphere is 

constantly changing. And these changes in the earth’s atmosphere also cause the images 

of planets and stars to move around on the sky.  

So, an instant, the image of the planet looks like this, at a later instant it will look like 

this and at an neither rather instant, it will look something like this. So, the image of the 

planet that our eye sees through the atmosphere, keeps on moving around. But, as it 

moves around it has a overlap with itself. So, the only consequence of this is, it will 

make it look a little broader, it will make it look a little bigger.  

Now, whereas, a star is a point as far as our eye is concerned. So, because of this 

variation in the earth’s atmosphere the, this point is going to become a different point 

there is no overlap and a different point and a different point. So, it is going to move 

around in the sky and this is why we see the stars twinkle. So, if you take very fast 

image, you will see that the point corresponding to a star is actually moving around 

because, of the earth’s atmosphere.  

Whereas, so there is no overlap with the previous image and this causes the image of the 

star, to appear as if it is twinkling for us it to array it actually it twinkles, whereas; the 



planet does not. Now, the question is; suppose I had an instrument which was which had 

a better resolving power which could make out smaller angles, could I determine the 

angular diameter of stars? It so turns out that, the angular diameters of stars are so small 

that, for more stars you cannot determine it directly using telescopes from the earths.  

So, Michelson proposed the following method, to determine the angular the angular 

diameter of stars. So, suppose you have a telescope like this and you have 2 mirrors over 

here. So, you have some optical arrangement; the lens should be same. So, you have 

some optical arrangement, by which you can so there is a star faraway. So, this lights of 

the star comes to both of these. So, these 2, there are 2 mirrors here which will and there 

is and there is an optical arrangement. So, you could have it like this and so you will 

have to I mean like this.  

So, you have some kind of an optical arrangement, which will measure the wave, from 

this star at this point and at this point and bring these 2 waves together through equal 

path lengths so that, there is no time delay and superpose these. So, you have E 1 the 

wave from the star the same source incident at this point, E 2 the wave from the same 

star. So, both the waves arrive from the same star the same source. You have some 

optical arrangement, by which you can take the wave incident over here and incident 

over here to the same point through equal path lengths and put them into a something, 

which will measure the intensity of the resultant.  

Now, as you vary the length l or you may say that d the distance k between these 2. So, 

these are effectively like a Young’s this is effectively an Young’s double slit apparatus. 

Instead of the slits, you have these 2 mirrors over here which will come collect the wave 

coming on the wave coming on it and bring them to the same point. So, it is light 

measuring the intensity in a Young’s double slit experiment. It is like measuring the 

intensity at the centre of the 2 slits and on the screen. So, the waves arriving at these 2 

points are brought together and made to interfere.  

So, the term which is responsible for the interference here will be E 1 t into E 2 t the time 

average of this, which we had already discussed. So, you measure the spatial coherence 

of this wave and as we have seen, the spatial coherence of this wave depends on the 

angular size subtend by this source, the source here is a star. So, the spatial coherence of 

this wave, which you can measure by through by a superposing them and causing them 



looking at the intensity the fringes, this will depend on the angular diameter of the star. 

So, you look at the visibility of the fringes that you get; as you vary the separation 

between these 2 mirrors.  

And as you vary the separation you except the visibility  
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which is we have already seen that, the visibility is directly equal to the degree of 

coherence in this particular case. You expect this to vary as sinc pi d alpha by lambda, 

you want to you do not know this alpha the angle subtended by the source, you want to 

determine this. So, if you can measure this sinc type of behaviour with varying d, what 

you do is you vary this distance  
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Between these 2 mirrors, which collect the wave coming from this distance source if, 

you can vary this d and measure the spatial coherence?  
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If, you can measure the spatial coherence varying d, you can then, if you can measure 

this. So, you measure the spatial coherence C 1 2 for different values of d and you except 

this to be a sinc function like this. If you can actually determine this sinc function, the 

sinc function is not going to be, is going to look like this actually. If you can 

experimentally determine this sinc function, then you could get the value of alpha from 



this. So, this is a method which has been applied, to measure the angular diameter of 

very bright stars.  

So, we have discussed the consequence of this coherence on the fact that, you have 

partially coherent light; you do not have perfectly coherent light, you always are dealing 

with partially coherent light. So, we have discussed the consequence of this for the 

Young’s double slit experiment. I told you that the Young’s double slit experiment, 

essentially measures the spatial coherence and we also discussed an application of this.  

Now, let me move on to the other situation of interference that we have been studying. 

So, the other situation that we have been studying is the Michelson Interferometer.  
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In the Michelson Interferometer, we have interference by the division of amplitude. So, 

in the Michelson Interferometer, we have a wave front arriving like this over here. And 

this wave front, the amplitude of this wave front gets split into 2. So, we have 2 wave 

fronts. And finally, we have 2 wave fronts W 1 and W 2, let me draw them like this. So, 

we have 2 wave fronts which arrive like this 1 W 1 goes through, let us reflect it from 

mirror 1 and then comes down, W 2 goes up reflected up and then gets reflected back 

and then comes down. So, we have waves coming over here, which were produced from 

the same wave W.  



Now, the question is that, from a single wave W we have produced 2 waves. Now, when 

we superpose these waves over here, when we superpose these waves finally, when we 

superpose these waves over here, are we superposing the wave at the same time instant 

or is there a time delay? Now, we had introduced this quantity d, if you remember in the 

Michelson Interferometer d was the difference in the path length at the 2 arms.  

Now, the wave W 1 and the wave W 2 if you remember, have to travel different 

distances. So, there will be a difference, there’ll be a path difference which, if you look 

at the wave which is travelling straight, there is a path difference which is 2 d. So, the 2 

waves  
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Have a path, have to travel different paths and they and there is a difference in the paths 

is 2 d. So, the 2 waves, which you are superposing E 1 and E 2, the 2 waves W 1 and W 

2 arrive with a time delay of 2 d by C. So, let us call this time delay tau. The 2 waves 

arrive with the time delay of 2 d by C. So, the quantity let us assume that, the wave E 2 

has to wave 2 has to travel a larger distance. So, the quantity which you measure over 

here, the quantity which you measure over here the quantity responsible for interference 

over here, is not the coherence between the wave at the same instant of time.  

So, here in this particular case, you are producing E 1 and E 2 from the same wave E. So, 

they are the exactly the same, but there is a time delay. So, the quantity which you are 

measuring through the interference over here, is the coherence between the oscillations 



of the wave, at 2 different times which are separated by tau which is and tau is equal to 2 

d by C. So, the Michelson Interferometer introduces an extra a time delay of 2 d by C for 

1 of the waves.  

So, you have 1 wave coming, you split into it into 2 parts, introduce a time delay of tau 

which is 2 d by C into 1 of the parts. Then, superpose the 2 again and look at the time 

average of the product of the 2 waves, which is, what I have shown over here. So, the 

Michelson Interferometer, essentially measures the temporal coherence. So, this is what 

we call temporal coherence.  

So, by spatial coherence, we had meant the coherence between the same wave, but at 2 

different points the wave the vibrations the at 2 different points. Temporal coherence, we 

mean that the same wave, you put a time delay and then look at the coherence between 

the waves. So, you are now correlating or you are now superposing a wave with it with 

itself, but with the time delay. So, the quantity the coherence this particular coherence is 

called temporal coherence. So, and this will be your function of the of the time delay that 

you have introduced. So, this will be your function of the time delay that you have 

introduced.  

So, let me recapitulate again; the Michelson Interferometer measures the temporal 

coherence. So, it there is a there is a wave coming through, you divide the wave into 2 

parts, put a time delay into 1 of them and then look at the coherence between these 2 

waves that you have produced, that is the original wave and the same wave for the time 

delay, what’s the coherence between this. To get an understanding of what the coherence 

between this is going to be, let me now ah show you, so let me show you what you 

expect over here.  
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And to get a understanding or what you except let us look at this picture which we had 

introduced in the last lecture 

So, remember what this shows us. We have superposed 2000 oscillations, oscillations of 

2000 different frequencies. We have superposed oscillations of 2000 different 

frequencies, these frequencies are spread have. So, these frequencies at we have 

superposed are spread in the range delta omega, around a central value omega bar. And 

the spread in frequencies, in this particular case is such that delta omega by omega bar is 

0.2, which is what I have shown over here.  

So, delta omega by omega bar omega which I have just denoted as omega here. So, delta 

omega by omega is 0.2. So, we have superposed 2000 frequencies, different frequencies 

which are in the small range delta omega, centred around this value omega. And the 

resultant oscillation, so we have superposed sinusoidal oscillations many sinusoidal 

oscillations, the resultant oscillation as you can see, is not sinusoidal it is not a pure 

sinusoidal oscillation. You can think of the resultant oscillation, as being a sinusoidal 

oscillation of fast sinusoidal oscillation, with a frequency which is angular frequency 

which is equal to the central value.  

So, you can think of the resultant oscillation, as being a fast oscillation at the mean 

angular frequency. So, we have a spread of angular frequencies centred around this and 

when you superpose all these oscillations, you can think of the resultant as being a fast 



oscillation at the central at the mean frequency, the amplitude of this fast oscillation. So, 

you have this fast oscillation. If, it were a pure sinusoidal it would look like this, but it is 

not the pure sinusoidal, it is a superposition of many frequencies centred around this 

value. So, you have still have the at this central value, but the amplitude of this 

oscillation changes slowly on a time scale delta on a time scale not delta but T, which is 

of the order of 2 pi by delta omega the spread in frequencies or you can write this as 

equal to the order of 1 by delta nu.  

So, when you have a spread in frequencies, you have a fast oscillation at the mean 

frequency, but the amplitude and the phase, both changes slowly on a time scale T, 

which is of the order of 1 by the bandwidth 1 by the frequency spread or in terms of 

angular frequencies 2 pi by delta omega. And here I have shown you the time scale on 

which a time scale T, on which the amplitude is changing.  

Now, when we are looking at the coherence, the temporal coherence we have a wave. So, 

we have this wave at, which is oscillating fast at a frequency omega bar oscillating 

slowly at a frequency at a time scale T which is of the order of 2 pi by delta omega. 

When we calculate the coherence, we take the wave, give it a time delay multiply it with 

the original wave take the time average.  

So, what is the coherence between this wave, the same this wave over here and itself 

with the time delay tau? We know that if I had this wave a pure sinusoidal, the coherence 

of this wave with itself with the time delay tau, if there is a single frequency the 

coherence we have seen is 1, perfectly coherent. So, if I had a pure sinusoidal the 

coherence is it is perfectly coherent. So, if I give a time delay and then multiply it and 

ask the question what is the time average? It is going to be cos of phi 2 minus phi 1, the 

phase difference between the 2 waves.  

So, the coherence the degree of the coherence is exactly 1. This is going to change 

because; we have a spread in frequencies. Now the point here is that, if I give a time 

delay you see over a time period which is small. So, over a time period which is small 

compared to this, I can think of this part of the wave as being a pure sinusoidal. But, then 

if I keep on following it for a longer time, I will see that there are deviations from the 

sinusoidal, but this part of the wave this small part of the wave looks, just like this as 

such the amplitude is a little smaller.  



So, a small stretch of this wave looks like a pure sinusoidal. But, if I look at a larger 

stretch if I look at this entire large stretch over here, you see it looks it does not look 

anything like a pure sinusoidal because, the amplitude you can notice the change in the 

amplitude, over this small range, you cannot notice the change in the amplitude. So, from 

this, it should be clear from this discussion it should be clear that, if I displace the wave 

if I displace 1 of the wave if I put a time delay to 1 of the waves such that  
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tau is less than T which is I have told you of the order of 1 by delta nu. If, the time delay 

which is I have give to 1 of the waves between the 2 waves is; less than this time scale 

on which the amplitude changes, the wave is going to be largely coherent. So, C 1 2 is 

going to be of the order of unit T, not exactly 1, but something of the order of unit T may 

be half, somewhere over there something quite a bit larger than 0.  

Whereas, if tau is much greater than this time, on which on which the amplitude the slow 

variation on the amplitude occurs. So, if I give a time delay to 1 of the waves which is 

much larger than this, so let me show you what I mean over here.  



(Refer Slide Time: 47:16) 

 

So, if I give a time delay which is let us say this much and multiply these 2 waves and 

then take the time average question is, what do we except? The amplitude and the phase 

have changed considerably by the time you reach from here to here. So, what it what you 

except essentially is that, this the 2 waves should be incoherent.  
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So, this is going to be incoherent and this number is going to be close to 0. So, I hope I 

have been able to convenes you that, if the time delay which I gave is smaller than the 

time scale on which the amplitude and phase of the wave changes then, I expect the 



waves 2 waves to be coherent. If, the time delay between the 2 between the 2 waves, so I 

give a time delay to wave and multiply for itself and then take the time average.  

If the time delay is larger than the time scale on which the amplitude and phases are 

changing, I expect them to be incoherent. So, we have a time scale, which is the time 

scale on which the amplitude changes slowly, this time scale is called the coherence time 

of the wave.  

So, the time scale.  
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T which is also sometimes denoted as delta t the coherence time, this is of the order of 1 

by delta nu. So, the coherence time of a wave is inversely proportional to the bandwidth 

of the wave. So, the larger the bandwidth, the smaller the coherence time the smaller, the 

bandwidth the larger the coherence time. And we can also convert this to the coherence 

lengths. So, the length l delta l which is c into delta t, the length that the displacement 

that you have to give to 1 of the mirrors. So, in this case it is going to be d.  

So, if the length so corresponding to the coherence time, I can I have the coherence 

length. Coming back to the Michelson Interferometer again, so let me go back to the 

Michelson Interferometer again.  
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Coming back to the Michelson Interferometer, by moving the mirrors M 1 and M 2, I can 

change the time delay that I give to 2 waves. The time delay is exactly d by c and if this 

time delay is less than the coherence time, the degree of coherence between the 2 waves 

is going to be quite large; the visibility is going to be quite large. We will see good 

fringes very bright fringes with the good contrast.  

If I increase d so that, it exceeds substantially exceeds, so that d by c substantially 

exceeds the coherence time or d substantially exceeds the coherence length. The degree 

of coherence between the 2 waves, which I am superposing will be extremely small. So, 

the visibility is also going to be very low, I will not get fringes. Even if I do get fringes 

they will be very week. So, the fringes are going to get washed away 

So, the Michelson Interferometer, measures the temporal coherence of the wave. You 

can use the Michelson Interferometer, to measure the temporal coherence of the wave. 

What you need to do is, you increase the separation between the 2 mirrors slowly and as 

you and measure the visibility as a function of the separation. The visibility as you can 

see is directly the temporal coherence in this case. And as you keep on increasing, the 

separation between the 2 mirrors you will find that slowly will get washed away. And 

from this, you can determine the coherence time and the coherence length, what to 

determine directly is the coherence length. You can also determine the coherence time of 

the light source that you are using.  



Now, for example, if you use a white light source, white light has a very broad range in 

has a very broad frequency spectrum. So, if you use white light, the coherence time is 

going to be very small. So, you will not typically you will not get fringes at all. It is to 

use a light source with the narrow, with the small spread in frequencies to get fringes for 

a range of displacement.  

If, you use white you will get fringes only if the difference between the 2 arm lengths is 

very small. If you use for example, sodium vapour lamp a sodium lamp you’ll get 

fringes, but you will not get fringes if you increase the path length say beyond some 

reasonable distances. The order of centimetres you will not get fringes. Lasers have got 

very small spread in frequency, the lasers the light produced by lasers have a very small 

spread in frequency. So, if you use laser light lasers have a large coherence length goes 

into meters.  

So, if you use lasers as your source for the Michelson Interferometer, you can have large 

differences in the arm lengths and still get good fringes. So, this brings to an end our 

discussion of the Michelson Interferometer. Let me now discuss a problem before we 

finish this class.  
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Been adjusted; so that, there is a dark fringe at the centre. We now move 1 of the mirrors 

so that, you move it further out. So, that you get 100 new fringes appearing at the centre. 

So, as you move 1 of the mirrors, you get newer and newer fringes at the centre. So, you 



move it keep on moving it, till you get 100 new fringes at the centre. And it is found that 

in a particular situation, the mirror has to be moved by 30 micrometers so that, you get 

100 new fringes at the centre. The question is; determine the value of the wave length of 

the light.  

Now, this problem is very simple, we have already discussed all that is required, to solve 

this problem. So, we know that, for the condition for a dark fringe at the centre of a 

Michelson Interferometer is 2 d should be equal to m lambda and now, when you move 1 

of the mirrors so that, you get 100 new dark fringes, then by so 2 d plus delta d where, 

delta d is the distance you have moved the mirror, this should be equal to m plus 100 

lambda. This tells us that is equal to 2 delta d, subtract these 2 so, you get 2 delta d by 

100. So, this is equal to delta d by 50.  

So, you have 30 into 10 to the power minus 6 meters, this should be 30 into 10 to the 

power minus 6 meters divided by 50, which we can write as 60 divided by 100.  
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So, lambda is 60 divided by 100 10 to the power minus 6 meters and 60 divided by 100, 

we can write as 600 divided by 1000. So, this is equal to 600 and dividing by 1000 

means 10 to the power minus 9 meters. So, this is 600 nanometers. So, we see that, the 

wave length of the light that you are using here is 600 nanometers. So, we have in this 

last part of this lecture  
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We have taken up a very simple problem, which essentially illustrates how the 

Michelson Interferometer, can be used to determine the wave length of light. 


