
Management Information System

Prof. Biswajit Mahanty

Department of Industrial Engineering & Management

Indian Institute of Technology, Kharagpur

Lecture No. #28

OOAD – II

So, we were discussing; we trigger to objective oriented analysis and design the

relationship of classes. In particular, we have said that there are three types of

relationships amongst classes, particularly the association aggregation and

generalization.

(Refer Slide Time: 01:19)

Now, out of these we have discussed the first property that is a association. Now, let us

move over and try to see what is shown as the aggregation relationship.

(Refer Slide Time: 01:27)

Now, the aggregation relationship is a special case of association indicating a whole-part

relationship. So, a consist of relationship where the whole consists of the parts. So, I

have said that there are two basic structures. One is the whole-part and the other one that

is the generalization, that is relationship, that is the generalization type. But this one is

the aggregation relationship where we have or otherwise called the whole-part

relationship. Again, the aggregation associations are basically three types; normal

aggregation, shared aggregation, and the composite aggregation. So, the whole-part

understanding could be very important when it comes to relationship of classes.

(Refer Slide Time: 02:24)

The first one, that is the normal aggregation. The basic idea is used to show that a class

may be made up from other classes. A hollow diamond, this is a hollow diamond symbol

is placed by the side of the class that plays the whole in the whole-part relationship. So,

here is an example of a computer and it is system units. And usually it is 1 is to 1, a

computer has one system unit; a computer is the whole system unit is a part of it. So, it is

a kind of whole-part relationship. There is a normal aggregation, the normal aggregation

sometimes a simply called aggregation. Most of the time the normal aggregation is called

just aggregation.

Can you give another example of normal aggregation? (No Audio Time: 03:29 to 03:35)

Another example of a whole-part relationship where we have the part and a whole (()).

No, do not talk about record of a database (()), because we may not define them as a

class. Suppose, you want to have the institute as a class, the institute has got many

departments. So, the department could be the part and the institute as a whole. You have

to think in that line that both should be ultimately class. So, that could be another

example the department is a constituent of the institute. So, department institute both will

be part of a normal aggregation.

(Refer Slide Time: 04:35)

The other type that is known as the shared aggregation is it occurs when the part may be

a part in any of the instances of a whole. Something like say, multiplicity of the whole

being depicted by something other than 1. See, usually the whole is a something like a

your, you know it is like the department is part of the institute, of the system unit is part

of the computer. So, you can think of the multiplicity of the whole is 1, is it not? The

ultimately, the whole consists of the parts are basically may be multiple, but the whole

should be one, that is the idea. But suppose there are some tutors who are the part of not

just one institution, but many institutions.

So, it is like some professional tutors who are actually participating in a number of

institutes. So, it is not just an institute and a teacher (()), but the because the teachers are

usually part of a given institute. In this case, the tutor the concept of tutor here is that the

tutor will be not only part of one institute, but could be part of another institute as well.

So, institution as a class may have a number of objects institute 1, institute 2, institute 3

and a given tutor may be part of not only just institute 1, but also may be institute 2 or

institute 3. In that sense it is called a shared aggregation. The difference could be seen in

the multiplicity 1 is to star for the institute as well. Is it clear? That is known as the

shared aggregation.

(Refer Slide Time: 06:32)

The next one is hold the composite aggregation. The composite aggregation is something

like this that you see when we talk about the tutor of the institute or the department and

the institute or the system unit and the computer. Even if you the computer classes

destroyed, system unit may still be there, is it not? Even if you do not have any record in

the institute, you can as well have the department details. The department class may still

exist, but sometimes what happens? The whole and the part has got a very strong

relationship. Say this example suppose, you have defined a window, the window has got

a menu and a scrollbar.

So, any window that you bring up in computer usually consists of a menu and a scroll

bar, by which you can you know scroll from one choice to the other. Now, what

happens? If by any chance you delete the window, the window is not there anymore.

Then the menu of the scrollbar will also be destroyed along with it. So, relationship is

rather strong in the sense that destruction of the whole will also destroyed the menu as

well as the scroll bar both. So, it say strong relationship. It say this is strong relationship

in that sense. So, whenever you have this kind of strong ownership or relationship you

have, what is known as a composite aggregation.

So, whatever it may be the aggregation is a whole part relationship and is an important

concept of relationship between classes. Let us move over which is much more important

to us and used very much in any object oriented modeling and analysis.

(Refer Slide Time: 08:47)

That is known as generalisation. So, usually whenever we have the we have already

same the concept of generalisation in a relationship, while we have discussed the D B M

S. Like an employee could be a pilot or employee could be a crew. The employee has got

certain details fields, classifications, but pilot will inherit all of them. Not only that it

may have certain other special properties. What are those special properties? The pilot

can fly a plane. The crew will be serving people while they are in the plane. So, whereas,

another employee may be a clerk, may not be having these properties.

So, a generalisation the basic idea is that you have a class, the superclass. So, called

superclass, that is the general. That means, here in the example, I gave the employee is

like to superclass and the pilot as well as the crew will be the called derived class or so

called subclass. So, the generalisation relationship exist between more general class that

is a superclass and a more specific class that is the derived class or so called subclass.

The subclass see we are using toward inherit inheritance for the first time what will

happen? The subclass will inherit the data and the behavior of the superclass and, but it

must contain extra information to define it.

We will give an example to understand what is meant by that. And unlike aggregation

here, we are depicting it by placing a triangle by so, that is the diamond symbol and there

is a triangle symbol. In this case, we use a triangle symbol not the diamond symbol by

placing a triangle by this superclass in the relationship. Generalisation promotes reuse as

the basic data and functionality are defined in the superclass. So, what is happening? The

major properties of the employee are already given in the employee class. So, when you

define pilot you need not keep on giving the same details like employee has got a name,

address, salary, show employee, which will show all the details of the employee.

You will simply inherit all those facilities which are already available for the employee.

So, you can concentrate only the fly part. So, that is the advantage. Generalisation

promotes reuse as the basic data and functionality are defined in the superclass itself. The

attributes operations and all associations of the superclass are inherited by the derived

class, is it ok? So, all the basically the subclasses own, whatever is there in the superclass

as if there is a part of that.

(Refer Slide Time: 12:03)

So, here is an example of a generalization. The example basically shows the between the

clock and a stopwatch. So, these examples are something like this. That clock has got, let

us say three attributes that is the hour, minute, and second. Hour, minute and second

three attributes and the clock basically it can had three behavior or basically three what

you call the operations defined in the class. Number one advance time you can change

the time. Second display you can display the present hour, minute and second in the

clock. And you can set time basically to put a particular time at a given point of time.

The stopwatch on the other hand is definitely a clock in the sense, we assume here the

stopwatch also shows the hour, minute and second at a given point of time.

However, you have three more additional functions that is reset, start and stop. So, these

reset, start and stop and we have an additional attribute 10 seconds. That is tenth of a

second. So, that means, it how many attributes will stopwatch have? Four. See, it will

inherit the that is hour, minute and second. And the fourth one it is own. Similarly, it

may have 3 plus 3, six operations define for it. A very peculiar kind of a case could be

where you can have the inherited the class can a redefine one of the functions which is in

there in the name. It may so happen may be. Suppose, if you define for all basically

rectangular type of objects may be a square, a rectangle, a parallelogram those kind of a

general structures. The generally, the area is given by height into width. So, if you want

to put the area as a superclass function.

So, what will happen? The superclass of the you know the, what you call the shapes, the

rectangular type of shapes. We will calculate with the basis of height into width which

may be true for inherited class like square, a rectangle, rhombus, parallelogram, each one

of them. But assume we are thinking about particular rectangle which is having the edges

as chamfered. I have given this example earlier let me just redraw this.

(Refer Slide Time: 15:35)

What I want to say was? See we have a rectangular or a square structure where we have

the edges. So, you see not only it has a height and a width, but also it has giving a small

radius. So, you see this in a small portion I know this is the radius and this is the thing.

So, this much area will be cut off and the area calculation will be slightly more involved.

It will be slightly less in fact, the area of this shape will be slightly less. So, basically

what you have to do in this situation, you have to redefine the area function once again.

Although the area is already defined in the superclass, in the base class or the subclass I

am sorry in the subclass or the derived class you have to again redefine area as a function

of h w and r. And these will supersede the area which has already being defined in the

superclass.

So, this is an advantage in fact, because it may not be all the time possible to have in

over the generalization to be perfectly alright. Say otherwise, you have to put the

chamfered object to another hierarchy. You cannot put it there, because for most of them

the area is having a simple formula. But this one the area formula is slightly revisited.

So, we can do it by a simple calculation. Is it clear? So, this is basically the

generalisation therefore, gives you the concept of inheritance.

So, there is further to it what you have? What is known as an inheritance tree. So, you

can have a look at an inheritance tree here. See, user could be a staff or a student look at

the diamond, the triangle is facing up towards the superclass. The staff could as will be

tutor and an administrator. If you there on an administrator, the student could be under

graduate, post graduate. So, you can have number of inheritances and then what will

happen? The user will have certain properties that will be inherited by staff as well as

student. The tutor will inherit the properties of the staff and administrator. Similarly,

under graduate and post graduate inherit the properties of the student.

Now, what is then a multiple inheritance? So, subclass in more than. So, now basically,

when the inheritance is from more than one superclass then we call it is a multiple

inheritance. So, multiple inheritance is the special type of inheritance where the

basically, the inheritance comes from more than one superclass.

(Refer Slide Time: 19:09)

So, one example then you can see here the multiple inheritance occurs when a class is

derived from more than one superclass. So, we have the digital watch and the analog

watch. Digital watch has got it is own property, shows the time in a digital form. The

analog watch on the other hand has hour hands, minute hands like that and dual display.

Suppose, if you think of a dual display watch then it will have both digital as well as

analog. So, you can show it as a multiple inheritance. What are the advantages or

disadvantages of multiple inheritances? Is it advantageous to have multiple inheritances?

reusability increases, but difficulty (()).

So, there could be ambiguity suppose, the digital watch uses an attribute and analog

watch also uses a same attribute. So, which one will it will be inherited by the dual

display? You have to specifically look at that. See one big advantage of so called

encapsulation, is that once you have defined a class, you need not worry about the how

this definition of a particular class comes in the definition of another class. So, you have

two classes, the definition of one class should have nothing to do with the definition of

another class. So, it is a true encapsulation.

You can independently do it. You can give it to a module developer and let him design

that class independently without bothering about another class. But in this case it is not

happening because how you define this and how you define this will ultimately come

into play while you are defining dual display. Because of these kind of difficulties,

multiple inheritance is not preferred or is not available in java language. Whereas, c plus

plus defines multiple inheritance. You can have multiple inheritance in so called your c

plus plus whereas, not possible in java.

(Refer Slide Time: 21:48)

Now, let us go to another very important concept that is known as the abstract classes.

See, here is an example of an abstract class. We have the shape operator this shape class

and there could be two classes rectangle and circle. The rectangle has got height and

width and it has a calculate area. And similarly, the circle has a radius and then have it is

calculate area. Now, the point is; see the practicality of having a rectangle and a circle

define them as separate circles all that thing is fine, but think of suppose, you are

basically developing a software for drawing. So, essentially what will you have? You

will have basically a drawing, you know icons, different icons are available using those

icons you can drop probably rectangle, circle, parallelogram etcetera, different shapes

you can basically draw. But how about let us say a simple thing like an area calculation.

Will you give a separate area calculation tab or a button for every such shape? Try to see

it could be mind-blowing. There could be a 30, 40, 50 kind of shapes and if you have to

put an area button. For each one of them it will be difficult. A better idea would be to

give a single button, single area button, but to give it you have to have a superclass. But

what will be that superclass called and what is it is a basic existence? You see, it may not

be possible because then it will be you know it cannot be defined on it is zone for

example, shape.

What is a shape? Basically, a shape could be any of these and any of these already

defined in the subclasses. In that sense, we have to we can get out of this situation by

defining a so called abstract class. But the problem of the abstract class is? A abstract

class see the shape class with operation calculate area that cannot be defined or

implemented in that class. You if you define calculate area as width into height like I

gave, but example like gave there that was for a very specific kind of classes like square,

rectangle, rhombus, parallelogram.

I did not include things like circle or other kind of shapes steroids. Those shapes where it

is not just width into height. Something even simple like triangles can also have half into

width into height is a different. So, the shape it is an abstract class it is defined purely to

take advantage of the situation basically, what is known as polymorphism? Basic idea of

polymorphism is that the implementation since it is different for both classes, it can only

be known at the run time. So, whenever the implementation can possible only at the run

time. See, this calculate area button which is the part of the shape, which is the single

button.

When you press that calculate area button which calculation or which calculate area

function will it use? Will it take for rectangle or circle or triangle or square or what? That

will depend on a given pointer which has been said at that time and pointing to the

rectangle circle or the other. So, this is called what is known as dynamic binding. So,

essentially the idea of polymorphism is where will have so called static binding and the

dynamic binding .

(Refer Slide Time: 26:28)

So, I was explaining to you the dynamic binding. The basic idea of the dynamic binding

comes from the concept of abstract classes. The abstract class like shape basically, the

calculate area function whenever it is called. Essentially, it determines of which calculate

area will it take from the different subclasses or derived classes at the run time.

Depending on a pointer arithmetic, but the advantage is when it comes to writing

program all you have to do is shape dot calculate area. You see programming is

absolutely easy and it is only to be seen at the run time how the calculation could be

done.

Whereas, for static binding the particularly when it comes to polymorphism. It is slightly

different, it is at the not at the run time, but usually static binding is implemented with

the help of what is known as operator overloading. How operator overloading can be

implemented? Suppose, we have the area. So, when you give only the h and w, this

function could be different from or you see, these three are three examples of operator

function overloading basically (()). See, basic idea is depending on how many

parameters you give, a different area function will be called. And suppose, if you simply

give h and w, it will calculate h into w. Suppose you give h w and r, probably the r will

be taken as chamfering radius.

And when you give simply r probably it is a circle and it will take a simple circle

formula for calculating area.

(()) will you take (()).

No, the value you was applying, is it not? When you are calling these.

Because you are calling the first area should not take r at all (()).

No, it was not take r at all, it is not a question of not take r (()). You see, these three area

although they are called area. But they are actually three different operations and define

three, define one after another. See, something like in the same class, the same class has

got three different definitions. It is not the same area operation, the same class has got 1,

2, 3 different operations define. Are you getting me? Although they are all called area,

but they are not the same functions in that sense. They are three different functions,

while your class definition the area operation is defined three times. Depending on how

many parameters you are sending either this or this or this will be used. It is not like it is

only one function and depending on what you have by logic it is (()). No, it is not like

that, is it? So, that is the idea. So, that is about the classes.

Now, let us so far we are talking more about may be the programming aspects of object

oriented analysis. And basically, a getting a broad idea of what could be classes, but

essentially three very important concepts we could get one of encapsulation, inheritance

and polymorphism. They are very basic object concepts and these concepts cannot be

really very well understood, if you take out the programming aspect of the thing. But you

must remember our course is mode of analysis and design the other than programming.

So, with a broad understanding of what is the object orientation? What is a class? What

could be the associations of the class?

Let us go back to the modeling aspect of object oriented analysis and let us start write at

the beginning. That means, suppose you have a business situation then how you actually

begin? We basically, begin the object oriented analysis by what is known as use case

analysis. So, the use case analysis one of the very primary thing about use case analysis

is what is known as the use case diagrams.

(Refer Slide Time: 32:00)

The use case diagrams basically, the describe a system from an external usage view

point. See, when you are drawing an use case diagram essentially, what you are doing is

how the user looks at it. Do not compare use case diagrams with let us say that dataflow

diagrams. The dataflow diagram is again a developer’s point of view. It is a developer’s

point of view. The processes which you are defining in a dataflow diagram in the such a

system analysis and design. Essentially, those processes are from a developer’s point of

view, how he would like do processes to be implemented. Because, we have seen later

on the processes themselves becomes later on.

But common in that sense, the use case diagrams are do not help much when it comes to

design. A basically one can say, the use case diagrams basically help in putting the

requirement analysis or the functional requirements in perspective. So, whenever you are

you know having the requirement analysis done and those requirements you want to put

it in perspective one of the very basic tool use cases. You see, do not get confuse by use

cases and use case diagrams. The use case actually is the elliptical shape here basically,

which is a which has to be discussed in further. Suppose, we have a given use case

suppose, an actor could be a student and a use case could be register for courses.

A very good example you can find in object oriented analysis and design book. Books

for example, by there is a book. In that book he has given in great detail, the post the

example of a post. The post is actually point of sale terminal. What is a point of sale

terminal is basically a terminal where a sales clerk is sitting and the whenever the

customer comes with a list of items then you know the sales clerk will a note the items.

And he will give a receipt and he will accept pay that. So, may be if we take that check

the items second could be the receipt payment and it possible. Suppose, it is a return kind

of a situation, then it could be refund.

There could be more use cases, but to begin with we can think of three use cases for

point of sale terminal. One is the check items, the second could be the receipt payment,

third could be your refund. How we have defined or the obtained these use cases?

Basically, from a clear thinking that not from the developer’s or you know programmer’s

point of view, but purely from an analyst’s point of view. What the user actually doing?

What are the broad categories of work that the user or the clerk in that case is actually be

doing is the point of sale terminal.

But sometimes we can gets and we may say that switching on the terminal. Then you

know then opening the screen, then entering the password, bringing the system up we

like the we can list so many use cases. But that is not right. We should try to look at it

from your user activity point of view. What is user actually by all these processes. What

the user is doing is actually logging in. So, we may say log in, log in could be a use case

is it alright? So, that is why you must; you see use cases are a collection of task-related

activities describing a discrete chunk of the system. It should be a discrete chunk of the

system and not just one small thing in a sense that should be a business activity. So, one

use case must represent the business activity.

(Refer Slide Time: 37:07)

Now, before we move further we must also see what use cases do not describe? Before,

we see what use cases actually describe let us understand what the use cases do not

describe. Do not describe the user interfaces, the performance goals the application

architecture or the non-functional requirements. So, use cases do not describe user

interfaces, performance goals, application architecture, non-functional requirements. So,

only the functional requirements it basically shows. It does not shows the

implementation. Implementation is not shown. So, I think let me show a diagram before

we move for that.

(Refer Slide Time: 38:12)

You see, this is what I was talking about. About a post system, the point of sale terminal

an use case diagram will have the booking clerk. The booking clerk and on the other

hand will have the customer which is shown by the stickman symbol. The stickman

symbol for booking clerk and the customer, these are called actors. The actors are

basically the people who are involved in this. They are not entities like we have define

external entities earlier, but they are actually who are doing the job. And whenever there

is a connection for example, when you are logging in, the customer has nothing to do

with it.

So, it is only the booking clerk who is involved in logging in. The check out on the other

hand you know is something for both booking clerk and the customers both are involved.

Whereas, the refund we have again booking clerk and customer both involved. So, this is

a very simple example of an use case diagram and one can see that we are identified. See

broad use cases and out of these three broad use cases, we are put it inside a rectangle.

This is basically the system and the system in which they use cases are implemented, that

is the post terminal point of sale terminal. So, we will come back to these examples later.

Let us try to understand further, what the use cases are? Basically, you see it does not

end here simply drawing an use case diagram. Basically, what the diagram is going to

say? A diagram will only say who are the actors and what is the use case, that is all. So,

that is the only thing that it tells, but it does not end there. What you must add in a any

use case is description of the use case. It must be described in detail. So, what kind of

descriptions write the description in three forms, the first one is known as the narrative

form where you give the overview in free-form text. Or you can write it in a scenario

form where you write the simple sequence of events. Or you can write the conversation

form by actor-system interaction.

So, you have the actor on one side and system functions are other side, and what the

actor will do? What the system will do? I will give you some one or two examples for

the first two.

(Refer Slide Time: 41:03)

So, let us see what is happening in the so, called narrative form. In a narrative form we

have what is known as a free-form text. It shows the high-level actions of the user is

intent and while a referring to the key concepts. So, an example supposes we have an use

case make a payment. So, what are the broad activities that is going on? Users can make

online payments. So, users can apply payments to specific vendor accounts they have.

And two ways to make this payments, one-time payment for a specific amount or regular

payment schedules monthly or yearly. So, this is a may be called some kind of an use

case description.

So, you can refer to may be the u m l user guide I think bihar the text book to understand

object oriented analysis or book is not bad you can also have a look at book. The post

case study has been given in great detail in book. There is another book by (()). So, you

can also see that and in all these books you can see that apart from the use case diagrams,

you can also see how to write the use case descriptions. So, this is one example of an use

case description in a narrative form. Now, let us move over and see how the next one?

That is how use case could be written in the scenario form. So, what basically and why

do I write use case description? What is the use of these?

You see the use case description is like stating the requirements. You have done the

requirement analysis and whatever way that requirement analysis you are coding it in a

nice form. That is the basic purpose the use cases (()). Let us move over to what is

known as the scenario form. The scenario form basically a describes a sequence of

events sequence of events.

(Refer Slide Time: 43:35)

Describes the a intention of the actor into a actor’s intentions and the system

responsibilities and action. So, what the system is supposed to do? What is the actor

intends to do? And what are the sequences of events. Let us look an example, register

customer with automatic activation. So, what is the being done? First, user enters the

registration information by providing registration information details. So, may be

whenever you want to register as a customer say, to some business say for example, you

want to be a customer to a consulting organization. So, you want to register.

So, naturally you have to first keep a set of information. Set of information may be your

name, address in what purpose you want to have, this particular facility may be a

confirmatory password. So, all these information you have to enter. Then system would

check the password and system would validate the fields. Particularly, and verifies the

login id and the password. So, system you see the system also have got certain things to

do, then system will verify the customer activation, information whether the information

is true.

So, may be some cross referencing thing will be given and from the cross referencing

you can do this. Then system creates and activates customer online account and the

system displays the registration notification; that means, such an such customer has been

registered. So, basically you see what are these suppose; you have simply drawn a

register customer with automatic activation, this is like an use case. What are the, who

are the actors? Yes, customer and the system. You see the actor need not be a person all

the time. The actor can as will be a interface or a system (()). See, any entity which has

something to do with it, our next slide is an actor’s we will discuss that.

So, that is the simple diagram that you might have drawn. You have drawn an use case

register customer with automatic activation, one actor as customer, another actor as

system. And they have both to do something with this use case. That is our very simple

use case diagram (()). See, no see users are the so called customer. Customer is entering

the all these information. So, it is alright. Where system is also doing things, the system

is checking the password, system is validating the fields, verifying password. So, system

has got lot of actions to do.

You see please understand this, do not look at it I say that in the beginning, do not look

at it from a programmer’s point of view, from a developer’s point of view. Look at it

from a functional point of view, from a the user’s point of view. The use case

diagramming method is a purely user orientation. Any requirement analysis diagram or

requirement analysis document when you prepare (()). It is a pure block box that is why

the requirement analysis is called the block box view of the system. It does not talk about

implementation, it does not answer any why question, it only answers the what

questions. (()).

Post terminal was not the actor post terminal was no, post terminal is the terminal where

the clerk is working is the system. But if you think that login requires also the system

intervention then you can call system also you could have put as an actor. For example,

whenever you are let us a logging in, there has to be a password authentication. So, you

may like to put system or the also as an use case a not as use case is an actor. We will

give more examples I think at that time, system ok working is working with the data, but

look at it how the user would look at it you see you have identified certain requirements.

What are the requirements? This is what is here, some of the requirements that we have

identified like checking the passwords, like validating the field verifying login id. So,

look at it from user’s point of view, who is doing it? some system is doing it. So, you put

it as an actor that is the idea. I think if I give more examples you ask this question once

again after we discuss more about the use cases may be when we give one or two

examples maybe we can come back to that.

(Refer Slide Time: 49:12)

Then about the actors. So, actor a person or a thing interacting with the system. So, that it

can respond to the business events. In fact, we can also answer to that question in this

way that how you look at it a look at a business situation may be differing from one

person to another. So, one modular who has defines something as an actor, may be

slightly different to another. It may not be all the time exactly matching so little bit of

subjectivity could be involved there. So, you can have a primary actor who stimulates the

system to react and a secondary actor would responds to this so called system’s requests.

So, we can have what is known as a primary actor or a secondary actor. So, how to look

for actors? We can have an actor is who uses the system, who gets inform.

Now, these answers may be some of your question who uses the system, who gets

information from this system, who provides information to the system. Then, this who

part is over. What other systems use this system? I will give one example, who installs

starts up or maintains the system. So, all these will be part of what is known as actors.

See, sometimes what happens let me give an example (()). Suppose, you have then old

system running and old payroll system running in your organization. And now, you want

to develop an accounting system which was previously not there financial accounting

system out of which the payroll is a part.

Now, you have started developing now, everybody knows the financial accounting and

payroll are related to one another in a big way. So, whatever you do in a financial

accounting package, the payroll will have lot of interfaces. Now, what will you do? The

old payroll you cannot discontinue suddenly. So, you have to you are redeveloping the

payroll system may be, but you do you cannot put the new payroll system in use

immediately, because old payroll system is still running. So, you may call the old payroll

system as the legacy system. As a legacy system you allow the new system, new payroll

system will not be activated.

The legacy system will be still running; the other financial accounting systems will be

operated. And whenever there will be any payroll kind of a thing then the legacy, you

have to interact with the legacy system. In the process of time, when your new payroll is

fully developed and you have full belief on the new payroll system, you can discontinue

the old and continue the new one. Till such time the old payroll system or the legacy

system should be shown as an actor because, you are interacting with it. So, this is what

it is, that who uses the system, who gets information from this system, who provides

information to the system and what other systems use this system, and who installs starts

up or maintains the system?

So, we leave it here today in our next class, we will come to more about the modeling

with use case, I will show some examples of use case. And then move over to more

important things like conceptual diagram, sequence diagram, you know and

collaboration diagram, class diagram and so on. So, thank you very much.

