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Good morning. Let us, start off by recapitulating the things that we have learned in the 

last class. 
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So, if you have an electron accelerating in the direction a direction of this vector shown 

over here. Then, in the last class we learned that in addition to the electric field which 

falls as 1 by r square this electron this charged particle will also produce an electric field 

component which falls as 1 by r. And I had told you and that it is this part of the electric 

field that falls as 1 by r which is responsible for electromagnetic waves, electromagnetic 

radiation. 

So, if you ask the question what is this radiation electric field, what is the electric field. 

Due to this electron at the point over here the electric field at this point will be. So, the 

way to calculate the electric field at this point is that you should take the component of 

the acceleration perpendicular to the line of site from the point where, you wish to 

calculate the electric field to the charge. So, this is the line of site from the point where 



we wish to calculate the electric field to the charge. We have to take the component of 

the electric field perpendicular to this. Which is what the dashed line over here shows.  

So, the dashed line is the direction perpendicular to the line of sight the component to the 

electric acceleration in this direction, is what causes the electric field over here. And the 

electric field is given by the expression over here. So, it is minus q where q is the charge 

the value of the charge divided by 4 pi epsilon naught c square r r is the distance from the 

point where we wish to calculate the electric field to the charge.  

This into the acceleration of the charge at the retarded time, the retarded time is in the 

past. So, if I wish to calculate the electric field at a time t at this point. I have to look at 

the acceleration at a time t minus r by c. The term minus r by c takes into account to fact 

that, the signal takes a finite time to propagate from here to here. The signal travels at the 

speed c the speed of light and it takes the time r by c to propagate from here to here.  

T minus r by c is called the retarded time, A is retarded acceleration. So, we have to take, 

we have to use the acceleration of the charged particle not at the time t, but at a rated 

time t minus r by c. We have to take the component of the acceleration, perpendicular to 

the line of site which is which is what give rise to this factor of sin theta. So, the particle 

the charged particle over here if it accelerates produce the electric field given by this 

expression.  

The key point is that the electric field falls as 1 by r and it is proportional if the electric 

field is in the direction perpendicular to the line of site and it is proportional to the 

component of the acceleration. In the direction perpendicular to the line of site. So, this 

was the first thing that I told you.  
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The second thing then, we moved on to a particular situation where we can apply this. 

And we were discussing the electric dipole oscillator. This is the device of considerable 

technological importance. So, we have 2 metal wires: A and B which are aligned like this 

and these 2 metal wires are connected to a voltage generator, which produces as an 

oscillating voltage at these 2 ends of these wires. 

Now, if have a positive voltage here and a negative voltage here. So, the bottom of A is 

given a positive voltage, the bottom of B is given a negative voltage. Then, there will be 

an excess of positive charge at this tip of A and there will be an excess of negative 

charge in the tip of B. These charges the negative charge here and the positive charge 

here will reverse. So, there will be a positive charge here and negative charge here when, 

the voltage is reversed. 

So, if i have a positive voltage here, negative voltage here and a positive voltage here 

these charges will get reversed. So, as the voltage oscillates the charges rush back from 

A to B. So, we have a electrons rushing up and down, from A to B and back and forth. 

So, you can think of it as electrons moving up and down this a single wire electrons 

accelerating up and down. These electrons that accelerate up and down, will produce 

electric fields which fall of as 1 by r. 

If I am sufficiently far away, you will see an electric field component which falls of as 1 

by r this is dominate thing which, you will see if you are far away. And so, we can apply 



the expression for the acceleration, which I just showed to you if you are sufficiently far 

away. And if the time the it takes for the electrons to go from here to here and then, come 

back. If this time period is considerably larger than the time period that light takes to 

cross this you can think of it, you can think of this whole device as an oscillating electric 

dipole. So, this is called the electric dipole oscillator.  

So, when you are quite far away at a distance which is much larger than the length of 

this. So, when the oscillations here are quite slow you can think of this as an oscillating 

electric dipole. And I shall go into a little more detail of this shortly later. Now, this kind 

of an oscillating electric dipole has considerable technological applications. So, much of 

the radio receivers, radio transmitters, the antennas used over there are electric dipole 

oscillators. 

For example: your TV you might have seen the TV antennas. They are a collection of 

electric dipole oscillators. They look like electric dipolar oscillator which is essentially, 

are long metal rod which is cut in the middle and has 2 leads connected to a voltage 

source or possibly to a detector.  
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So, let me now consider the nature of this dipole radiation. So, we have a dipole over 

here we have this metal rod AB which I just showed you over here. And we have a signal 

voltage source connected to it. So, this is the generator of the electromagnetic radiation, 



the electrons accelerate up and down and these accelerating electrons produce electric 

fields elsewhere.  

So, this is a common situation where I wish to transmit some kind of an electromagnetic 

radiation. I have a dipole oscillator and I am, I have connected a voltage source; the 

voltage source is the signal which I wish to transmit. So, the voltage source is driving my 

electrons up and down this metal, these 2 metal rods. And this gives rise electric fields 

elsewhere.  

Now, the question is then, I now wish to study the electric field pattern So, let us 

consider a situation where I have a detector located elsewhere. So, this is what this 

picture shows us. I have a source the generator over here and I have a detector located a 

large distance away from this. So, where is the detector located over here? The detector 

also is a dipole. So, we have a dipole here and a dipole here.  

The difference between the dipole here which is the detector and the dipole which is the 

generator is that the dipole over here. And which, is the detector is connected to a 

voltage detector could be an oscilloscope. So, if I the electric field produced by the 

generator when, it falls on a dipole located over here D when, the electric field from the 

generator falls on this.  

If the electric field is aligned with the dipole, it will produce a voltage across the dipole 

and this will cause the current to flow in this dipole. So, if you connect a voltage detector 

then, it will measure a voltage across the dipole. So, you could connect an oscilloscope 

and you could measure the voltage across the dipole. So, you can think of this dipole as 

you can think of our radio antennas or TV antennas as being some kind of typical dipole. 

So, I can use the dipole to measure the electric field produced by this generator which is 

also a dipole. So, let us consider the situation where I have a dipole located. Let us, say 

to start with over here. The dipole is aligned in the same direction as the dipole which is 

generating the signal. So, on the detector dipole is aligned in the same direction as the 

dipole which is generating the signal.  

Now, the electron which is generating the signal is running rushing up and down this 

dipole the generator. So, let us ask the question what kind of an electric field will be 

produced over here? So, let us go back to our expression for the electric field. The 



electric field I told you at this point if the electron is accelerating over here, the electric 

field here will be parallel to the component of the acceleration perpendicular to the line 

of site.  

So, this is the point where I wish to calculate the electric field over here, this is the point 

where I wish to calculate the electric field. The line of site from here to here is in this 

direction. So, the component of the acceleration perpendicular to the line of site is this 

direction. So, the electric field here is basically parallel to this. So, it is going to oscillate 

up and down, the electric field is going to oscillate up and down over here.  

Then, it is going to produce a voltage in this dipole which you can measure. Now, let us 

consider another situation where I have a moved the dipole on a circle. So, the think of 

the dipole as being attached to this generator through a rod or something like that. I move 

it around, maintaining the same distance and move it to a different position shown over 

here. Now, if I keep my dipole over here and I keep it aligned like this then, the electric 

field then let us, ask the question. What is the direction what is the electric field here 

like?  

So, you have to take the line of site from this point to the generator, this line over here 

shows us the line of sight from the point where I wish to calculate the electric field to the 

electron that is oscillating up and down. You have to take the component of the 

acceleration perpendicular to the line of site. So, you have to take the component 

perpendicular to this. So, the component perpendicular to this line of site is going to go 

down by a factor of sin theta.  

So, if the electric field here is going to be parallel to the component of the acceleration 

which is projected perpendicular to the line of site. So, it is going to be along the tangent 

to the line of site which is the way the dipole is oriented. Now, let us again consider as 

another position for the detector. So, if i move the detector all the way over here, where 

it is directly overhead, directly overhead to the dipole.  

Let us, repeat the same exercise. The line of site from the position where I wish to 

calculate the electric field to the dipole is this the particle the electron is accelerating this 

way it has no component, the acceleration has no component, perpendicular to the line of 

site. So, the electric field produced over here is 0. So, the electric field is maximum.  



When, the at this point it falls as 1 sin theta as I moved further, up as I move as theta is 

varied is as theta. So, theta when theta is 90 sin theta has the maximum value as theta is 

decreased. The value of electric field falls and it is 0 over here. The direction of the 

electric field at this point is in this direction it is the tangent to the radius. So, it is the 

tangent to the line of site which is in this case the radius. So, the electric field is 

perpendicular to the radius which is the tangent.  

So, at this point the electric field is in this direction at this point, the electric field will be 

in this direction at this point the electric field is 0. But this would be the direction it could 

be normal to the line of site, but it is has a magnitude 0. If I move a slight distance away, 

it will be the tangent. So, the electric field that is produced is perpendicular to the line of 

site this is the point which is important.  

Another point, which is important is if I put the dipole instead of putting the dipole in 

this direction. If I were to put the dipole in the direction which is perpendicular to the 

electric field.  
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So, if I put the dipole like this and the electric field oscillates this way. So, I have a 

dipole in this direction and the electric field oscillates like this. Then, this electric field 

will not produce any voltage difference across this dipole and this dipole this detector 

will not be able to detect this electric field. So, this is the point which we should bear in 

mind. 



If the detector dipole is perpendicular. So, if the metal wire AB which is which I am 

using to detect the electric field is perpendicular to the direction of the electric field it 

will not the experience any voltage difference and there will be no signal picked up here. 

Signal will be picked up only if the dipole is aligned. So, if the dipole which I am using 

to detect the electric field is aligned like this. In the same direction it is only then, that it 

will then there will be a voltage difference produced across this and there will be a signal 

picked up.  
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So, coming back to this picture over here if I have got to put a dipole in the perpendicular 

direction here I would get nothing. Right the dipole here is aligned with the electric field. 

So, I get a signal. So, this essentially summarizes the direction dependence of the signal 

of the electric field produced by the dipole oscillator.  
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Now, we going to concentrate on a situation where the signal that I am feeding in.  
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So, the signal that i am feeding in to the dipole oscillator we are going to assume that the 

signal is cosine is doing. So, the signal which I am feeding into the dipole oscillator the 

voltage generator is producing a sinusoidal voltage pattern. So, if it if the voltage 

generator produces a sinusoidal voltage pattern, the electrons are also going to rush and 

rush back and forth.  



Then, the motion of the electron between those 2 wires: A and B across the 2 wires 

moves up and down the 2 wires is going to be sinusoidal. So, we are going to focus for 

the rest of this we are going to focus on this of today’s lecture. We are going to focus on 

this particular situation. And in this situation, where the voltage oscillates as a sinusoidal. 

We can write down the displacement of the electron up and down this dipole oscillator.  

So, Y the dipole oscillator here is aligned with the y axis and the motion of the electrons 

as they move up and down this we can write as y the displacement in this direction 

charged particle moving up and down. The displacement in this direction is yt equal to y 

naught which is the amplitude of the displacement into cos omega t. So, let me just 

remind you of the situation again.  

We have this kind of an electric dipole oscillator the 2 metal rods: A and B or aligned 

with the x with the y axis. And we had applied, we have applied an oscillating voltage 

source which is oscillating in a sinusoidal fashion cos omega t. So, the electrons are also 

going to go up and down in a sinusoidal fashion. And we express the motion of the 

electrons up and down the dipole oscillator as y naught cos omega t. The electrons move 

back and forth along the y axis. Now, we want to calculate the electric field pattern at 

different points.  
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So, the electric field pattern at any arbitrary position distance r away from the dipole can 

be calculated in using this expression. So, the electric field at a time t a distance r away is 



minus q by 4 pi epsilon naught c square r. Into the acceleration at a retarded time t minus 

r by c into sin theta, where sin theta is the angle between the point where I wish to 

calculate the electric field and then, direction of the dipole.  

So, in this case it is the angle with respect to the y axis. So, this is the expression for the 

electric field in terms of the acceleration. And in this case the particle, the displacement 

of the particle is sinusoidal. So, it is y naught cos omega t this is the displacement I have 

to differentiate this twice to calculate the acceleration. If I differentiate this twice, I 

pickup up a minus sign and a factor of omega square outside.  

So, putting this into the expression for the acceleration, we get this expression for the 

electric field here. It is q into omega square into y naught by 4 pi epsilon naught c square 

r into cos omega t minus rc. So, is this is the cosine at a retarded time t minus rc into sin 

theta. So, this is the electric field this gets us the electric field at the point where we wish 

to calculate it and this can be applied to any at a large distance r in any arbitrary direction 

theta.  
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Now, it is convenient to think of this whole thing. So, we have the whole thing is that we 

have an electron, we have this these 2 things. So, you can affectively think of is at 1 we 

have single we have some charge q which is rushing back and forth up and down this 

dipole. Now, it is convenient for certain purposes to think of it as of 2 charges: 1 q by 2 

and another minus q by 2.  
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And the charge q by 2 is doing this oscillation yt which I just wrote down. And the 

charge minus q by 2 is doing exactly the opposite oscillation minus yt. So, a single 

charge moving up and down. I can think of as 2 charges: 1 of magnitude q by 2, the other 

also of magnitude the q by 2 with the opposite sign doing exactly opposite oscillations. 

Now, the point is that if I replace the a charge q with minus q and replace the 

acceleration a with minus a such a change does not change the electric field.  

So, if I change its sign of the charge and the sign of acceleration both, the electric field is 

not changed. So, we are essentially using this property. So, I am replacing 1 single 

charge q moving up and down with y of t by 2 charges 1 q by 2 moving with yt, another 

minus q by 2 moving exactly opposite minus yt. So, the both of them produce exactly the 

same electric field and sum of these 2 electric fields is exactly the same as the electric 

field the radiation pattern of the part of the electric field produced by this.  
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Now, if I have a charge q by 2. So, I have a charge q by 2 and it is at a displacement y. 

And I have another charge minus q by 2 at a displacement minus y this is a dipole with a 

dipole moment d this d is the charge into the distance. So, the charge is q by 2 the 

distance is 2y. So, this dipole moment is q into y as a function of t. So, this signal charge. 

So, as far as the radiation pattern is concerned the 1 by r component of the electric field 

is concerned a single charging move up and down and the displacement being y of t.  

I can think of is 2 opposite charges of half the magnitude moving up and down. And the 

1 of them moving up and the other 1 moving down by the same amount. And this can be 

thought of. So, the signal charge moving up and down can also be thought of as a dipole. 

Which is doing the exactly the same kind of a oscillation. So, the signal charge is moving 

as yt equal to y0 cos omega t and we can think of this as also being equivalent to a dipole 

dt which is q y naught cos omega t.  

Which I can write as d0 cos omega t. So, which is what is given. So, what I have shown 

you is that, a single charge moving up and down this I can think of as a dipole which is 

oscillating, as an oscillating dipole. So, the dipole moment the magnitude of the dipole 

moment is d naught which is equal to q into y naught into cos the and the whole thing 

oscillates. So, it is d naught into cos omega t.  

And we can now, write the expression for the electric field over here. Which we had the 

expression for the electric field, it can also be written in terms of the second derivative of 



the dipole moment. So, when we have an oscillating dipole it produces a radiation 

electric field pattern which falls as 1 by r. And the radiation electric field pattern, is 

given by this particular expression over here.  

So, the accelerating charge moving up and down you can also think of as a as an 

oscillating dipole, as a as an oscillating electric dipole. And the expression for the 

electric field you can interpret in terms of an oscillating dipole. So, what we see here is 

that if I have an a dipole, an electric dipole positive and negative charge which is 

oscillating. It could be set into oscillations in in a variety of ways. 

So, I could have real physical oscillations of a dipole or I could have a positive and 

negative charge moving up and down. I could have a dipole which is rotating, all of these 

situations give you an oscillating dipole and there are a large variety of other situations 

also. All of these can be thought of as an oscillating dipole and the electric field pattern 

produced by this is given by the expression over here.  
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Another convenient way and another convenient way of expressing the electric field of 

the same, electric field is in terms of the current. So, this oscillating dipole let me is in 

terms of the current. So, if when I have when, I apply a positive voltage to 1 of these 

bits: A and the negative voltage to B and then, if the voltage is reversed there will be 

charges rushing from A to B. And then, when the voltage is reversed again the charges 

will rush back and charges keep on moving back and forth.  

Now, when charge is moved you have a current. So, the current is the rate of change of 

the charge, the rate the current is the rate at which charge flows that is the rate of change 

of the charge at the 2 tips. And the dipole the rate of change of the dipole the second 

derivative of the dipole over here in this expression you have the second derivative of the 

dipole.  

So, the second derivative of the dipole moment is the first derivative. So, you have the 

dipole is the distance the separation into the rate at which the charge changes is the 

displacement of the charge. So, the second derivative of the dipole moment you can 

write in terms of this. So, the l into i dot the rate of change of the charge, the rate of the 

change of the current.  

And if I have current which is minus I sine omega t then, the rate of the change the 

second derivative of the dipole moment is going to be minus l into i into omega cos 

omega t.  
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So, we can also write the electric field in terms of the current. The I here is the amplitude 

of the current and this is the expression for the electric field in terms of the current. So, 

what we have done is we have written the expression for the electric field in this 

situation in terms of the dipole moment and also in terms of the current. So, all of these 

expressions have their utility depending on the situation that you are analyzing.  

A point which I should make here is, that if you look at the expression for the electric 

field in terms of the dipole moment or in terms of the acceleration then, the electric field 

depends on omega squared. So, if you double the angular frequency the electric field will 

go up 4 times. And this is true if you maintain the amplitude of the displacement fixed or 

if you maintain the amplitude of the dipole moment fixed and double the angular 

frequency.  

But if you maintain the amplitude of the current fixed and double than angular 

frequency. Then, the omega dependence note that, the omega dependence is different and 

the electric field will only go up twice. So, this is the point which needs to borne in mind 

that the omega dependence depends on the variable in terms of which you are expressing 

the electric field. And it will have a omega or omega square dependence depending on 

the variable in terms of which you are writing the electric field.  
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Now, let us go back to this situation which we were considering. So, we were 

considering a situation where I have a dipole oscillating along the y axis and we would 

like to calculate the electric field pattern at difference positions. Different positions 

means, different value of theta and different distance r. And we diagnosed a little we 

took a the little detour.  

Where, we wrote down the electric field in terms of different variables the rate of the 

change of dipole moment, the rate of change of the current. But let us, now come back to 

a study of the electric field. So, this is the dipole which is oscillating and let us calculate 

the electric field at different points along the x axis for this. So, to simplify matters let us 

restrict our attention to points along the x axis.  
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So, the expression for the electric field at different points along the X axis is this. So, we 

have the expression for the electric field. And we have replaced the distance r with x. 

And we also have this, simplification that along the when, you wish to calculate the 

electric field along the x axis. You have to take the component of the acceleration in the 

direction normal to the x axis.  

In this case, the electrons, the charged particles accelerate along the y axis the dipole is 

aligned with the y axis. So, the charged particles accelerate along the y axis. If I take the 

component of this acceleration in the direction perpendicular to the x axis it is still along 

the y axis there is no change. The electric field will be parallel to this component 

perpendicular to the x axis.  

So, the electric field will be along the y direction you will only have a y component of 

the electric field which is what I have written here. So, you are going to have an electric 

field along the x axis, you are going to have an electric field only along the y direction. 

And the magnitude of the electric field is given by this. It is has only the y component 

and at a distance x away you will this the magnitude of the electric field.  

So, the point to note is that it will depend on the acceleration of the charges at a retarded 

time, the retarded time is t minus x by C. And there is a factor of omega which is there 

for both of these. So, this takes into account the retardation of the, retardation which has 

to be put in. Now, we shall consider a situation.  
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So, let me now explain to you as a the situation which we shall consider. We shall be 

looking at a situation where, the dipole is located at a large distance from the point where 

I wish to calculate the electric field. So, we could take for example: the point where I 

wish to calculate the electric field is located at a large distance say 1 kilometer away 

from the dipole.  

Then, we now move from a point which is 1 kilometer away, we move to a point which 

is 1 meter away from this. So, this figure is not to scale you should bear in mind. So, I 

wish to calculate the variation in the electric field. When, I move from a point which is 1 

kilometer away, to a point which is 1 kilometer and 1 meter away. So, the change in the 

x is 1 meter and the distance was 1 kilometer to start with.  

So, you see that the fraction of the change in the distance is very small it is 1 by 1000. 

Which is equal to 10 to the power minus 3. So, it is a 0 1 percent change in x. So, if I 

move 1 meter from 1 kilometer to 1 kilometer plus 1 meter, there is a 0 1 percent change 

in x. Now, let us look at the expression for the electric field and ask the question how 

will the electric field vary? If I change x by this small amount.  

So, if I change x by this small amount the term outside over here is going to change by 

only 0 1 percent. And I can think of this term as being roughly constant. The change in x 

is only 0 1 percent. So, this term here is also going to change by only 0 1 percent. But 

look at this term the cosine term. If x changes by point one percent it is not guaranteed 



that this the change in this term is going to be small there could be a very large change in 

this term over here. And the magnitude of this change is going to depend on the value of 

omega by c. Now, if omega by c is very large then, a small change in x will cause a large 

change in the phase. So, it will cause a large change in the argument of this cos term and 

this change in the argument of the cos term, may cause a significant oscillation. See 

cosine is oscillating  

So, a small change in x may cause a well a considerable oscillation in this cosine term. If 

omega by c is a large number. So, let us consider the situation where we can ignore the 

change in x in the first term, but we have to take into account the change in x for the term 

inside this cosine. So, I can think of this as a constant, but I cannot think of this x as a 

constant.  
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So, if I make this assumptions. So, if I work in this regime we can write down the 

expression for E the y component which has a y component. So, the electric field which 

has only a y component the expression for that, as i vary x and as a function of time is a 

constant into cos omega t minus kx where I have used k to denote omega by c. So, I have 

used k to denote this coefficient omega by c which multiplies x.  

So, the point to note is that the expression for the electric field. If I vary x by a small 

amount at a large distance from the dipole oscillator is just the expression for the 

sinusoidal plane wave which we had studied earlier. So, this is the expression for the 



sinusoidal plane wave which we had studied earlier. So, what does it tells tell us it tells 

us that if we give a sinusoidal voltage to this dipole oscillator far away it produces an 

electric field pattern.  

So, at a fixed time this electric field pattern is sinusoidal and as time varies the whole 

sinusoidal electric field pattern will move forward. The electric field is only along the y 

axis and it has a sinusoidal pattern like this as time increases, this whole thing will move 

forward it will behave like a sinusoidal plane wave. So, this oscillating dipole produces a 

sinusoidal plane wave at a large distance from the dipole.  

So, what we see here is that if I have a sinusoidal, if I have a dipole oscillating like this 

and it is doing sinusoidal oscillations it will produce a sinusoidal plane wave at a large 

distance. So, if I go a large distance away from this oscillator. The electric field pattern 

produced by this will be a sinusoidal plane wave. The electric field pattern at a fixed time 

will look like the sinusoidal pattern shown over here. And this whole pattern will move 

forward in time as we have studied in the lecture on sinusoidal plane waves.  

So, coming back to our expression for the electric field you can write it in this form 

omega t minus kx where we have identified the wave number k with omega by c. This is 

a sinusoidal plane wave which, propagates along the plus x direction. Now, let us ask the 

question what is the wave number? The wave number here is omega by c. Now, once 

you know the wave number and the angular frequency, you can calculate the phase 

velocity and the phase velocity is omega divided by k. So, omega divided by k gives us 

c. 
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So, you find that the electromagnetic wave in this situation, the electromagnetic wave 

has the phase velocity which is the speed of light. So, the dipole oscillator over here if 

that be the sinusoidal voltage produces a sinusoidal plane wave at a large distance. So, 

over here this the electric field pattern produced by this is a sinusoidal plane wave which 

keeps on propagating outwards.  

Then, you could express this in the complex notation. So, E tilde y as a function of x and 

t is E tilde e to the power i k omega t minus kx, this complex amplitude has both the 

magnitude and the phase of the electric field.  
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Then, Coming back to the our picture we have the dipole oscillating like this. And if you 

ask the question, what is the electric field at some arbitrary point here far away. Then, 

you have to take the component of this oscillation that it is the component of the y axis in 

the direction perpendicular to the line of site. So, you have to take the component 

perpendicular to this and this is the direction of the electric field which is shown over 

here.  

So, the electric field is going to oscillate perpendicular to the direction of line of site. So, 

it is going to oscillate in this direction. The wave is going to propagate along the line of 

site. So, which is the direction k this is the wave vector it points from the dipole to the 

point where I have calculate the electric field. So, the wave is going to propagate in this 

direction and the electric field is going to oscillate in this direction.  

So, it is magnitude is going to be smaller than the magnitude of the electric field here. 

And this is going to be smaller by a factor of sin theta, but theta is the angle between this 

direction and the dipole. And if I look in this direction theta is going to go to 0. So, sin 

theta becomes 0, there will be no electric field produced by the dipole oscillator in this 

direction.  

So, for any other direction other than these this dipole oscillator far away is going to 

produce a sinusoidal plane wave. The magnitude of that, the magnitude of that sinusoidal 

plane wave is going to fall as sin theta.  
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Now, next let us calculate the magnetic field. The expression for the magnetic field is 

given over here. You have to take the unit vector along the line of site to the dipole. And 

do a cross product with the electric field divide by c and there is a minus sign here. So, in 

the problem which we are dealing with this is the point. Let us, again go back to the x 

axis. The line of site is along the minus x axis. So, the E cap vector is minus i.  
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So, the E cap vector is minus i and the electric field is along the y axis. So, it is along j 

the magnetic field is going to be minus E cap which is i cross E by c. So, the magnetic 



field is E by c, the magnitude of the magnetic field is E by c. It is in the same phase so, it 

has cos omega t minus kx and it is in the z direction i cross j is the unit vector k. So, it is 

in the z direction.  

So, going back to our picture. Along the x axis the electric field is going to oscillate in 

the same direction as a dipole which is along the y axis. And the magnetic field is going 

to be perpendicular to both, the direction of the propagation of the wave and the electric 

field the magnetic field is going to be along the z axis. So, this is a typical feature of 

electromagnetic waves.  

In electromagnetic waves, the electric the wave propagates in a particular direction. The 

electric field is perpendicular to that and the magnetic field is perpendicular to both the 

direction of propagation and the electric field. The oscillation of the electric field and the 

magnetic field or both in exactly the same phase. The magnitude of the, magnetic field is 

a factor one by c smaller than the magnitude of the electric field. So, this is the feature 

which is typical of all electromagnetic waves.  

So, in this part in the previous lecture and this part of the lecture we started of with a loss 

which govern the electric field and magnetic field produced by an by a charge. And I 

showed you that, there is a term which falls as 1 by r. So, this is term arises only when 

there is an accelerating charge and if I have a sinusoidally accelerating charge or a dipole 

which is oscillating it then, I showed you that such a thing produces a sinusoidal plane 

wave and electromagnetic wave at large distances.  

Then, this electromagnetic wave has a direction of propagation the electric field is 

perpendicular to that the magnetic field is perpendicular to both electric field and that 

direction of propagation and it is in phase with the electric field. So, this is very generic 

feature of electromagnetic radiation. And I also showed you, how such electromagnetic 

radiation can be produced, how it can be generated using dipole oscillators. Let us, now 

move ahead.  
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So, let us calculate the energy density in this electromagnetic radiation. Now, all of you 

must have already learnt that energy that there is some energy in electric and magnetic 

field configuration. And the energy in the electric field configuration is half epsilon 

naught e square. The energy in the magnetic field configuration is half b square by mew 

naught.  

So, let us now calculate the energy density that is energy density. So, let us now calculate 

the energy density in this electromagnetic wave produced by the oscillating dipole. So, 

this is the expression for the energy density as I just told you which I am sure is familiar 

to all of us. And for the electromagnetic wave we saw, that the electric and magnetic 

field they are not independent they are both produced by the same source.  

The magnetic field the magnitude of the magnetic field, is the magnitude of the electric 

field divided by c. So, I can replace the term arising from the magnetic field and write it 

in terms of the electric field as 1 by 2c square mu naught square into E square. We also 

know, that the constants epsilon naught and mu naught are related to c square they are 

not independent, they are related to c square and c square is 1 by epsilon naught into mu 

naught.  

So, using this expression we can write the expression for the energy density in terms of 

the electric field as epsilon naught E square The 2 terms exactly turn out to be exactly 

equal. The electric field and the magnetic field it turns out contribute the same amount to 



the energy density and the energy density is epsilon naught E square. So, we let us just 

go back to the situation we have an oscillating dipole or we have a charge going up and 

down that an angular frequency omega.  

So, this produces an electric field far away which also does oscillation that exactly is the 

same angular frequency. So, the electric field is also oscillating at an angular frequency 

omega. Now, the instantaneous energy density in the electric and magnetic field, the 

magnetic field is also oscillating at the same frequency. So, the instantaneous energy in 

the energy density in this electromagnetic field we just calculated that it is epsilon naught 

into E square.  

So, if the electric field oscillates with the angular frequency omega, the energy density 

depends on E square. So, we have already seen right in the first lecture that the energy 

density is going to also oscillate. The instantaneous energy density is also going to 

oscillate and it is going to oscillate at twice the angular frequency of the electric field. 

So, the instantaneous energy density that is what we have calculated here is going to 

oscillate at twice the angular frequency at which the electric field is oscillating.  
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Now, the quantity of interest is not the instantaneous in most situations the quantity of 

interest is not the instantaneous energy density, but the time average energy density. In 

most situations, the electromagnetic field oscillates quite fast and the quantity that we 

measure is not the oscillating energy density, but the time average energy density. For 



example: the bulb which illuminates the room is the is emitting radiation, this radiation is 

oscillating at a frequency the value of that frequency we shall discuss after 1 or 2 

lectures.  

But it is an oscillating as we have seen the electromagnetic radiation is an oscillating 

electric field. So, the value of the electric field is oscillating. But we see a steady 

illumination that is because, our eye and most optical devices measure only the time 

average energy density. They the record the energy over a time period which is much 

faster than the time at the, rate at which the electric field is oscillating.  
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So, they only measure the time averaged energy density. So, we have we wish to 

calculate this quantity which is of practical interest. So, to calculate this we express we 

electric field in the complex notation as you can see here. And then, the time averaged 

energy density is the, time average of E square which in the complex notation is E into E 

star by 2.  

So, this gives us gives us the average energy density it is half epsilon naught E square. 

Where E is the magnitude of the oscillating electric field. This the expression for the 

average energy density in an electromagnetic radiation.  
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Now, remember that the we have, we have energy in the electromagnetic field, but the 

electromagnetic field pattern is a sinusoidal plane wave. The sinusoidal plane wave is 

propagating forward in this case along the x axis we were discussing waves along the X 

axis. So, the sinusoidal plane wave is propagating forward along the x axis and it is 

propagating forward at a speed c.  

So, the energy density in this electromagnetic field does not remain fixed over here the 

whole thing propagates forward at a speed c the speed of light. So, let us now ask the 

question we take a surface perpendicular to the direction in which the wave is 

propagating. So, in this case the wave is propagating along the x axis. So, we take a 

surface perpendicular to the x axis. And ask the question how much energy crosses this 

surface, crosses a unit area of this surface per second.  

So, what is the energy density? By energy density we mean, the energy the energy flux. 

So, this is what energy flux: the energy flux is the energy which crosses per unit area of 

the surface in a unit time. And this is the energy density into c because, the whole thing 

is moving forward at a speed c. So, if you take a unit area and ask the question how 

much energy will cross it in a second. The amount of energy that will cross it in a second 

is the energy density into the speed at which it is moving which is c. So, this gives us the 

energy flux.  
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Let me, just elaborate a little of this. So, energy flux is the energy per unit area per time 

per unit second. And this is the quantity which is of considerable practical importance 

because, whenever we have a detector for example: we have a detector of some sort 

which is measuring radiation. The quantity that we detect is the amount of radiation, the 

amount of radiation energy per unit area.  

So, we have the area of the detector if i the double the area of the detector, I will get 

twice the radiation of the energy. So, the amount of the energy per unit area of the 

detector per second. And this has a unit of so, energy per unit time is power this is also 

you can think of it as power which crosses per unit area. And this has got units of joules 

per meter square per second or you can also say, that it has units of watt per meter 

square.  

The power which crosses per unit area, the power of the radiation the power from the 

radiation per unit area. And this is the energy density into c.  
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So, calculating this energy density into C we have half epsilon naught into c into E 

square. Which gives us the energy flux. You should also remember, that the energy flux 

is a vector, it is a vector in the direction. So, this energy is moving in the direction in 

which the wave is propagating. So, it is a vector and if I want to calculate it at some other 

point the energy would be moving in some other direction.  

So, along the x axis the energy is flowing along, the x axis it is the energy density into c. 

If I want to calculate the energy flux here it could be a vector along the this direction 

along the direction of the wave. And it would be the energy density here into c. It should 

be in this direction. So, in the next let me stop here for today. In the next class, we shall 

calculate this expression for the flux and go ahead for the further from there.  


